Araştırma Makalesi
BibTex RIS Kaynak Göster

Aldose Reductase Evaluation against Diabetic Complications Using ADME and Molecular Docking Studies and DFT Calculations of Spiroindoline Derivative Molecule

Yıl 2024, Cilt: 28 Sayı: 2, 281 - 292, 23.08.2024
https://doi.org/10.19113/sdufenbed.1474689

Öz

In this study, the target molecule ethyl-2-(5-nitro-5'-(4-nitrophenyl)-2-oxo-3'H-spiro[indoline-3,2'-[1,3,4]oxadiazol]-1-yl)acetate, which is a spiroindoline derivative, were performed NBO analysis, molecular electrostatic potential surface (MEPS), nonlinear optics (NLO), HOMO-LUMO energy calculations, optimized molecular geometry, and mulliken atomic charges using B3LYP/B3PW91 basis set and 6-311G(d,p) approximations. Calculated results were reported. Density Functional Theory (DFT) computations were utilized to research the molecule theoretically. Moreover, molecular docking analysis of the tested compound, a spiroindoline derivative molecule targeting aldose reductase against diabetic complications, was performed using molecular docking to determine the structure-activity connection. The molecular docking study provided important information worth considering for further research. A notable outcome of bioisosteric and isosteric substitutions is the alteration in lipophilic character, an impressive characteristic in several aspects. Thus, utilizing SwissADME, lipophilic character assessments were performed for the concerned compounds.

