Araştırma Makalesi
BibTex RIS Kaynak Göster

Islanabilirlik Gradyan Yüzeylerinde Kendi Kendini Yürüten ve Birleştiren Damlacıklar: Bir Lattice Boltzmann Çalışması

Yıl 2023, Cilt: 27 Sayı: 3, 464 - 473, 25.12.2023

Öz

Damlacıkların kendi kendine taşınması ve kontrolü, mikroakışkan cihazların
geliştirilmesinde, kendi kendini temizlemede, su toplamada ve ısı transferini
geliştirmede önemli bir rol oynar. Yüzeylerde bir ıslatma gradyanı
yapılandırılmışsa, harici bir kuvvet olmadan damlacık manipülasyonu elde
edilebilir. Temas açısı histerezisi, daha çok ıslanan tarafa doğru bir itici güç
oluşturur. Bu kuvvet, hareketli temas hatlarının yakınındaki viskoz gerilimlerle
dengelenirse, bu tür yüzeyler üzerindeki damlacıklar, bu denge tarafından
belirlenen sabit öteleme hızına ulaşabilir. Bu çalışmada D2Q9 lattice Boltzmann
yöntemi, ıslanabilirlik gradyan yüzeylerinde kendiliğinden hareket eden
damlacıkların simülasyonu için kullanılmıştır. Yüzey enerjisi ve akışkan
viskoziteleri değiştirilerek, tek damlacıkların yüzeyler üzerindeki davranışı,
bunların birleştirme mekanizması ve sınırlandırılmış kanallar içindeki denge
şekilleri ve hareketleri sistematik olarak incelenmiştir. Damlacık daha viskoz bir
akışkan içinde hareket ederse, damlacık hızının ıslanma gradyanına bağlılığının
zayıfladığı gözlemlenmiştir. Büyük görünüm oranlı kanal akışları için, arayüz
hareketinin iki boyutlu tahmininin üç boyutlu D3Q19 modeli hesaplamalarına
yaklaştığı gösterilmiştir.

