Araştırma Makalesi
BibTex RIS Kaynak Göster

Hastane Atıksularının Membran Biyoreaktör’de (MBR) Farklı İşletme Koşullarında Arıtımının Yaşam Döngüsü Etki Analizi ile Karşılaştırılması

Yıl 2023, Cilt: 27 Sayı: 1, 64 - 75, 25.04.2023
https://doi.org/10.19113/sdufenbed.1128832

Öz

Bu çalışmada, tam aerobik ve düşük oksijen konsantrasyonlarında eş zamanlı nitrifikasyon-denitrifikasyon (SND) koşullarında, hastane atıksularını arıtan MBR sisteminin çevresel etkileri Yaşam Döngüsü Etki Analizi (YDEA) ile araştırılmıştır. Çalışma sonucunda, her iki koşulda da en yüksek çevresel etki tuzlusu ötrofikasyonunda gerçekleşmiştir. Tam aerobik koşullardan SND şartlarına geçildiğinde tatlısu ve tuzlusu ötrofikasyonu için çevresel etkide sırasıyla %30 ve %31 azalma tespit edilmiştir. Enerji tüketiminde %25 azalma gözlenirken, SND şartlarında reaktörden kaynaklanan hava emisyonlarından dolayı küresel ısınma etkisinde %13 artış olabileceği tespit edilmiştir. Tüm etki kategorileri birlikte değerlendirildiğinde, tam aerobik koşullardan SND şartlarına geçişte çevresel etkilerde %30 azalma olacağı tahmin edilmiştir.