Kaynakça

  • [1] Thakur, S., Gupta, S. K., Ali, V., Singh, P., Verma, M. 2021. Aldose Reductase: A cause and a potential target for the treatment of diabetic complications. Archives of Pharmacal Research, 44, 655-667.
  • [2] Balestri, F., Moschini, R., Mura, U., Cappiello, M., Del, Corso. A. 2022. In search of differential inhibitors of aldose reductase. Biomolecules, 12(4), 485.
  • [3] Papezikova, I., Pekarová, M., Chatzopoulou, M., Nicolaou, I., Demopoulos, V., Kubala, L., Lojek, A. 2008. The effect of aldose reductase inhibition by JMC-2004 on hyperglycemia-inducedendothelial dysfunction. Neuroendocrinology Letters, 29(5), 775.
  • [4] Kumar, P. A., Reddy, G. B. 2007. Focus on molecules: aldose reductase. Experimental eye research, 85(6), 739-740.
  • [5] Marchese, A. D., Larin, E. M., Mirabi, B., Lautens, M. 2020. Metal-catalyzed approaches toward the oxindole core. Accounts of Chemical Research, 53(8), 1605-1619.
  • [6] Zhou, F., Liu, Y. L., Zhou, J. 2010. Catalytic asymmetric synthesis of oxindoles bearing a tetrasubstituted stereocenter at the C‐3 position. Advanced Synthesis & Catalysis, 352(9), 1381-1407.
  • [7] Pavlovska, T. L., Redkin, R. G., Lipson, V. V., Atamanuk, D. V. 2016. Molecular diversity of spirooxindoles, Synthesis and biological activity. Molecular diversity, 20, 299-344.
  • [8] Christy, N. A., Franks, A. S., Cross, L. B. 2005. Spironolactone for hirsutism in polycystic ovary syndrome. Annals of Pharmacotherapy, 39(9), 1517-1521. [9] Kolancilar, H. 2019. DFT Yöntemi Kullanılarak 1, 3-Bis-{(2-Aminobenzoil) Amino} Propanın Teorik Hesaplamaları ve Bu Değerlerin Literatürdeki Deneysel Değerler ile Karşılaştırılması. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7(3), 1319-1334.
  • [10] Chen, Y.H., Chao, S. D. 2018. Solving many-body Schrödinger equations with kinetic energy partition method. Annals of Physics, 388, 54-68.
  • [11] Güleç, Ö., Türkeş, C., Arslan, M., Demir, Y., Dincer, B., Ece, A., Küfrevioğlu, Ö. İ., and Beydemir, Ş. 2024. Novel spiroindoline derivatives targeting aldose reductase against diabetic complications: Bioactivity, cytotoxicity, and molecular modeling studies. Bioorganic Chemistry, 107221.
  • [12] Frisch, M. 2019. Gaussian09. http://www. gaussian.com (Erişim Tarihi: 05.04.2024).
  • [13] Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., Sherman, W. 2013. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221-234.
  • [14] Burley, S. K., Berman, H. M., Bhikadiya, C., Bi, C., Chen, L., Di, Costanzo. L., Christie, C., Dalenberg, K., Duarte, J. M., Dutta, S. 2019. RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic acids research, 47(D1), 464-474.
  • [15] BIOVIA Discovery Studio D. SYSTÈMES BIOVIA Corporate Europe, BIOVIA 334 Cambridge Science Park Cambridge. 2016 http://accelrys.com/products/collaborativescience/biovia-discovery-studio/(Erişim Tarihi: 05.04.2024).
  • [16] Daina, A., Michielin, O., Zoete, V. 2017. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports, 7(1), 42717.
  • [17] Gören, K., Bağlan, M., Çakmak, İ. 2022. Theoretical Investigation of 1H and 13C NMR Spectra of Diethanol Amine Dithiocarbamate RAFT Agent. Journal of the Institute of Science and Technology, 12(3), 1677-1689.
  • [18] Altürk, S., Avcı, D., Tamer, Ö., Atalay, Y. 2017. Comparison of different hybrid DFT methods on structural, spectroscopic, electronic and NLO parameters for a potential NLO material. Computational and Theoretical Chemistry, 1100, 34-45.
  • [19] Bağlan, M., Gören, K., Yıldıko, Ü. 2023. HOMO–LUMO, NBO, NLO, MEP analysis and molecular docking using DFT calculations in DFPA molecule. International Journal of Chemistry and Technology, 7(1), 38-47.
  • [20] Wang, X., Yao, J. 2017. Improvement of the self-consistent-charge density-functional-tight-binding theory by a modified Mulliken charge. Theoretical Chemistry Accounts, 136(10), 124.
  • [21] Bağlan, M., Yıldıko, Ü., Gören, K. 2023. DFT Calculatıons and Molecular Dockıng Study ın 6-(2”-Pyrrolıdınone-5”-Yl)-Epıcatechın Molecule from Flavonoıds. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B-Teorik Bilimler, 11(1), 43-55.
  • [22] Choudhary, V., Bhatt, A., Dash, D., Sharma, N. 2019. DFT calculations on molecular structures, HOMO–LUMO study, reactivity descriptors and spectral analyses of newly synthesized diorganotin (IV) 2‐chloridophenylacetohydroxamate complexes. Journal of computational chemistry, 40(27), 2354-2363.
  • [23] Bağlan, M., Yıldıko, Ü., Gören, K. 2022. Computational Investigation of 5.5,7-trihydroxy-3,7-dimethoxy-4-4-O-biflavone from Flavonoids Using DFT Calculations and Molecular Docking. Adıyaman University Journal of Science, 12(2), 283-298.
  • [24] Bayoumy, A. M., Ibrahim, M., Omar, A. 2020. Mapping molecular electrostatic potential (MESP) for fulleropyrrolidine and its derivatives. Optical and Quantum Electronics, 52, 1-13.
  • [25] Bağlan, M., Gören, K., Yıldıko, Ü. 2023. DFT Computations and Molecular Docking Studies of 3-(6-(3-aminophenyl) thiazolo [1, 2, 4] triazol-2-yl)-2H-chromen-2-one (ATTC) Molecule. Hittite Journal of Science and Engineering, 10(1), 11-19.
  • [26] Shokr, E. K., Kamel, M. S., Abdel-Ghany, H., Ali, M., Abdou, A. 2022. Synthesis, characterization, and DFT study of linear and non-linear optical properties of some novel thieno [2, 3-b] thiophene azo dye derivatives. Materials Chemistry and Physics, 290, 46-66.
  • [27] Sakr, M. A., Sherbiny, F. F., El-Etrawy, A-A. S. 2022. Hydrazone-based materials; DFT, TD-DFT, NBO analysis, fukui function, MESP analysis, and solar cell applications. Journal of Fluorescence, 32(5), 1857-1871.
  • [28] Kurt, M., Babu, P. C., Sundaraganesan, N., Cinar, M., Karabacak, M. 2011. Molecular structure, vibrational, UV and NBO analysis of 4-chloro-7-nitrobenzofurazan by DFT calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(5), 1162-1170.
  • [29] Mıhçıokur, Ö., Özpozan, T. 2017. Molecular structure, vibrational spectroscopic analysis (IR&Raman), HOMO-LUMO and NBO analysis of anti-cancer drug sunitinib using DFT method. Journal of Molecular Structure, 1149, 27-41.
  • [30] Khodja, I. A., Boulebd, H., Bensouici, C., Belfaitah, A. 2020. Design, synthesis, biological evaluation, molecular docking, DFT calculations and in silico ADME analysis of (benz) imidazole-hydrazone derivatives as promising antioxidant, antifungal, and anti-acetylcholinesterase agents. Journal of Molecular Structure, 1218, (12-27).
  • [31] Badran, A-S., Ibrahim, M. A. 2023. Synthesis, spectral characterization, DFT and in silico ADME studies of the novel pyrido [1, 2-a] benzimidazoles and pyrazolo [3, 4-b] pyridines. Journal of Molecular Structure, 1274, 13-54.
  • [32] Singh, S. P., Singh, N. I., Nongalleima, K., Doley, P., Singh, C. B., Sahoo, D. 2018. Molecular docking, MD simulation, DFT and ADME-toxicity study on analogs of zerumbone against IKK-β enzyme as anti-cancer agents. Network Modeling Analysis in Health Informatics and Bioinformatics, 7(1-8).