Kaynakça

  • [1] Wu, L., Guo, Z., Liu, W. 2022. Surface behaviors of droplet manipulation in microfluidics devices, Advances in Colloid and Interface Science, vol. 308(102770).
  • [2] Gosh, A., Ganguly, R., Schutzius, T. M., Megaridis, C. M. 2014. Wettability patterning for high-rate, pumpless fluid transport on open, non-planar microfluidic platforms, Lab. Chip, 14, 1538-1550.
  • [3] Oliveira, N. M., Vilabril, S., Oliveira, M. B., Reis, R. L., Mano, J. F. 2018. Recent advances on open fluidic systems for biomedical applications: A review, Mater. Sci. Eng. C. Mater. Biol. Appl., 97, 851-863.
  • [4] Singh, M., Kondaraju, S., Bahga, S. S. 2018. Mathematical Model for Dropwise Condensation on a Surface with Wettability Gradient, Journal of Heat Transfer, 140(071502).
  • [5] Hassan, G., Yilbas, B.S., Al-Sharafi, A., Al-Qahtani, H. 2019. Self-cleaning of a hydrophobic surface by a rolling water droplet, Sci. Rep., 9(5744).
  • [6] Tenjimbayashi, M., K. Manabe, K. 2022. A review on control of droplet motion based on wettability modulation: principles, design strategies, recent progress, and applications, Science and Technology of Advanced Materials, 23(1), 473- 497.
  • [7] Shen, C., Liu, L., Wu, S., Yao, F., Zhang, C. 2020. Lattice Boltzmann simulation of droplet condensation on a surface with wettability gradient, Journal of Mechanical Engineering Science, vol. 234(7),1403-1413.
  • [8] Daniel, S., Chaudhury, M. K., Chen, J. C. 2001. Fast Drop Movements Resulting from the Phase Change on a Gradient Surface, Science, 291, 633- 636.
  • [9] Mistura, G., Pierno, M. 2017. Drop mobility on chemically heterogeneous and lubricantimpregnated surfaces, Adv. in Phys.: X, 2, 591-60.
  • [10] Sadullah, M. S., Kusumaatmaja, H., Launay, G., Parle, J., Ledesma-Aguilar, R., Gizaw, Y., McHale, G., Wells, G. G. 2020. Bidirectional motion of droplets on gradient liquid infused surfaces, Comm. Phys., 3(166).
  • [11] Chen, L., Gao, M., Liang, J., Wang, D., Hao, L., Zhang, L. 2022. Lattice Boltzmann simulation of wetting gradient accelerating droplets merging and shedding on a circumferential surface, Eng. App. of Comp. Fluid Mech., 16.
  • [12] Qu, J., Yang, X., Wang, Z. 2020. Numerical simulations on the self-motion of droplets in hydrophobic microchannels driven by wettability gradient surfaces, Int. Comm. in Heat and Mass Trans., 119(104961).
  • [13] Li, C., Dai, H., Gao, C., Wang, T., Dong, Z., Jiang, L. 2019. Bioinspired inner microstructured tube controlled capillary rise, PNAS, vol. 116(26), 12704-12709.
  • [14] Moumen, N., Subramanian, R. S., McLaughlin, J. B. 2006. Experiments on the Motion of Drops on a Horizontal Solid Surface Due to a Wettability Gradient, Langmuir, 22(6), 2682-2690.
  • [15] Raphael, E. 1988. Spreading of droplets on a patchy surface, C. R. Acad. Sci. Paris, 306, 751- 754.
  • [16] Xu, X., Qian, T. 2012. Droplet motion in onecomponent fluids on solid substrates with wettability gradients, Phys. Rev. E., 85(051601).
  • [17] Thomas, T. M., Chowdhury, I. U., Dhivyaraja, K., P. Mahapatra, S., Pattamatta, A., Tiwari, M. K. 2021. Droplet Dynamics on a Wettability Patterned Surface during Spray Impact, Processes, 9(555).
  • [18] Wang, X., Xu, B., Chen, Z. 2020. Numerical simulation of droplet dynamics on chemically heterogeneous surfaces by lattice Boltzmann method, Int. Jour. of Num. Meth. for Heat & Fluid Flow, 30(2), 607-624.
  • [19] Chowdhury, I. U., Mahapatra, P. S., Sen, A. K. 2019. Self-driven droplet transport: Effect of wettability gradient and confinement, Physics of Fluids, 31(042111).
  • [20] Chowdhury, I. U., Mahapatra, P. S., Sen, A. K. 2020. Shape evolution of drops on surfaces of different wettability gradients, Chemical Engineering Science, 229(116136).
  • [21] Gulfam, R., Chen, Y. 2022. Recent Growth of Wettability Gradient Surfaces: A Review, A Review Research, 2022(9873075).
  • [22] Ding, Y., Yin, L., Dang, C., Liu, X., Xu, J. 2023. Selfclimbing of a low surface tension droplet on a vertical conical surface, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 658( 130670).
  • [23] Raj, S. S., Mathew, R. M., Davis, D., Varanakkottu, S. N., Srinivasan, A., & Vinod, T. P. 2023. Facile fabrication of stable wettability gradients on elastomeric surfaces for applications in water collection and controlled cell adhesion. Soft Matter, 19(29), 5560-5574.
  • [24] Xie, D., Sun, Y., Wu, Y., Wang, K., Wang, G., Zang, F., & Ding, G. 2023. Engineered Switchable‐ Wettability Surfaces for Multi‐Path Directional Transportation of Droplets and Subaqueous Bubbles. Advanced Materials, 35(9), 2208645.
  • [25] Sung, J., Lee, H. M., Yoon, G. H., Bae, S., & So, H. 2023. One-step fabrication of superhydrophobic surfaces with wettability gradient using threedimensional printing. International Journal of Precision Engineering and Manufacturing-Green Technology, 10(1), 85-96.
  • [26] Pooley, C. M., Kusumaatmaja, H., Yeomans, J. M. 2008. Contact line dynamics in binary lattice Boltzmann simulations, Phys. Rev. E., 78(056709).
  • [27] Briant A. J., Yeomans J. M. 2004. Lattice boltzmann simulations of contact line motion. ii. binary fluids, Physical Review E, 69(031603).
  • [28] Frisch, U., d'Humières, D., Hasslacher, B., Lallemand, P., Pomeau, Y. and Rivet, J.P. 1987. Lattice gas hydrodynamics in two and three dimensions, Complex Systems, 1 (649-707).
  • [29] Pooley, C.M., Furtado, K. 2008. Eliminating spurious velocities in the free-energy lattice Boltzmann method, Physical Review E, 77(046702).
  • [30] Pooley, C. M., Kusumaatmaja, H., Yeomans, J. M. 2009. Modelling capillary filling dynamics using lattice Boltzmann simulations, Eur. Phys. J. Special Topics, 171, 63-71.
  • [31] Boylu, M. A. 2023. Controlling the Motion of Capillary Driven Interfaces in Channels with Chemical Heterogeneity. İzmir Katip Çelebi University, Graduate School of Natural and Applied Sciences, Master’s Thesis, 68 pg., İzmir.
  • [32] Broachard, F. 1989. Motions of Droplets on Solid Surfaces Induced by Chemical or Thermal Gradients, Langmuir, 5, 432-438.
  • [33] Ceyhan, U., Tiktaş, A., Özdoğan, M. 2020. Pinning and depinning of Wenzel-state droplets around inclined steps, Colloid and Interface Science Communications, 35(100238).