Kaynakça

  • [1] Verlicchi, P., Aukidy, M. Al., Galletti, A., Petrovic, M., Barceló, D. 2012. Hospital effluent: Investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Science of the Total Environment, 430, 109–118.
  • [2] Carraro, E., Bonetta, S., Bertino, C., Lorenzi, E., Bonetta, S., Gilli, G. 2016. Hospital effluents management: Chemical, physical, microbiological risks and legislation in different countries, Journal of Environmental Management, 168, 185–199.
  • [3] Chonova, T., Keck, F., Labanowski, J., Montuelle, B., Rimet, F., Bouchez, A. 2016. Separate treatment of hospital and urban wastewaters: A real scale comparison of effluents and their effect on microbial communities. Science of the Total Environment, 542, 965–975.
  • [4] Alrhmoun, M., Carrion, C., Casellas, M., Dagot, C. 2014. Hospital Wastewater Treatment by Membrane Bioreactor: Performance and Impact on the Biomasses. International Conference on Civil and Environmental Engineering (BCEE-2014), March 17-18, 95–101.
  • [5] Wen, X., Ding, H., Huang, X., Liu, R. 2004. Treatment of hospital wastewater using a submerged membrane bioreactor. Process Biochemistry, 39, 1427–1431.
  • [6] Tambosi, J.L., de Sena, R.F., Favier, M., Gebhardt, W., José, H.J., Schröder, H.F. 2010. Removal of pharmaceutical compounds in membrane bioreactors (MBR) applying submerged membranes. Desalination, 261(1-2), 148–156.
  • [7] Shojaee Nasirabadi, P., Saljoughi E., Mousavi, S.M. 2016. Membrane processes used for removal of pharmaceuticals, hormones, endocrine disruptors and their metabolites from wastewaters: a review, Desalination and Water Treatment, 3994, 1–30.
  • [8] ÇŞB (Mülga Çevre ve Şehircilik Bakanlığı). 2004. Su Kirliliği Kontrolü Yönetmeliği. https//cygm.csb.gov.tr/yönetmelikler (Erişim Tarihi 1.11.2020).
  • [9] TÜBİTAK-MAM. 2018. Enerji Verimli ve Enerji Pozitif Atıksu Arıtma Tesislerinin Geliştirilmesi Projesi. Çevre ve Şehircilik Bakanlığı 5178602, 320.
  • [10] Metcalf and Eddy (Ed. ). 1991. Wastewater Engineering : Treatment Disposal Reuse. 3rd edition. McGraw-Hill, New York (N.Y.), 1334p.
  • [11] Hocaoglu, S.M., Insel, G., Cokgor, U.U., Orhon, D. 2011. Effect of low dissolved oxygen on simultaneous nitrification and denitrification in a membrane bioreactor treating black water. Bioresource Technology, 102, 4333–4340.
  • [12] Insel, G., Erol, S., Övez S. 2014. Effect of simultaneous nitrification and denitrification on nitrogen removal performance and filamentous microorganism diversity of a full-scale MBR plant. Bioprocess and Biosystems Engineering, 37, 2163–2173.
  • [13] Sager, A.E. 2016. Experimental Studies of Simultaneous Nitrification Denitrification and Phosphorus Removal at Falkenburg Advanced Wastewater Treatment Plant. University of South Florida, Department of Civil and Environmental Engineering, Master Thesis, 88p, Florida.
  • [14] Sandip, M., Kalyanraman, V. 2017. Existing biological nitrogen removal processes and current scope of advancement. Research Journal of Chemistry and Environment, 21, 43–53.
  • [15] Hocaoğlu, S.M. 2010. Mechanisms and Modelling of Segregated Household Wastewater Treatment by Membrane Bioreactor. Istanbul Technical University, Environmental Engineering, Ph.D. Thesis, 270p, İstanbul.
  • [16] ISO (International Organization for Standardization). 2006. ISO 14040: Environmental management—Life cycle assessment—Principles and framework. Geneva, Switzerland.
  • [17] Lopes, T.A. de S., Queiroz, L.M.,. Kiperstok, A. 2018. Environmental performance of a full-scale wastewater treatment plant applying Life Cycle Assessment. Ambiente & Água - An Interdisciplinary Journal of Applied Science (AMBIAGUA), 13, 1.
  • [18] APHA. 2012. Standard Methods for the Examination of Water and Wastewater. 20th Edition, American Public Health Association, 1216, Washington.
  • [19] Krzeminski, P., van der Graaf, J.H.J.M., van Lier, J.B. 2012. Specific energy consumption of membrane bioreactor (MBR) for sewage treatment. Water Science and Technology, 65, 380–392.
  • [20] Barillon, B., Ruel, S.M., Langlais C., Lazarova, V. 2013. Energy efficiency in membrane bioreactors. Water Science and Technology, 67, 2685–2691.
  • [21] Xiao, K., XU, Y., Liang, S., LEI, T., Sun, J., Wen X. et al. 2014. Engineering application of membrane bioreactor for wastewater treatment in China: current state and future prospect. Frontiers of Environmental Science & Engineering, 8, 805–819.
  • [22] Keene, N.A., Reusser, S.R., Scarborough, A.L., Grooms, M. J., Seib, M., Santo Domingo, D.R., Noguera, J. 2017. Pilot plant demonstration of stable and efficient high rate biological nutrient removal with low dissolved oxygen conditions, Water Resource, 121, 72–85.
  • [23] Shi, C.Y. 2011. Mass Flow and Energy Efficiency of Municipal Wastewater Treatment Plants. IWA Publishing. London, 105p.
  • [24] TÜİK. 2020. Turkish Greenhouse gas inventory report 1990–2018, Türkiye İstatistik Kurumu, 568s.
  • [25] Metz, B., Kuijpers, L., Solomon, S., Andersen, S.O., Davidson, O., Pons, J. et al. 2005. Safeguarding the Ozone Layer and the Global Climate System: Issues Related to Hydrofluorocarbons and Perfluorocarbons, Report No:-, 478p.
  • [26] Campos, J.L., Valenzuela-Heredia, D., Pedrouso, A., Val Del Río, A., Belmonte M., Mosquera-Corral, A. 2016. Greenhouse Gases Emissions from Wastewater Treatment Plants: Minimization, Treatment, and Prevention. Journal of Chemistry, 3796352, 1-12.
  • [27] Ecoinvent. 2012. Electricity Production Mix, APOS, U - TR, Ecoinvent Apos Unit Process. https://ecoinvent.org/the-ecoinvent-database/sectors/electricity/ (Erişim Tarihi: 5.11.2020).
  • [28] TÜİK. 2018. Atıksu İstatistikleri, Türkiye İstatistik Kurumu, Çevre ve Enerji İstatistikleri, Belediye Atıksu Göstergeleri.
  • [29] Hocaoglu, S.M., Celebi, M.D., Basturk I., Partal, R. 2021. Treatment-based hospital wastewater characterization and fractionation of pollutants, Journal of Water Process Engineering. 43, 102205.
  • [30] Al-Hashimia, M.A.I., and Jasema, Y.I. 2013. Performance of Sequencing Anoxic / Anaerobic Membrane Bioreactor (Sam) System in Hospital Wastewater Treatment and Reuse. European Scientific Journal 9 (15), 169–180.
  • [31] Verlicchi, P. ed. 2018. Hospital Wastewaters - Characteristics, Management, Treatment and Environmental Risks. Springer, Italy, 243p.
  • [32] Tumendelger, A., Alshboul, Z., Lorke, A. 2019. Methane and nitrous oxide emission from different treatment units of municipal wastewater treatment plants in Southwest Germany. PLoS One, 14 (1), 1–17.
  • [33] Kampschreur, M.J., Temmink, H., Kleerebezem, R., Jetten, M.S.M., van Loosdrecht, M.C.M. 2009. Nitrous oxide emission during wastewater treatment. Water Research, 43(17), 4093–4103.
  • [34] Brepols, C., Drensla, K., Janot, A., Schafer, H. 2020. Energy reduction at a large-scale MBR: the Nordkanal experience. https://www.thembrsite.com/features/energy-reduction-at-a-large-scale-mbr-the-nordkanal-experience (Erişim Tarihi: 1.11.2020).
  • [35] Buer, T., and Cumin, J. 2010. MBR module design and operation. Desalination, 250(3), 1073–1077.

