Araştırma Makalesi
BibTex RIS Kaynak Göster

Integrated Bioinformatic Approach for Precision Medicine: Prediction of Human GABRG2 Gene Pathogenic Variants, Characterized with Cellular Pathology and Epilepsy Phenotype Severity

Yıl 2024, Cilt: 28 Sayı: 3, 300 - 315, 23.12.2024
https://doi.org/10.19113/sdufenbed.1394695

Öz

Interpreting GABRG2 variants of unknown significance hinders epilepsy precision medicine. Using computer algorithms, our study focused on 156 GABRG2 variants from ClinVar, identifying 10 highly pathogenic variants within the γ2 subunit. Integration with patient mutations and mutagenesis studies locates variants within epileptogenic structural cassettes, aiding phenotype severity and cellular pathology characterization. Our results predict milder phenotypes for 3 N-terminus extracellular domain variants and more severe phenotypes for 7 transmembrane domain variants, linked to cellular pathology with reduced cell surface expression and current. Notably, 4 transmembrane domain variants may distort channel conductance. Our research aligns with ACMG/AMP criteria PP3 and PM1.

Kaynakça

  • [1] Paulsen O, Moser EI 1998 A model of hippocampal memory encoding and retrieval: GABAergic control of synaptic plasticity. Trends Neurosci 21:273-278
  • [2] Klausberger T, Magill PJ, Marton LF, Roberts JDB, Cobden PM, Buzsaki G, Somogyi P 2003 Brain state- and cell type-specific firing of hippocampal interneurons in vivo. Nature 421 844–8
  • [3] Freund T. F. 2003 Interneuron Diversity series: Rhythm and mood in perisomatic inhibition. Trends Neurosci. 26(9) 489–95
  • [4] Paille, V., Fino, E., Du, K., Morera-Herreras, T., Perez, S., Kotaleski, J. H., & Venance, L. 2013 GABAergic circuits control spike-timing-dependent plasticity. J. Neurosci. Off. J. Soc. Neurosci. 33(22), 9353–9363.
  • [5] Klausberger T. 2009 GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus. Eur. J. Neurosci. 30(6) 947–57
  • [6] Nyíri, G., Freund, T. F., & Somogyi, P. 2001 Input-dependent synaptic targeting of alpha(2)-subunit-containing GABA(A) receptors in synapses of hippocampal pyramidal cells of the rat. Eur. J. Neurosci. 13(3), 428–442.
  • [7] Klausberger T, Roberts JD, Somogyi P 2002 Cell type- and input-specific differences in the number and subtypes of synaptic GABAA receptors in the hippocampus. J Neurosci 22:2513–2521
  • [8] Pawelzik H, Hughes DI, Thomson AM (2002) 2002 Physiological and morphological diversity of immunocytochemically defined parvalbumin- and cholecystokinin-positive interneurons in CA1 of the adult rat hippocampus. J Comp Neurol 443:346–367
  • [9] Freund, T. F., & Buzsáki, G. 1996 Interneurons of the hippocampus. Hippocampus 6 347–470
  • [10] Nusser, Z., Sieghart, W., & Somogyi, P. 1998 Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J. Neurosci. Off. J. Soc. Neurosci. 18(5), 1693–1703.
  • [11] Wei, W., Zhang, N., Peng, Z., Houser, C. R., & Mody, I. (2003). Perisynaptic localization of delta subunit-containing GABA(A) receptors and their activation by GABA spillover in the mouse dentate gyrus. J. Neurosci. Off. J. Soc. Neurosci. 23(33), 10650–10661.
  • [12] Arslan, A. Clustering of gamma-aminobutyric acid type A receptors Period. Eng. Nat. Sci. 3(1).
  • [13] Arslan A 2021 Extrasynaptic δ-subunit containing GABAA receptors J. Integr. Neurosci. 20 173–84
  • [14] Arslan A, Engelhardt J and Wisden W 2014 Cytoplasmic domain of δ subunit is important for the extra-synaptic targeting of GABAA receptor subtypes J. Integr. Neurosci. 13 617–31
  • [15] Farrant, M., & Nusser, Z. 2005 Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. 6(3), 215–229. Nat. Rev. Neurosci.
  • [16] Sente A, Desai R, Naydenova K, Malinauskas T, Jounaidi Y, Miehling J, Zhou X, Masiulis S, Hardwick S W, Chirgadze D Y, Miller K W and Aricescu A R 2022 Differential assembly diversifies GABAA receptor structures and signalling Nature 604 190–4
  • [17] Whiting, P. J., Bonnert, T. P., McKernan, R. M., Farrar, S., Le Bourdellès, B., Heavens, R. P., Smith, D. W., Hewson, L., Rigby, M. R., Sirinathsinghji, D. J., Thompson, S. A., & Wafford, K. A. 1999 Molecular and functional diversity of the expanding GABA-A receptor gene family. Ann. N. Y. Acad. Sci. 868 645-653.
  • [18] Arslan, A. 2015 Distinct roles of gamma-aminobutyric acid type A receptor subtypes: A focus on phasic and tonic inhibition. J. Neurobehav. Sci. 2 72–6
  • [19] Möhler H. (2006). GABA(A) receptor diversity and pharmacology. Cell Tissue Res. 326(2), 505–516.