Self-Driving and Merging Droplets on Wettability Gradient Surfaces: A Lattice Boltzmann Study

Yıl 2023, Cilt: 27 Sayı: 3, 464 - 473, 25.12.2023

Öz

Self-transport and control of droplets play an essential role in the
development of microfluidic devices, self-cleaning, water harvesting, and heat
transfer enhancement. Droplet manipulation without an external force can be
accomplished if a wetting gradient is structured on surfaces. The contact angle
hysteresis generates a driving force toward the more wetting side. If this force is
balanced by the viscous stresses near moving contact lines, droplets on such
surfaces may attain constant translational speed determined by this balance. The
D2Q9 lattice Boltzmann method is employed for the simulation of the self-driven
droplets on wettability gradient surfaces. By varying the surface energy and fluid
viscosities, the behavior of single droplets on surfaces, their merging mechanism,
and equilibrium shapes and motions within confined channels are studied
systematically. If the droplet moves in a more viscous fluid, the droplet’s speed
dependence on the wetting gradient is observed to weaken. For large aspect ratio
channel flows, it is shown that two-dimensional prediction of the interface motion
approaches the three-dimensional D3Q19 model computations.

Kaynakça

  • [1] Wu, L., Guo, Z., Liu, W. 2022. Surface behaviors of droplet manipulation in microfluidics devices, Advances in Colloid and Interface Science, vol. 308(102770).
  • [2] Gosh, A., Ganguly, R., Schutzius, T. M., Megaridis, C. M. 2014. Wettability patterning for high-rate, pumpless fluid transport on open, non-planar microfluidic platforms, Lab. Chip, 14, 1538-1550.
  • [3] Oliveira, N. M., Vilabril, S., Oliveira, M. B., Reis, R. L., Mano, J. F. 2018. Recent advances on open fluidic systems for biomedical applications: A review, Mater. Sci. Eng. C. Mater. Biol. Appl., 97, 851-863.
  • [4] Singh, M., Kondaraju, S., Bahga, S. S. 2018. Mathematical Model for Dropwise Condensation on a Surface with Wettability Gradient, Journal of Heat Transfer, 140(071502).
  • [5] Hassan, G., Yilbas, B.S., Al-Sharafi, A., Al-Qahtani, H. 2019. Self-cleaning of a hydrophobic surface by a rolling water droplet, Sci. Rep., 9(5744).
  • [6] Tenjimbayashi, M., K. Manabe, K. 2022. A review on control of droplet motion based on wettability modulation: principles, design strategies, recent progress, and applications, Science and Technology of Advanced Materials, 23(1), 473- 497.
  • [7] Shen, C., Liu, L., Wu, S., Yao, F., Zhang, C. 2020. Lattice Boltzmann simulation of droplet condensation on a surface with wettability gradient, Journal of Mechanical Engineering Science, vol. 234(7),1403-1413.
  • [8] Daniel, S., Chaudhury, M. K., Chen, J. C. 2001. Fast Drop Movements Resulting from the Phase Change on a Gradient Surface, Science, 291, 633- 636.
  • [9] Mistura, G., Pierno, M. 2017. Drop mobility on chemically heterogeneous and lubricantimpregnated surfaces, Adv. in Phys.: X, 2, 591-60.
  • [10] Sadullah, M. S., Kusumaatmaja, H., Launay, G., Parle, J., Ledesma-Aguilar, R., Gizaw, Y., McHale, G., Wells, G. G. 2020. Bidirectional motion of droplets on gradient liquid infused surfaces, Comm. Phys., 3(166).
  • [11] Chen, L., Gao, M., Liang, J., Wang, D., Hao, L., Zhang, L. 2022. Lattice Boltzmann simulation of wetting gradient accelerating droplets merging and shedding on a circumferential surface, Eng. App. of Comp. Fluid Mech., 16.
  • [12] Qu, J., Yang, X., Wang, Z. 2020. Numerical simulations on the self-motion of droplets in hydrophobic microchannels driven by wettability gradient surfaces, Int. Comm. in Heat and Mass Trans., 119(104961).
  • [13] Li, C., Dai, H., Gao, C., Wang, T., Dong, Z., Jiang, L. 2019. Bioinspired inner microstructured tube controlled capillary rise, PNAS, vol. 116(26), 12704-12709.