Comparison of Treatment of Hospital Wastewater in Membrane Bioreactor (MBR) under Different Operating Conditions by Life Cycle Impact Analysis

Yıl 2023, Cilt: 27 Sayı: 1, 64 - 75, 25.04.2023
https://doi.org/10.19113/sdufenbed.1128832

Öz

In this study, environmental impacts of the MBR system, which treats hospital wastewater under conditions of full aerobic and simultaneous nitrification-denitrification (SND) at low dissolved oxygen concentrations were investigated by Life Cycle Impact Analysis (LCIA). Our results showed that the highest environmental impact was determined in marine eutrophication in both conditions. The reduction of environmental impacts for freshwater eutrophication and marine eutrophication were calculated at %30 and %31, respectively when the condition changed from fully aerobic to SND. Furthermore, it was determined that a 25% decrease was observed in energy consumption while a 13% increase in the global warming effect was due to air emissions from the SND conditions. When all impact categories are considered together, it is estimated that there will be a 30% reduction in environmental impacts in the transition from fully aerobic condition to SND.

Kaynakça

  • [1] Verlicchi, P., Aukidy, M. Al., Galletti, A., Petrovic, M., Barceló, D. 2012. Hospital effluent: Investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Science of the Total Environment, 430, 109–118.
  • [2] Carraro, E., Bonetta, S., Bertino, C., Lorenzi, E., Bonetta, S., Gilli, G. 2016. Hospital effluents management: Chemical, physical, microbiological risks and legislation in different countries, Journal of Environmental Management, 168, 185–199.
  • [3] Chonova, T., Keck, F., Labanowski, J., Montuelle, B., Rimet, F., Bouchez, A. 2016. Separate treatment of hospital and urban wastewaters: A real scale comparison of effluents and their effect on microbial communities. Science of the Total Environment, 542, 965–975.
  • [4] Alrhmoun, M., Carrion, C., Casellas, M., Dagot, C. 2014. Hospital Wastewater Treatment by Membrane Bioreactor: Performance and Impact on the Biomasses. International Conference on Civil and Environmental Engineering (BCEE-2014), March 17-18, 95–101.
  • [5] Wen, X., Ding, H., Huang, X., Liu, R. 2004. Treatment of hospital wastewater using a submerged membrane bioreactor. Process Biochemistry, 39, 1427–1431.
  • [6] Tambosi, J.L., de Sena, R.F., Favier, M., Gebhardt, W., José, H.J., Schröder, H.F. 2010. Removal of pharmaceutical compounds in membrane bioreactors (MBR) applying submerged membranes. Desalination, 261(1-2), 148–156.
  • [7] Shojaee Nasirabadi, P., Saljoughi E., Mousavi, S.M. 2016. Membrane processes used for removal of pharmaceuticals, hormones, endocrine disruptors and their metabolites from wastewaters: a review, Desalination and Water Treatment, 3994, 1–30.
  • [8] ÇŞB (Mülga Çevre ve Şehircilik Bakanlığı). 2004. Su Kirliliği Kontrolü Yönetmeliği. https//cygm.csb.gov.tr/yönetmelikler (Erişim Tarihi 1.11.2020).
  • [9] TÜBİTAK-MAM. 2018. Enerji Verimli ve Enerji Pozitif Atıksu Arıtma Tesislerinin Geliştirilmesi Projesi. Çevre ve Şehircilik Bakanlığı 5178602, 320.
  • [10] Metcalf and Eddy (Ed. ). 1991. Wastewater Engineering : Treatment Disposal Reuse. 3rd edition. McGraw-Hill, New York (N.Y.), 1334p.
  • [11] Hocaoglu, S.M., Insel, G., Cokgor, U.U., Orhon, D. 2011. Effect of low dissolved oxygen on simultaneous nitrification and denitrification in a membrane bioreactor treating black water. Bioresource Technology, 102, 4333–4340.
  • [12] Insel, G., Erol, S., Övez S. 2014. Effect of simultaneous nitrification and denitrification on nitrogen removal performance and filamentous microorganism diversity of a full-scale MBR plant. Bioprocess and Biosystems Engineering, 37, 2163–2173.
  • [13] Sager, A.E. 2016. Experimental Studies of Simultaneous Nitrification Denitrification and Phosphorus Removal at Falkenburg Advanced Wastewater Treatment Plant. University of South Florida, Department of Civil and Environmental Engineering, Master Thesis, 88p, Florida.
  • [14] Sandip, M., Kalyanraman, V. 2017. Existing biological nitrogen removal processes and current scope of advancement. Research Journal of Chemistry and Environment, 21, 43–53.