  • [20] Huang, T. H., Lin, Y. S., Hsiao, C. W., Wang, L. Y., Ajibola, M. I., Abdulmajeed, W. I., Lin, Y. L., Li, Y. J., Chen, C. Y., Lien, C. C., Chiu, C. D., & Cheng, I. H. . 2023 Differential expression of GABAA receptor subunits δ and α6 mediates tonic inhibition in parvalbumin and somatostatin interneurons in the mouse hippocampus. Front. Cell. Neurosci. 17, 1146278.
  • [21] Goetz T, Arslan A, Wisden W and Wulff P 2007 GABA(A) receptors: structure and function in the basal ganglia Prog. Brain Res. 160 21–41
  • [22] Kim Y S and Yoon B E 2017 Altered GABAergic Signaling in Brain Disease at Various Stages of Life Exp. Neurobiol. 26 122–31
  • [23] Als, T. D., Kurki, M. I., Grove, J., Voloudakis, G., Therrien, K., Tasanko, E., Nielsen, T. T., Naamanka, J., Veerapen, K., Levey, D. F., Bendl, J., Bybjerg-Grauholm, J., Zeng, B., Demontis, D., Rosengren, A., Athanasiadis, G., Bækved-Hansen, M., Qvist, P., Bragi Walters, G., Thorgeirsson, T., … Børglum, A. D. 2023 Depression pathophysiology, risk prediction of recurrence and comorbid psychiatric disorders using genome-wide analyses. Nat. Med. 29(7) 1832–44
  • [24] Mody I 2019 GABAAR Modulator for Postpartum Depression Cell 176 1
  • [25] Feng, Y. F., Zhou, Y. Y., & Duan, K. M. 2023 The Role of Extrasynaptic GABA Receptors in Postpartum Depression. Mol. Neurobiol.
  • [26] Fu X, Wang Y J, Kang J Q and Mu T W 2022 GABAA Receptor Variants in Epilepsy Epilepsy ed S J Czuczwar (Exon Publications)
  • [27] Lorenz-Guertin J M, Bambino M J and Jacob T C 2018 γ2 GABAAR Trafficking and the Consequences of Human Genetic Variation Front. Cell. Neurosci. 12 265
  • [28] Stafstrom, C. E., & Carmant, L. 2015 Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harb. Perspect. Med. a022426.
  • [29] Phulera S, Zhu H, Yu J, Claxton DP, Yoder N, Yoshioka C, Gouaux E. 2018 Cryo-EM structure of the benzodiazepine-sensitive α1β1γ2S tri-heteromeric GABAA receptor in complex with GABA. Elife. Jul 25;7:e39383.
  • [30] Zhu S, Noviello C M, Teng J, Walsh R M Jr, Kim J J and Hibbs R E 2018 Structure of a human synaptic GABAA receptor Nature 559 67–72
  • [31] Miller PSM,S; Malinauskas T; Kotecha A; Rao S; Chavali S; Colibus LD; Pardon E; Hannan S; Scott S; Sun Z; Frenz B; Klesse G; Li S; Diprose JM; Siebert CA; Esnouf RM; DiMaio F; Tucker SJ; Smart TG; Steyaert J; Badu MM; Sansom MSP; Huiskonen JT; Aricescu AR, Heteromeric GABAA receptor structures in positively-modulated active states. BioRxiv 2018
  • [32] Masiulis S, Desai R, Uchański T, Serna Martin I, Laverty D, Karia D, Malinauskas T, Zivanov J, Pardon E, Kotecha A, Steyaert J, Miller K W and Aricescu A R 2019 GABAA receptor signalling mechanisms revealed by structural pharmacology Nature 565 454–9
  • [33] Sun, C., Zhu, H., Clark, S., & Gouaux, E. 2023 Cryo-EM structures reveal native GABAA receptor assemblies and pharmacology. Nature, 622(7981), 195–201.
  • [34] Kim J J, Gharpure A, Teng J, Zhuang Y, Howard R J, Zhu S, Noviello C M, Walsh R M Jr, Lindahl E and Hibbs R E 2020 Shared structural mechanisms of general anaesthetics and benzodiazepines Nature 585 303–8
  • [35] Laverty, D., Desai, R., Uchański, T., Masiulis, S., Stec, W. J., Malinauskas, T., Zivanov, J., Pardon, E., Steyaert, J., Miller, K. W., & Aricescu, A. R. 2019 Cryo-EM structure of the human α1β3γ2 GABAA receptor in a lipid bilayer. Nature, 565(7740), 516–520.
  • [36] Kim, J. J., & Hibbs, R. E. 2021 Direct Structural Insights into GABAA Receptor Pharmacology. Trends Biochem. Sci. 46(6), 502-517.
  • [37] Essrich C, Lorez M, Benson J A, Fritschy J M and Lüscher B 1998 Postsynaptic clustering of major GABAA receptor subtypes requires the gamma 2 subunit and gephyrin Nat. Neurosci. 1 563–71
  • [38] Schweizer C, Balsiger S, Bluethmann H, Mansuy I M, Fritschy J M, Mohler H and Lüscher B 2003 The gamma 2 subunit of GABA(A) receptors is required for maintenance of receptors at mature synapses Mol. Cell. Neurosci. 24 442–50
  • [39] Boileau, A. J., Pearce, R. A., & Czajkowski, C. (2010). 2010 The short splice variant of the gamma 2 subunit acts as an external modulator of GABA(A) receptor function. J. Neurosci. Off. J. Soc. Neurosci.