Spiroindolin Türevi Molekülünün DFT Hesaplamaları ve ADME ve Moleküler Doking Çalışmaları Kullanılarak Diyabetik Komplikasyonlara Karşı Aldoz Redüktaz Değerlendirmesi

Yıl 2024, Cilt: 28 Sayı: 2, 281 - 292, 23.08.2024
https://doi.org/10.19113/sdufenbed.1474689

Öz

Bu çalışmada, spiroindolin türevi olan, hedef molekül etil-2-(5-nitro-5'-(4-nitrofenil)-2-okso-3'H-spiro[indolin-3,2'-[1,3,4]oksadiazol]-1-il)asetat’in B3PW91/B3LYP temel set ve 6-311G(d,p) yaklaşımlar kullanılarak NBO analizi, moleküler elektrostatik potansiyel yüzey (MEPS), HOMO-LUMO enerji hesaplamaları, doğrusal olmayan optik (NLO), optimize edilmiş moleküler geometri ve mulliken atomik yükleri hesaplamaları yapıldı. Hesaplanan sonuçlar açıklandı. Molekülün teorik olarak incelenmesi için Yoğunluk Fonksiyonel Teorisi (DFT) hesaplamaları kullanıldı. Ayrıca, diyabet komplikasyonlarına karşı aldoz redüktazı hedef alan spiroindolin türevi molekülü olan test edilen bileşiğin yapı-aktivite bağlantısını belirlemek amacıyla moleküler docking analizi yapıldı. Moleküler doking çalışması, ileri araştırmalar için dikkate değer önemli bilgiler sağladı. Biyoizosterik ve izosterik yer değiştirmelerin dikkate değer bir sonucu, çeşitli yönlerden etkileyici bir özellik olan lipofilik karakterdeki değişikliktir. Bu yüzden SwissADME kullanılarak söz konusu bileşikler için lipofilik karakter değerlendirmeleri yapılmıştır.