  • [15] Hocaoğlu, S.M. 2010. Mechanisms and Modelling of Segregated Household Wastewater Treatment by Membrane Bioreactor. Istanbul Technical University, Environmental Engineering, Ph.D. Thesis, 270p, İstanbul.
  • [16] ISO (International Organization for Standardization). 2006. ISO 14040: Environmental management—Life cycle assessment—Principles and framework. Geneva, Switzerland.
  • [17] Lopes, T.A. de S., Queiroz, L.M.,. Kiperstok, A. 2018. Environmental performance of a full-scale wastewater treatment plant applying Life Cycle Assessment. Ambiente & Água - An Interdisciplinary Journal of Applied Science (AMBIAGUA), 13, 1.
  • [18] APHA. 2012. Standard Methods for the Examination of Water and Wastewater. 20th Edition, American Public Health Association, 1216, Washington.
  • [19] Krzeminski, P., van der Graaf, J.H.J.M., van Lier, J.B. 2012. Specific energy consumption of membrane bioreactor (MBR) for sewage treatment. Water Science and Technology, 65, 380–392.
  • [20] Barillon, B., Ruel, S.M., Langlais C., Lazarova, V. 2013. Energy efficiency in membrane bioreactors. Water Science and Technology, 67, 2685–2691.
  • [21] Xiao, K., XU, Y., Liang, S., LEI, T., Sun, J., Wen X. et al. 2014. Engineering application of membrane bioreactor for wastewater treatment in China: current state and future prospect. Frontiers of Environmental Science & Engineering, 8, 805–819.
  • [22] Keene, N.A., Reusser, S.R., Scarborough, A.L., Grooms, M. J., Seib, M., Santo Domingo, D.R., Noguera, J. 2017. Pilot plant demonstration of stable and efficient high rate biological nutrient removal with low dissolved oxygen conditions, Water Resource, 121, 72–85.
  • [23] Shi, C.Y. 2011. Mass Flow and Energy Efficiency of Municipal Wastewater Treatment Plants. IWA Publishing. London, 105p.
  • [24] TÜİK. 2020. Turkish Greenhouse gas inventory report 1990–2018, Türkiye İstatistik Kurumu, 568s.
  • [25] Metz, B., Kuijpers, L., Solomon, S., Andersen, S.O., Davidson, O., Pons, J. et al. 2005. Safeguarding the Ozone Layer and the Global Climate System: Issues Related to Hydrofluorocarbons and Perfluorocarbons, Report No:-, 478p.
  • [26] Campos, J.L., Valenzuela-Heredia, D., Pedrouso, A., Val Del Río, A., Belmonte M., Mosquera-Corral, A. 2016. Greenhouse Gases Emissions from Wastewater Treatment Plants: Minimization, Treatment, and Prevention. Journal of Chemistry, 3796352, 1-12.
  • [27] Ecoinvent. 2012. Electricity Production Mix, APOS, U - TR, Ecoinvent Apos Unit Process. https://ecoinvent.org/the-ecoinvent-database/sectors/electricity/ (Erişim Tarihi: 5.11.2020).
  • [28] TÜİK. 2018. Atıksu İstatistikleri, Türkiye İstatistik Kurumu, Çevre ve Enerji İstatistikleri, Belediye Atıksu Göstergeleri.
  • [29] Hocaoglu, S.M., Celebi, M.D., Basturk I., Partal, R. 2021. Treatment-based hospital wastewater characterization and fractionation of pollutants, Journal of Water Process Engineering. 43, 102205.
  • [30] Al-Hashimia, M.A.I., and Jasema, Y.I. 2013. Performance of Sequencing Anoxic / Anaerobic Membrane Bioreactor (Sam) System in Hospital Wastewater Treatment and Reuse. European Scientific Journal 9 (15), 169–180.
  • [31] Verlicchi, P. ed. 2018. Hospital Wastewaters - Characteristics, Management, Treatment and Environmental Risks. Springer, Italy, 243p.
  • [32] Tumendelger, A., Alshboul, Z., Lorke, A. 2019. Methane and nitrous oxide emission from different treatment units of municipal wastewater treatment plants in Southwest Germany. PLoS One, 14 (1), 1–17.
  • [33] Kampschreur, M.J., Temmink, H., Kleerebezem, R., Jetten, M.S.M., van Loosdrecht, M.C.M. 2009. Nitrous oxide emission during wastewater treatment. Water Research, 43(17), 4093–4103.
  • [34] Brepols, C., Drensla, K., Janot, A., Schafer, H. 2020. Energy reduction at a large-scale MBR: the Nordkanal experience. https://www.thembrsite.com/features/energy-reduction-at-a-large-scale-mbr-the-nordkanal-experience (Erişim Tarihi: 1.11.2020).
  • [35] Buer, T., and Cumin, J. 2010. MBR module design and operation. Desalination, 250(3), 1073–1077.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Recep Partal 0000-0002-1205-1134