  • [40] De Blas A. L. (1996). Brain GABAA receptors studied with subunit-specific antibodies. Molecular neurobiology, 12(1), 55–71. 1996 Brain GABAA receptors studied with subunit-specific antibodies. Blas L 12 55–71
  • [41] Chandra D, Korpi E R, Miralles C P, Blas A L and Homanics G E 2005 GABAA receptor gamma 2 subunit knockdown mice have enhanced anxiety-like behavior but unaltered hypnotic response to benzodiazepines BMC Neurosci. 6 30
  • [42] Ren Z, Sahir N, Murakami S, Luellen B A, Earnheart J C, Lal R, Kim J Y, Song H and Luscher B 2015 Defects in dendrite and spine maturation and synaptogenesis associated with an anxious-depressive-like phenotype of GABAA receptor-deficient mice Neuropharmacology 88 171–9
  • [43] Reid C A, Kim T, Phillips A M, Low J, Berkovic S F, Luscher B and Petrou S 2013 Multiple molecular mechanisms for a single GABAA mutation in epilepsy Neurology 80 1003–8
  • [44] Warner T A, Shen W, Huang X, Liu Z, Macdonald R L and Kang J Q 2016 Differential molecular and behavioural alterations in mouse models of GABRG2 haploinsufficiency versus dominant negative mutations associated with human epilepsy Hum Mol Genet 25 3192–207
  • [45] McDonald B J and Moss S J 1994 Differential phosphorylation of intracellular domains of gamma-aminobutyric acid type A receptor subunits by calcium/calmodulin type 2-dependent protein kinase and cGMP-dependent protein kinase J. Biol. Chem. 269 18111–7
  • [46] Nani F, Bright D P, Revilla-Sanchez R, Tretter V, Moss S J and Smart T G 2013 Tyrosine phosphorylation of GABAA receptor γ2-subunit regulates tonic and phasic inhibition in the thalamus J. Neurosci. Off. J. Soc. Neurosci. 33 12718–27
  • [47] Martenson J S, Yamasaki T, Chaudhury N H, Albrecht D and Tomita S 2017 Assembly rules for GABAA receptor complexes in the brain eLife 6 27443
  • [48] Oflaz F E, Son Ç D and Arslan A 2019 Oligomerization and cell surface expression of recombinant GABAA receptors tagged in the δ subunit J. Integr. Neurosci. 18 341–50
  • [49] Christie S B, Li R W, Miralles C P, Yang B- and Blas A L 2006 Clustered and non-clustered GABAA receptors in cultured hippocampal neurons Mol. Cell. Neurosci. 31 1–14
  • [50] Arslan A, Engelhardt J and Wisden W 2014 Cytoplasmic domain of δ subunit is important for the extra-synaptic targeting of GABAA receptor subtypes J. Integr. Neurosci. 13 617–31
  • [51] Alldred M J, Mulder-Rosi J, Lingenfelter S E, Chen G and Lüscher B 2005 Distinct gamma2 subunit domains mediate clustering and synaptic function of postsynaptic GABAA receptors and gephyrin J. Neurosci. Off. J. Soc. Neurosci. 25 594–603
  • [52] Connolly CN, Krishek BJ, McDonald BJ, Smart TG, Moss SJ. 1996 Assembly and cell surface expression of heteromeric and homomeric gamma-aminobutyric acid type A receptors. J Biol Chem 271 89-96.
  • [53] Arslan, A. 2006 Specifying molecular determinants of the subcellular targeting of synaptic and extrasynaptic GABA A receptors (Doctoral dissertation). (Germany: Ruprecht Karl University of Heidelberg)
  • [54] Wu, X., Wu, Z., Ning, G., Guo, Y., Ali, R., Macdonald, R. L., De Blas, A. L., Luscher, B., & Chen, G. 2012 γ-Aminobutyric acid type A (GABAA) receptor α subunits play a direct role in synaptic versus extrasynaptic targeting. J. Biol. Chem. 287(33), 27417–27430.
  • [55] Ghit A, Assal D, Al-Shami A S and Hussein D E E 2021 GABAA receptors: structure, function, pharmacology, and related disorders J. Genet. Eng. Biotechnol. 19 123
  • [56] Olsen R. W. (2018). GABAA receptor: Positive and negative allosteric modulators. Neuropharmacology, 136(Pt A), 10–22.