Kaynakça

  • [1] Thakur, S., Gupta, S. K., Ali, V., Singh, P., Verma, M. 2021. Aldose Reductase: A cause and a potential target for the treatment of diabetic complications. Archives of Pharmacal Research, 44, 655-667.
  • [2] Balestri, F., Moschini, R., Mura, U., Cappiello, M., Del, Corso. A. 2022. In search of differential inhibitors of aldose reductase. Biomolecules, 12(4), 485.
  • [3] Papezikova, I., Pekarová, M., Chatzopoulou, M., Nicolaou, I., Demopoulos, V., Kubala, L., Lojek, A. 2008. The effect of aldose reductase inhibition by JMC-2004 on hyperglycemia-inducedendothelial dysfunction. Neuroendocrinology Letters, 29(5), 775.
  • [4] Kumar, P. A., Reddy, G. B. 2007. Focus on molecules: aldose reductase. Experimental eye research, 85(6), 739-740.
  • [5] Marchese, A. D., Larin, E. M., Mirabi, B., Lautens, M. 2020. Metal-catalyzed approaches toward the oxindole core. Accounts of Chemical Research, 53(8), 1605-1619.
  • [6] Zhou, F., Liu, Y. L., Zhou, J. 2010. Catalytic asymmetric synthesis of oxindoles bearing a tetrasubstituted stereocenter at the C‐3 position. Advanced Synthesis & Catalysis, 352(9), 1381-1407.
  • [7] Pavlovska, T. L., Redkin, R. G., Lipson, V. V., Atamanuk, D. V. 2016. Molecular diversity of spirooxindoles, Synthesis and biological activity. Molecular diversity, 20, 299-344.
  • [8] Christy, N. A., Franks, A. S., Cross, L. B. 2005. Spironolactone for hirsutism in polycystic ovary syndrome. Annals of Pharmacotherapy, 39(9), 1517-1521. [9] Kolancilar, H. 2019. DFT Yöntemi Kullanılarak 1, 3-Bis-{(2-Aminobenzoil) Amino} Propanın Teorik Hesaplamaları ve Bu Değerlerin Literatürdeki Deneysel Değerler ile Karşılaştırılması. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7(3), 1319-1334.
  • [10] Chen, Y.H., Chao, S. D. 2018. Solving many-body Schrödinger equations with kinetic energy partition method. Annals of Physics, 388, 54-68.
  • [11] Güleç, Ö., Türkeş, C., Arslan, M., Demir, Y., Dincer, B., Ece, A., Küfrevioğlu, Ö. İ., and Beydemir, Ş. 2024. Novel spiroindoline derivatives targeting aldose reductase against diabetic complications: Bioactivity, cytotoxicity, and molecular modeling studies. Bioorganic Chemistry, 107221.
  • [12] Frisch, M. 2019. Gaussian09. http://www. gaussian.com (Erişim Tarihi: 05.04.2024).
  • [13] Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., Sherman, W. 2013. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221-234.
  • [14] Burley, S. K., Berman, H. M., Bhikadiya, C., Bi, C., Chen, L., Di, Costanzo. L., Christie, C., Dalenberg, K., Duarte, J. M., Dutta, S. 2019. RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic acids research, 47(D1), 464-474.
  • [15] BIOVIA Discovery Studio D. SYSTÈMES BIOVIA Corporate Europe, BIOVIA 334 Cambridge Science Park Cambridge. 2016 http://accelrys.com/products/collaborativescience/biovia-discovery-studio/(Erişim Tarihi: 05.04.2024).
  • [16] Daina, A., Michielin, O., Zoete, V. 2017. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports, 7(1), 42717.
  • [17] Gören, K., Bağlan, M., Çakmak, İ. 2022. Theoretical Investigation of 1H and 13C NMR Spectra of Diethanol Amine Dithiocarbamate RAFT Agent. Journal of the Institute of Science and Technology, 12(3), 1677-1689.
  • [18] Altürk, S., Avcı, D., Tamer, Ö., Atalay, Y. 2017. Comparison of different hybrid DFT methods on structural, spectroscopic, electronic and NLO parameters for a potential NLO material. Computational and Theoretical Chemistry, 1100, 34-45.