  • [14] Moumen, N., Subramanian, R. S., McLaughlin, J. B. 2006. Experiments on the Motion of Drops on a Horizontal Solid Surface Due to a Wettability Gradient, Langmuir, 22(6), 2682-2690.
  • [15] Raphael, E. 1988. Spreading of droplets on a patchy surface, C. R. Acad. Sci. Paris, 306, 751- 754.
  • [16] Xu, X., Qian, T. 2012. Droplet motion in onecomponent fluids on solid substrates with wettability gradients, Phys. Rev. E., 85(051601).
  • [17] Thomas, T. M., Chowdhury, I. U., Dhivyaraja, K., P. Mahapatra, S., Pattamatta, A., Tiwari, M. K. 2021. Droplet Dynamics on a Wettability Patterned Surface during Spray Impact, Processes, 9(555).
  • [18] Wang, X., Xu, B., Chen, Z. 2020. Numerical simulation of droplet dynamics on chemically heterogeneous surfaces by lattice Boltzmann method, Int. Jour. of Num. Meth. for Heat & Fluid Flow, 30(2), 607-624.
  • [19] Chowdhury, I. U., Mahapatra, P. S., Sen, A. K. 2019. Self-driven droplet transport: Effect of wettability gradient and confinement, Physics of Fluids, 31(042111).
  • [20] Chowdhury, I. U., Mahapatra, P. S., Sen, A. K. 2020. Shape evolution of drops on surfaces of different wettability gradients, Chemical Engineering Science, 229(116136).
  • [21] Gulfam, R., Chen, Y. 2022. Recent Growth of Wettability Gradient Surfaces: A Review, A Review Research, 2022(9873075).
  • [22] Ding, Y., Yin, L., Dang, C., Liu, X., Xu, J. 2023. Selfclimbing of a low surface tension droplet on a vertical conical surface, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 658( 130670).
  • [23] Raj, S. S., Mathew, R. M., Davis, D., Varanakkottu, S. N., Srinivasan, A., & Vinod, T. P. 2023. Facile fabrication of stable wettability gradients on elastomeric surfaces for applications in water collection and controlled cell adhesion. Soft Matter, 19(29), 5560-5574.
  • [24] Xie, D., Sun, Y., Wu, Y., Wang, K., Wang, G., Zang, F., & Ding, G. 2023. Engineered Switchable‐ Wettability Surfaces for Multi‐Path Directional Transportation of Droplets and Subaqueous Bubbles. Advanced Materials, 35(9), 2208645.
  • [25] Sung, J., Lee, H. M., Yoon, G. H., Bae, S., & So, H. 2023. One-step fabrication of superhydrophobic surfaces with wettability gradient using threedimensional printing. International Journal of Precision Engineering and Manufacturing-Green Technology, 10(1), 85-96.
  • [26] Pooley, C. M., Kusumaatmaja, H., Yeomans, J. M. 2008. Contact line dynamics in binary lattice Boltzmann simulations, Phys. Rev. E., 78(056709).
  • [27] Briant A. J., Yeomans J. M. 2004. Lattice boltzmann simulations of contact line motion. ii. binary fluids, Physical Review E, 69(031603).
  • [28] Frisch, U., d'Humières, D., Hasslacher, B., Lallemand, P., Pomeau, Y. and Rivet, J.P. 1987. Lattice gas hydrodynamics in two and three dimensions, Complex Systems, 1 (649-707).
  • [29] Pooley, C.M., Furtado, K. 2008. Eliminating spurious velocities in the free-energy lattice Boltzmann method, Physical Review E, 77(046702).
  • [30] Pooley, C. M., Kusumaatmaja, H., Yeomans, J. M. 2009. Modelling capillary filling dynamics using lattice Boltzmann simulations, Eur. Phys. J. Special Topics, 171, 63-71.
  • [31] Boylu, M. A. 2023. Controlling the Motion of Capillary Driven Interfaces in Channels with Chemical Heterogeneity. İzmir Katip Çelebi University, Graduate School of Natural and Applied Sciences, Master’s Thesis, 68 pg., İzmir.
  • [32] Broachard, F. 1989. Motions of Droplets on Solid Surfaces Induced by Chemical or Thermal Gradients, Langmuir, 5, 432-438.
  • [33] Ceyhan, U., Tiktaş, A., Özdoğan, M. 2020. Pinning and depinning of Wenzel-state droplets around inclined steps, Colloid and Interface Science Communications, 35(100238).
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mehmet Alptug Boylu 0000-0003-1856-7606