  • [57] Baulac S, Huberfeld G, Gourfinkel-An I, Mitropoulou G, Beranger A, Prud’homme J F, Baulac M, Brice A, Bruzzone R and LeGuern E 2001 First genetic evidence of GABA(A) receptor dysfunction in epilepsy: a mutation in the gamma2-subunit gene Nat. Genet. 28 46–8
  • [58] Kang J Q, Shen W, Zhou C, Xu D and Macdonald R L 2015 The human epilepsy mutation GABRG2(Q390X) causes chronic subunit accumulation and neurodegeneration Nat Neurosci 18 988–96
  • [59] Shen D, Hernandez C C, Shen W, Hu N, Poduri A, Shiedley B, Rotenberg A, Datta A N, Leiz S, Patzer S, Boor R, Ramsey K, Goldberg E, Helbig I, Ortiz-Gonzalez X R, Lemke J R, Marsh E D and Macdonald R L 2017 De novo GABRG2 mutations associated with epileptic encephalopathies Brain J. Neurol. 140 49–67
  • [60] Todd E, Gurba K N, Botzolakis E J, Stanic A K and Macdonald R L 2014 GABAA receptor biogenesis is impaired by the γ2 subunit febrile seizure-associated mutation, GABRG2(R177G Neurobiol. Dis. 69 215–24
  • [61] Bouthour W, Leroy F, Emmanuelli C, Carnaud M, Dahan M, Poncer J C and Lévi S 2012 A human mutation in Gabrg2 associated with generalized epilepsy alters the membrane dynamics of GABAA receptors Cereb. Cortex 22 1542–53
  • [62] Huang X, Hernandez C C, Hu N and Macdonald R L 2014 Three epilepsy-associated GABRG2 missense mutations at the γ+/β- interface disrupt GABAA receptor assembly and trafficking by similar mechanisms but to different extents Neurobiol. Dis. 68 167–79
  • [63] Frugier G, Coussen F, Giraud M F, Odessa M F, Emerit M B, Boué-Grabot E and Garret M 2007 A gamma 2(R43Q) mutation, linked to epilepsy in humans, alters GABAA receptor assembly and modifies subunit composition on the cell surface J. Biol. Chem. 282 3819–28
  • [64] Löscher, W., & Rogawski, M. A. 2012 How theories evolved concerning the mechanism of action of barbiturates. Epilepsia, 53 Suppl 8, 12–25.
  • [65] Richardson R, Petrou S, Bryson A. 2024 Established and emerging GABAA receptor pharmacotherapy for epilepsy Frontiers in Pharmacology.
  • [66] Kim, J. J., Gharpure, A., Teng, J., Zhuang, Y., Howard, R. J., Zhu, S., Noviello, C. M., Walsh, R. M., Jr, Lindahl, E., & Hibbs, R. E. 2020 Shared structural mechanisms of general anaesthetics and benzodiazepines. Nature, 585(7824), 303–308.
  • [67] Scheffer, I. E., Berkovic, S. et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology.
  • [68] Knowles, J. K., Helbig, I., Metcalf, C. S., Lubbers, L. S., Isom, L. L., Demarest, S., Goldberg, E. M., George, A. L., Jr, Lerche, H., Weckhuysen, S., Whittemore, V., Berkovic, S. F., & Lowenstein, D. H. 2022 Precision medicine for genetic epilepsy on the horizon: Recent advances, present challenges, and suggestions for continued progress. Epilepsia 63 2461–75
  • [69] Katsonis, P., Wilhelm, K., Williams, A., & Lichtarge, O. 2022 Genome interpretation using in silico predictors of variant impact. Hum. Genet. 141(10) 1549–77
  • [70] Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody W W, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm H L and Committee A C M G L Q A 2015 Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology Genet. Med. Off. J. Am. Coll. Med. Genet. 17 405–24
  • [71] Katsonis P, Wilhelm K, Williams A and Lichtarge O 2022 Genome interpretation using in silico predictors of variant impact Hum. Genet. 141 1549–77
  • [72] Caswell R C, Gunning A C, Owens M M, Ellard S and Wright C F 2022 Assessing the clinical utility of protein structural analysis in genomic variant classification: experiences from a diagnostic laboratory Genome Med. 14 77
  • [73] Akbar F, Saleh R, Kirmani S, Chand P, Mukhtiar K, Jan F, Kumar R and Ibrahim S 2022 Utility of genetic testing in pediatric epilepsy: Experience from a low to middle-income country Epilepsy Behav. Rep. 20 100575
  • [74] Johannesen K M, Nikanorova N, Marjanovic D, Pavbro A, Larsen L H G, Rubboli G and Møller R S 2020 Utility of genetic testing for therapeutic decision-making in adults with epilepsy Epilepsia 61 1234–9
  • [75] Landrum M J, Lee J M, Riley G R, Jang W, Rubinstein W S, Church D M and Maglott D R 2014 ClinVar: public archive of relationships among sequence variation and human phenotype Nucleic Acids Res. 42 980–5
  • [76] Ng P C and Henikoff S 2003 SIFT: Predicting amino acid changes that affect protein function Nucleic Acids Res. 31 3812–4
  • [77] Thomas P D, Campbell M J, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A and Narechania A 2003 PANTHER: a library of protein families and subfamilies indexed by function Genome Res. 13 2129–41
  • [78] Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, Shaw N, Lane C R, Lim E P, Kalyanaraman N, Nemesh J, Ziaugra L, Friedland L, Rolfe A, Warrington J, Lipshutz R, Daley G Q and Lander E S 1999 Characterization of single-nucleotide polymorphisms in coding regions of human genes Nat. Genet. 22 231–8
  • [79] Capriotti E, Calabrese R and Casadio R 2006 Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information 22 2729–34
  • [80] Capriotti E, Calabrese R, Fariselli P, Martelli P L, Altman R B and Casadio R 2013 WS-SNPs&GO: a web server for predicting the deleterious effect of human protein variants using functional annotation BMC Genomics 3 6
  • [81] Pejaver V, Urresti J, Lugo-Martinez J, Pagel K A, Lin G N, Nam H J, Mort M, Cooper D N, Sebat J, Iakoucheva L M, Mooney S D and Radivojac P 2020 Inferring the molecular and phenotypic impact of amino acid variants with MutPred2 Nat. Commun. 11 5918
  • [82] Capriotti E, Fariselli P and Casadio R 2005 I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure Nucleic Acids Res. 33 306–10
  • [83] Glaser F, Pupko T, Paz I, Bell R E, Bechor-Shental D, Martz E and Ben-Tal N 2003 ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information 19 163–4
  • [84] Ashkenazy H, Erez E, Martz E, Pupko T and Ben-Tal N 2010 ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids Nucleic Acids Res. 38 529–33
  • [85] Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T and Ben-Tal N 2016 ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules Nucleic Acids Res. 44 344–50
  • [86] Adzhubei I A, Schmidt S, Peshkin L, Ramensky V E, Gerasimova A, Bork P, Kondrashov A S and Sunyaev S R 2010 A method and server for predicting damaging missense mutations Nat. Methods 7 248–9
  • [87] Sigel E and Steinmann M E 2012 Structure, function, and modulation of GABA(A) receptors J. Biol. Chem. 287 40224–31
  • [88] Wang, H., Bedford, F. K., Brandon, N. J., Moss, S. J., & Olsen, R. W. 1999 GABA(A)-receptor-associated protein links GABA(A) receptors and the cytoskeleton. Nature 397(6714), 69–72.