Selda Murat Hocaoglu 0000-0003-4015-0399

Nevzat Özgü Yiğit 0000-0003-1564-0222

Yayımlanma Tarihi 25 Nisan 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 27 Sayı: 1

Kaynak Göster

APA Partal, R., Murat Hocaoglu, S., & Yiğit, N. Ö. (2023). Hastane Atıksularının Membran Biyoreaktör’de (MBR) Farklı İşletme Koşullarında Arıtımının Yaşam Döngüsü Etki Analizi ile Karşılaştırılması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(1), 64-75. https://doi.org/10.19113/sdufenbed.1128832
AMA Partal R, Murat Hocaoglu S, Yiğit NÖ. Hastane Atıksularının Membran Biyoreaktör’de (MBR) Farklı İşletme Koşullarında Arıtımının Yaşam Döngüsü Etki Analizi ile Karşılaştırılması. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Nisan 2023;27(1):64-75. doi:10.19113/sdufenbed.1128832
Chicago Partal, Recep, Selda Murat Hocaoglu, ve Nevzat Özgü Yiğit. “Hastane Atıksularının Membran Biyoreaktör’de (MBR) Farklı İşletme Koşullarında Arıtımının Yaşam Döngüsü Etki Analizi Ile Karşılaştırılması”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27, sy. 1 (Nisan 2023): 64-75. https://doi.org/10.19113/sdufenbed.1128832.
EndNote Partal R, Murat Hocaoglu S, Yiğit NÖ (01 Nisan 2023) Hastane Atıksularının Membran Biyoreaktör’de (MBR) Farklı İşletme Koşullarında Arıtımının Yaşam Döngüsü Etki Analizi ile Karşılaştırılması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27 1 64–75.
IEEE R. Partal, S. Murat Hocaoglu, ve N. Ö. Yiğit, “Hastane Atıksularının Membran Biyoreaktör’de (MBR) Farklı İşletme Koşullarında Arıtımının Yaşam Döngüsü Etki Analizi ile Karşılaştırılması”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 27, sy. 1, ss. 64–75, 2023, doi: 10.19113/sdufenbed.1128832.
ISNAD Partal, Recep vd. “Hastane Atıksularının Membran Biyoreaktör’de (MBR) Farklı İşletme Koşullarında Arıtımının Yaşam Döngüsü Etki Analizi Ile Karşılaştırılması”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27/1 (Nisan 2023), 64-75. https://doi.org/10.19113/sdufenbed.1128832.
JAMA Partal R, Murat Hocaoglu S, Yiğit NÖ. Hastane Atıksularının Membran Biyoreaktör’de (MBR) Farklı İşletme Koşullarında Arıtımının Yaşam Döngüsü Etki Analizi ile Karşılaştırılması. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2023;27:64–75.
MLA Partal, Recep vd. “Hastane Atıksularının Membran Biyoreaktör’de (MBR) Farklı İşletme Koşullarında Arıtımının Yaşam Döngüsü Etki Analizi Ile Karşılaştırılması”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 27, sy. 1, 2023, ss. 64-75, doi:10.19113/sdufenbed.1128832.
Vancouver Partal R, Murat Hocaoglu S, Yiğit NÖ. Hastane Atıksularının Membran Biyoreaktör’de (MBR) Farklı İşletme Koşullarında Arıtımının Yaşam Döngüsü Etki Analizi ile Karşılaştırılması. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2023;27(1):64-75.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.