  • [19] Bağlan, M., Gören, K., Yıldıko, Ü. 2023. HOMO–LUMO, NBO, NLO, MEP analysis and molecular docking using DFT calculations in DFPA molecule. International Journal of Chemistry and Technology, 7(1), 38-47.
  • [20] Wang, X., Yao, J. 2017. Improvement of the self-consistent-charge density-functional-tight-binding theory by a modified Mulliken charge. Theoretical Chemistry Accounts, 136(10), 124.
  • [21] Bağlan, M., Yıldıko, Ü., Gören, K. 2023. DFT Calculatıons and Molecular Dockıng Study ın 6-(2”-Pyrrolıdınone-5”-Yl)-Epıcatechın Molecule from Flavonoıds. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B-Teorik Bilimler, 11(1), 43-55.
  • [22] Choudhary, V., Bhatt, A., Dash, D., Sharma, N. 2019. DFT calculations on molecular structures, HOMO–LUMO study, reactivity descriptors and spectral analyses of newly synthesized diorganotin (IV) 2‐chloridophenylacetohydroxamate complexes. Journal of computational chemistry, 40(27), 2354-2363.
  • [23] Bağlan, M., Yıldıko, Ü., Gören, K. 2022. Computational Investigation of 5.5,7-trihydroxy-3,7-dimethoxy-4-4-O-biflavone from Flavonoids Using DFT Calculations and Molecular Docking. Adıyaman University Journal of Science, 12(2), 283-298.
  • [24] Bayoumy, A. M., Ibrahim, M., Omar, A. 2020. Mapping molecular electrostatic potential (MESP) for fulleropyrrolidine and its derivatives. Optical and Quantum Electronics, 52, 1-13.
  • [25] Bağlan, M., Gören, K., Yıldıko, Ü. 2023. DFT Computations and Molecular Docking Studies of 3-(6-(3-aminophenyl) thiazolo [1, 2, 4] triazol-2-yl)-2H-chromen-2-one (ATTC) Molecule. Hittite Journal of Science and Engineering, 10(1), 11-19.
  • [26] Shokr, E. K., Kamel, M. S., Abdel-Ghany, H., Ali, M., Abdou, A. 2022. Synthesis, characterization, and DFT study of linear and non-linear optical properties of some novel thieno [2, 3-b] thiophene azo dye derivatives. Materials Chemistry and Physics, 290, 46-66.
  • [27] Sakr, M. A., Sherbiny, F. F., El-Etrawy, A-A. S. 2022. Hydrazone-based materials; DFT, TD-DFT, NBO analysis, fukui function, MESP analysis, and solar cell applications. Journal of Fluorescence, 32(5), 1857-1871.
  • [28] Kurt, M., Babu, P. C., Sundaraganesan, N., Cinar, M., Karabacak, M. 2011. Molecular structure, vibrational, UV and NBO analysis of 4-chloro-7-nitrobenzofurazan by DFT calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(5), 1162-1170.
  • [29] Mıhçıokur, Ö., Özpozan, T. 2017. Molecular structure, vibrational spectroscopic analysis (IR&Raman), HOMO-LUMO and NBO analysis of anti-cancer drug sunitinib using DFT method. Journal of Molecular Structure, 1149, 27-41.
  • [30] Khodja, I. A., Boulebd, H., Bensouici, C., Belfaitah, A. 2020. Design, synthesis, biological evaluation, molecular docking, DFT calculations and in silico ADME analysis of (benz) imidazole-hydrazone derivatives as promising antioxidant, antifungal, and anti-acetylcholinesterase agents. Journal of Molecular Structure, 1218, (12-27).
  • [31] Badran, A-S., Ibrahim, M. A. 2023. Synthesis, spectral characterization, DFT and in silico ADME studies of the novel pyrido [1, 2-a] benzimidazoles and pyrazolo [3, 4-b] pyridines. Journal of Molecular Structure, 1274, 13-54.
  • [32] Singh, S. P., Singh, N. I., Nongalleima, K., Doley, P., Singh, C. B., Sahoo, D. 2018. Molecular docking, MD simulation, DFT and ADME-toxicity study on analogs of zerumbone against IKK-β enzyme as anti-cancer agents. Network Modeling Analysis in Health Informatics and Bioinformatics, 7(1-8).
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Analitik Kimya (Diğer)
Bölüm Makaleler
Yazarlar