Umut Ceyhan 0000-0003-0033-1013

Yayımlanma Tarihi 25 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 27 Sayı: 3

Kaynak Göster

APA Boylu, M. A., & Ceyhan, U. (2023). Self-Driving and Merging Droplets on Wettability Gradient Surfaces: A Lattice Boltzmann Study. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(3), 464-473. https://doi.org/10.19113/sdufenbed.1305602
AMA Boylu MA, Ceyhan U. Self-Driving and Merging Droplets on Wettability Gradient Surfaces: A Lattice Boltzmann Study. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Aralık 2023;27(3):464-473. doi:10.19113/sdufenbed.1305602
Chicago Boylu, Mehmet Alptug, ve Umut Ceyhan. “Self-Driving and Merging Droplets on Wettability Gradient Surfaces: A Lattice Boltzmann Study”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27, sy. 3 (Aralık 2023): 464-73. https://doi.org/10.19113/sdufenbed.1305602.
EndNote Boylu MA, Ceyhan U (01 Aralık 2023) Self-Driving and Merging Droplets on Wettability Gradient Surfaces: A Lattice Boltzmann Study. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27 3 464–473.
IEEE M. A. Boylu ve U. Ceyhan, “Self-Driving and Merging Droplets on Wettability Gradient Surfaces: A Lattice Boltzmann Study”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 27, sy. 3, ss. 464–473, 2023, doi: 10.19113/sdufenbed.1305602.
ISNAD Boylu, Mehmet Alptug - Ceyhan, Umut. “Self-Driving and Merging Droplets on Wettability Gradient Surfaces: A Lattice Boltzmann Study”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 27/3 (Aralık 2023), 464-473. https://doi.org/10.19113/sdufenbed.1305602.
JAMA Boylu MA, Ceyhan U. Self-Driving and Merging Droplets on Wettability Gradient Surfaces: A Lattice Boltzmann Study. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2023;27:464–473.
MLA Boylu, Mehmet Alptug ve Umut Ceyhan. “Self-Driving and Merging Droplets on Wettability Gradient Surfaces: A Lattice Boltzmann Study”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 27, sy. 3, 2023, ss. 464-73, doi:10.19113/sdufenbed.1305602.
Vancouver Boylu MA, Ceyhan U. Self-Driving and Merging Droplets on Wettability Gradient Surfaces: A Lattice Boltzmann Study. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2023;27(3):464-73.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.