  • [89] Sayers, E. W., Barrett, T., Benson, D. A., Bolton, E., Bryant, S. H., Canese, K., Chetvernin, V., Church, D. M., DiCuccio, M., Federhen, S., Feolo, M., Fingerman, I. M., Geer, L. Y., Helmberg, W., Kapustin, Y., Landsman, D., Lipman, D. J., Lu, Z., Madden, T. L., Madej, T., … Ye, J. 2011 Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. D38-D51.
  • [90] Stenson P D, Ball E V, Mort M, Phillips A D, Shiel J A, Thomas N S, Abeysinghe S, Krawczak M and Cooper D N 2003 Human Gene Mutation Database (HGMD): 2003 update Hum. Mutat. 21 577–81
  • [91] Mottaz, A., David, F. P., Veuthey, A. L., & Yip, Y. L. 2010 Easy retrieval of single amino-acid polymorphisms and phenotype information using SwissVar. Bioinforma. Oxf. Engl. 26(6), 851-852.
  • [92] Armstrong D R, Berrisford J M, Conroy M J, Gutmanas A, Anyango S, Choudhary P, Clark A R, Dana J M, Deshpande M, Dunlop R, Gane P, Gáborová R, Gupta D, Haslam P, Koča J, Mak L, Mir S, Mukhopadhyay A, Nadzirin N, Nair S and Velankar S 2020 PDBe: improved findability of macromolecular structure data in the PDB Nucleic Acids Res. 48 335–43
  • [93] consortium Pdb-K B 2020 PDBe-KB: a community-driven resource for structural and functional annotations Nucleic Acids Res. 48 344–53
  • [94] Luscher B, Fuchs T and Kilpatrick C L 2011 GABAA receptor trafficking-mediated plasticity of inhibitory synapses Neuron 70 385–409
  • [95] Lorenz-Guertin J M and Jacob T C 2018 GABA type a receptor trafficking and the architecture of synaptic inhibition Dev. Neurobiol. 78 238–70
  • [96] Wong, L. W., Tae, H. S., & Cromer, B. A. 2015 Assembly, trafficking and function of α1β2γ2 GABAA receptors are regulated by N-terminal regions, in a subunit-specific manner. Journal of neurochemistry, 134(5), 819–832.
  • [97] Lachance-Touchette P, Brown P, Meloche C, Kinirons P, Lapointe L, Lacasse H, Lortie A, Carmant L, Bedford F, Bowie D and Cossette P 2011 Novel α1 and γ2 GABAA receptor subunit mutations in families with idiopathic generalized epilepsy Eur. J. Neurosci. 34 237–49
  • [98] Draguhn A, Verdorn T A, Ewert M, Seeburg P H and Sakmann B 1990 Functional and molecular distinction between recombinant rat GABAA receptor subtypes by Zn2+ Neuron 5 781–8
  • [99] Smart T G, Moss S J, Xie X and Huganir R L 1991 GABAA receptors are differentially sensitive to zinc: dependence on subunit composition Br. J. Pharmacol. 103 1837–9
  • [100] Kasaragod V B, Mortensen M, Hardwick S W, Wahid A A, Dorovykh V, Chirgadze D Y, Smart T G and Miller P S 2022 Mechanisms of inhibition and activation of extrasynaptic αβ GABAA receptors Nature 602 529–33
  • [101] Glaser F, Pupko T, Paz I, Bell R E, Bechor-Shental D, Martz E and Ben-Tal N 2003 ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information Bioinformatics 19 163–4
  • [102] Kelley L A, Mezulis S, Yates C M, Wass M N and Sternberg M J 2015 The Phyre2 web portal for protein modeling, prediction and analysis Nat. Protoc. 10 845–58
  • [103] Zhang Y and Skolnick J 2005 TM-align: a protein structure alignment algorithm based on the TM-score Nucleic Acids Res. 33 2302–9
  • [104] Zhang, Y., & Skolnick, J. 2004 Scoring function for automated assessment of protein structure template quality. Proteins
  • [105] Carugo O and Pongor S 2001 A normalized root-mean-square distance for comparing protein three-dimensional structures Protein Sci. Publ. Protein Soc. 10 1470–3
  • [106] Roy A, Kucukural A and Zhang Y 2010 I-TASSER: a unified platform for automated protein structure and function prediction Nat. Protoc. 5 725–38
  • [107] Yang J and Zhang Y 2015 Protein Structure and Function Prediction Using I-TASSER Curr. Protoc. Bioinforma. 52 5 8 1-5 8 15
  • [108] Colovos C and Yeates T O 1993 Verification of protein structures: patterns of nonbonded atomic interactions Protein Sci. Publ. Protein Soc. 2 1511–9
  • [109] Pettersen E F, Goddard T D, Huang C C, Couch G S, Greenblatt D M, Meng E C and Ferrin T E 2004 UCSF Chimera–a visualization system for exploratory research and analysis J. Comput. Chem. 25 1605–12