Kenan Gören 0000-0001-5068-1762

Ümit Yıldıko 0000-0001-8627-9038

Yayımlanma Tarihi 23 Ağustos 2024
Gönderilme Tarihi 27 Nisan 2024
Kabul Tarihi 13 Ağustos 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 28 Sayı: 2

Kaynak Göster

APA Gören, K., & Yıldıko, Ü. (2024). Aldose Reductase Evaluation against Diabetic Complications Using ADME and Molecular Docking Studies and DFT Calculations of Spiroindoline Derivative Molecule. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(2), 281-292. https://doi.org/10.19113/sdufenbed.1474689
AMA Gören K, Yıldıko Ü. Aldose Reductase Evaluation against Diabetic Complications Using ADME and Molecular Docking Studies and DFT Calculations of Spiroindoline Derivative Molecule. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Ağustos 2024;28(2):281-292. doi:10.19113/sdufenbed.1474689
Chicago Gören, Kenan, ve Ümit Yıldıko. “Aldose Reductase Evaluation Against Diabetic Complications Using ADME and Molecular Docking Studies and DFT Calculations of Spiroindoline Derivative Molecule”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28, sy. 2 (Ağustos 2024): 281-92. https://doi.org/10.19113/sdufenbed.1474689.
EndNote Gören K, Yıldıko Ü (01 Ağustos 2024) Aldose Reductase Evaluation against Diabetic Complications Using ADME and Molecular Docking Studies and DFT Calculations of Spiroindoline Derivative Molecule. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28 2 281–292.
IEEE K. Gören ve Ü. Yıldıko, “Aldose Reductase Evaluation against Diabetic Complications Using ADME and Molecular Docking Studies and DFT Calculations of Spiroindoline Derivative Molecule”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 28, sy. 2, ss. 281–292, 2024, doi: 10.19113/sdufenbed.1474689.
ISNAD Gören, Kenan - Yıldıko, Ümit. “Aldose Reductase Evaluation Against Diabetic Complications Using ADME and Molecular Docking Studies and DFT Calculations of Spiroindoline Derivative Molecule”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28/2 (Ağustos 2024), 281-292. https://doi.org/10.19113/sdufenbed.1474689.
JAMA Gören K, Yıldıko Ü. Aldose Reductase Evaluation against Diabetic Complications Using ADME and Molecular Docking Studies and DFT Calculations of Spiroindoline Derivative Molecule. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2024;28:281–292.
MLA Gören, Kenan ve Ümit Yıldıko. “Aldose Reductase Evaluation Against Diabetic Complications Using ADME and Molecular Docking Studies and DFT Calculations of Spiroindoline Derivative Molecule”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 28, sy. 2, 2024, ss. 281-92, doi:10.19113/sdufenbed.1474689.
Vancouver Gören K, Yıldıko Ü. Aldose Reductase Evaluation against Diabetic Complications Using ADME and Molecular Docking Studies and DFT Calculations of Spiroindoline Derivative Molecule. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2024;28(2):281-92.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.