  • [110] Hernandez C C, Tian X, Hu N, Shen W, Catron M A, Yang Y, Chen J, Jiang Y, Zhang Y and Macdonald R L 2021 Dravet syndrome-associated mutations in GABRA1, GABRB2 and GABRG2 define the genetic landscape of defects of GABAA receptors Brain Commun. 3 033
  • [111] Maillard P Y, Baer S, Schaefer É, Desnous B, Villeneuve N, Lépine A, Fabre A, Lacoste C, El Chehadeh S, Piton A, Porter L F, Perriard C, Wardé M A, Spitz M A, Laugel V, Lesca G, Putoux A, Ville D, Mignot C and Milh M 2022 Molecular and clinical descriptions of patients with GABAA receptor gene variants (GABRA1, GABRB2, GABRB3, GABRG2): A cohort study, review of literature, and genotype-phenotype correlation Epilepsia 63 2519–33
  • [112] Kang J Q and Macdonald R L 2016 Molecular Pathogenic Basis for GABRG2 Mutations Associated With a Spectrum of Epilepsy Syndromes, From Generalized Absence Epilepsy to Dravet Syndrome JAMA Neurol. 73 1009–16
  • [113] Yang Y, Niu X, Cheng M, Zeng Q, Deng J, Tian X, Wang Y, Yu J, Shi W, Wu W, Ma J, Li Y, Yang X, Zhang X, Jia T, Yang Z, Liao J, Sun Y, Zheng H, Sun S and Zhang Y 2022 Phenotypic Spectrum and Prognosis of Epilepsy Patients With GABRG2 Variants Front. Mol. Neurosci. 15 809163
  • [114] Zou F, McWalter K, Schmidt L, Decker A, Picker J D, Lincoln S, Sweetser D A, Briere L C, Harini C, Undiagnosed Diseases Network M, Marsh E, Medne L, Wang R Y, Leydiker K, Mower A, Visser G, Cuppen I, Gassen K L, Smagt J, Yousaf A and McKnight D 2017 Expanding the phenotypic spectrum of GABRG2 variants: a recurrent GABRG2 missense variant associated with a severe phenotype J. Neurogenet. 31 30–6
  • [115] Hernandez C C and Macdonald R L 2019 A structural look at GABAA receptor mutations linked to epilepsy syndromes Brain Res. 1714 234–47
  • [116] Mele M, Costa R O and Duarte C B 2019 Alterations in GABAA-Receptor Trafficking and Synaptic Dysfunction in Brain Disorders Front. Cell. Neurosci. 13 77
  • [117] Arslan A 2023 Pathogenic variants of human GABRA1 gene associated with epilepsy: A computational approach Heliyon 9
  • [118] Köhler S, Gargano M, Matentzoglu N, Carmody L C, Lewis-Smith D, Vasilevsky N A, Danis D, Balagura G, Baynam G, Brower A M, Callahan T J, Chute C G, Est J L, Galer P D, Ganesan S, Griese M, Haimel M, Pazmandi J, Hanauer M, Harris N L and Robinson P N 2021 The Human Phenotype Ontology in 2021 Nucleic Acids Res. 49 1207–17
  • [119] Rácz, A., Galvis-Montes, D. S., Borger, V., Becker, A. J., & Pitsch, J. 2024 Focused review: Clinico-neuropathological aspects of late onset epilepsies: Pathogenesis. Seizure, S1059-1311(24)00182-1.
  • [120] Trowbridge, S., Poduri, A., & Olson, H. 2021 Early diagnosis and experimental treatment with fenfluramine via the Investigational New Drug mechanism in a boy with Dravet syndrome and recurrent status epilepticus. Epileptic Disord. Int. Epilepsy J. Videotape 954–6

Hassas Tıp için Bütünleşik Biyoinformatik Yaklaşım: İnsan GABRG2 Geninin Hücre Patolojisi ve Epilepsi Fenotip Şiddeti ile Karakterize Patojenik Varyantlarının Tahmini

Yıl 2024, Cilt: 28 Sayı: 3, 300 - 315, 23.12.2024
https://doi.org/10.19113/sdufenbed.1394695

Öz

GABRG2 genindeki belirsiz anlam varyantların yorumlanması, epilepsi hassas tıpı için kritik önem teşkil etmektedir. Çalışmamız, ClinVar veri tabanındaki 156 GABRG2 belirsiz anlam varyantına odaklanarak, γ2 alt biriminde 10 patojenik varyantı belirledi. Hasta mutasyonları ve mutagenez çalışmalarıyla entegrasyon sonucunda varyantların epileptojenik yapısal kasetler içinde konumlandırılmasıyla, fenotip şiddeti ve hücresel patoloji karakterize edildi. 3 tane N-terminus ekstrasellüler bölge varyantı daha az şiddetli ve 7 tane transmembran bölge varyantı daha şiddetli epilepsi fenotipleri ile eksilmiş hücre yüzeyi ifadesi ve akımla bağlantılı olarak öngörüldü. Özellikle, 4 transmembran bölge varyantının kanal iletkenliğini bozabileceği belirlendi. Araştırmamız, ACMG/AMP kriterleri PP3 ve PM1 ile uyumludur.

Kaynakça

  • [1] Paulsen O, Moser EI 1998 A model of hippocampal memory encoding and retrieval: GABAergic control of synaptic plasticity. Trends Neurosci 21:273-278
  • [2] Klausberger T, Magill PJ, Marton LF, Roberts JDB, Cobden PM, Buzsaki G, Somogyi P 2003 Brain state- and cell type-specific firing of hippocampal interneurons in vivo. Nature 421 844–8
  • [3] Freund T. F. 2003 Interneuron Diversity series: Rhythm and mood in perisomatic inhibition. Trends Neurosci. 26(9) 489–95
  • [4] Paille, V., Fino, E., Du, K., Morera-Herreras, T., Perez, S., Kotaleski, J. H., & Venance, L. 2013 GABAergic circuits control spike-timing-dependent plasticity. J. Neurosci. Off. J. Soc. Neurosci. 33(22), 9353–9363.
  • [5] Klausberger T. 2009 GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus. Eur. J. Neurosci. 30(6) 947–57
  • [6] Nyíri, G., Freund, T. F., & Somogyi, P. 2001 Input-dependent synaptic targeting of alpha(2)-subunit-containing GABA(A) receptors in synapses of hippocampal pyramidal cells of the rat. Eur. J. Neurosci. 13(3), 428–442.
  • [7] Klausberger T, Roberts JD, Somogyi P 2002 Cell type- and input-specific differences in the number and subtypes of synaptic GABAA receptors in the hippocampus. J Neurosci 22:2513–2521
  • [8] Pawelzik H, Hughes DI, Thomson AM (2002) 2002 Physiological and morphological diversity of immunocytochemically defined parvalbumin- and cholecystokinin-positive interneurons in CA1 of the adult rat hippocampus. J Comp Neurol 443:346–367
  • [9] Freund, T. F., & Buzsáki, G. 1996 Interneurons of the hippocampus. Hippocampus 6 347–470
  • [10] Nusser, Z., Sieghart, W., & Somogyi, P. 1998 Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J. Neurosci. Off. J. Soc. Neurosci. 18(5), 1693–1703.
  • [11] Wei, W., Zhang, N., Peng, Z., Houser, C. R., & Mody, I. (2003). Perisynaptic localization of delta subunit-containing GABA(A) receptors and their activation by GABA spillover in the mouse dentate gyrus. J. Neurosci. Off. J. Soc. Neurosci. 23(33), 10650–10661.
  • [12] Arslan, A. Clustering of gamma-aminobutyric acid type A receptors Period. Eng. Nat. Sci. 3(1).
  • [13] Arslan A 2021 Extrasynaptic δ-subunit containing GABAA receptors J. Integr. Neurosci. 20 173–84
  • [14] Arslan A, Engelhardt J and Wisden W 2014 Cytoplasmic domain of δ subunit is important for the extra-synaptic targeting of GABAA receptor subtypes J. Integr. Neurosci. 13 617–31
  • [15] Farrant, M., & Nusser, Z. 2005 Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. 6(3), 215–229. Nat. Rev. Neurosci.
  • [16] Sente A, Desai R, Naydenova K, Malinauskas T, Jounaidi Y, Miehling J, Zhou X, Masiulis S, Hardwick S W, Chirgadze D Y, Miller K W and Aricescu A R 2022 Differential assembly diversifies GABAA receptor structures and signalling Nature 604 190–4
  • [17] Whiting, P. J., Bonnert, T. P., McKernan, R. M., Farrar, S., Le Bourdellès, B., Heavens, R. P., Smith, D. W., Hewson, L., Rigby, M. R., Sirinathsinghji, D. J., Thompson, S. A., & Wafford, K. A. 1999 Molecular and functional diversity of the expanding GABA-A receptor gene family. Ann. N. Y. Acad. Sci. 868 645-653.
  • [18] Arslan, A. 2015 Distinct roles of gamma-aminobutyric acid type A receptor subtypes: A focus on phasic and tonic inhibition. J. Neurobehav. Sci. 2 72–6
  • [19] Möhler H. (2006). GABA(A) receptor diversity and pharmacology. Cell Tissue Res. 326(2), 505–516.
  • [20] Huang, T. H., Lin, Y. S., Hsiao, C. W., Wang, L. Y., Ajibola, M. I., Abdulmajeed, W. I., Lin, Y. L., Li, Y. J., Chen, C. Y., Lien, C. C., Chiu, C. D., & Cheng, I. H. . 2023 Differential expression of GABAA receptor subunits δ and α6 mediates tonic inhibition in parvalbumin and somatostatin interneurons in the mouse hippocampus. Front. Cell. Neurosci. 17, 1146278.
  • [21] Goetz T, Arslan A, Wisden W and Wulff P 2007 GABA(A) receptors: structure and function in the basal ganglia Prog. Brain Res. 160 21–41
  • [22] Kim Y S and Yoon B E 2017 Altered GABAergic Signaling in Brain Disease at Various Stages of Life Exp. Neurobiol. 26 122–31
  • [23] Als, T. D., Kurki, M. I., Grove, J., Voloudakis, G., Therrien, K., Tasanko, E., Nielsen, T. T., Naamanka, J., Veerapen, K., Levey, D. F., Bendl, J., Bybjerg-Grauholm, J., Zeng, B., Demontis, D., Rosengren, A., Athanasiadis, G., Bækved-Hansen, M., Qvist, P., Bragi Walters, G., Thorgeirsson, T., … Børglum, A. D. 2023 Depression pathophysiology, risk prediction of recurrence and comorbid psychiatric disorders using genome-wide analyses. Nat. Med. 29(7) 1832–44
  • [24] Mody I 2019 GABAAR Modulator for Postpartum Depression Cell 176 1
  • [25] Feng, Y. F., Zhou, Y. Y., & Duan, K. M. 2023 The Role of Extrasynaptic GABA Receptors in Postpartum Depression. Mol. Neurobiol.
  • [26] Fu X, Wang Y J, Kang J Q and Mu T W 2022 GABAA Receptor Variants in Epilepsy Epilepsy ed S J Czuczwar (Exon Publications)
  • [27] Lorenz-Guertin J M, Bambino M J and Jacob T C 2018 γ2 GABAAR Trafficking and the Consequences of Human Genetic Variation Front. Cell. Neurosci. 12 265
  • [28] Stafstrom, C. E., & Carmant, L. 2015 Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harb. Perspect. Med. a022426.
  • [29] Phulera S, Zhu H, Yu J, Claxton DP, Yoder N, Yoshioka C, Gouaux E. 2018 Cryo-EM structure of the benzodiazepine-sensitive α1β1γ2S tri-heteromeric GABAA receptor in complex with GABA. Elife. Jul 25;7:e39383.
  • [30] Zhu S, Noviello C M, Teng J, Walsh R M Jr, Kim J J and Hibbs R E 2018 Structure of a human synaptic GABAA receptor Nature 559 67–72
  • [31] Miller PSM,S; Malinauskas T; Kotecha A; Rao S; Chavali S; Colibus LD; Pardon E; Hannan S; Scott S; Sun Z; Frenz B; Klesse G; Li S; Diprose JM; Siebert CA; Esnouf RM; DiMaio F; Tucker SJ; Smart TG; Steyaert J; Badu MM; Sansom MSP; Huiskonen JT; Aricescu AR, Heteromeric GABAA receptor structures in positively-modulated active states. BioRxiv 2018
  • [32] Masiulis S, Desai R, Uchański T, Serna Martin I, Laverty D, Karia D, Malinauskas T, Zivanov J, Pardon E, Kotecha A, Steyaert J, Miller K W and Aricescu A R 2019 GABAA receptor signalling mechanisms revealed by structural pharmacology Nature 565 454–9
  • [33] Sun, C., Zhu, H., Clark, S., & Gouaux, E. 2023 Cryo-EM structures reveal native GABAA receptor assemblies and pharmacology. Nature, 622(7981), 195–201.
  • [34] Kim J J, Gharpure A, Teng J, Zhuang Y, Howard R J, Zhu S, Noviello C M, Walsh R M Jr, Lindahl E and Hibbs R E 2020 Shared structural mechanisms of general anaesthetics and benzodiazepines Nature 585 303–8
  • [35] Laverty, D., Desai, R., Uchański, T., Masiulis, S., Stec, W. J., Malinauskas, T., Zivanov, J., Pardon, E., Steyaert, J., Miller, K. W., & Aricescu, A. R. 2019 Cryo-EM structure of the human α1β3γ2 GABAA receptor in a lipid bilayer. Nature, 565(7740), 516–520.
  • [36] Kim, J. J., & Hibbs, R. E. 2021 Direct Structural Insights into GABAA Receptor Pharmacology. Trends Biochem. Sci. 46(6), 502-517.
  • [37] Essrich C, Lorez M, Benson J A, Fritschy J M and Lüscher B 1998 Postsynaptic clustering of major GABAA receptor subtypes requires the gamma 2 subunit and gephyrin Nat. Neurosci. 1 563–71
  • [38] Schweizer C, Balsiger S, Bluethmann H, Mansuy I M, Fritschy J M, Mohler H and Lüscher B 2003 The gamma 2 subunit of GABA(A) receptors is required for maintenance of receptors at mature synapses Mol. Cell. Neurosci. 24 442–50
  • [39] Boileau, A. J., Pearce, R. A., & Czajkowski, C. (2010). 2010 The short splice variant of the gamma 2 subunit acts as an external modulator of GABA(A) receptor function. J. Neurosci. Off. J. Soc. Neurosci.
  • [40] De Blas A. L. (1996). Brain GABAA receptors studied with subunit-specific antibodies. Molecular neurobiology, 12(1), 55–71. 1996 Brain GABAA receptors studied with subunit-specific antibodies. Blas L 12 55–71
  • [41] Chandra D, Korpi E R, Miralles C P, Blas A L and Homanics G E 2005 GABAA receptor gamma 2 subunit knockdown mice have enhanced anxiety-like behavior but unaltered hypnotic response to benzodiazepines BMC Neurosci. 6 30
  • [42] Ren Z, Sahir N, Murakami S, Luellen B A, Earnheart J C, Lal R, Kim J Y, Song H and Luscher B 2015 Defects in dendrite and spine maturation and synaptogenesis associated with an anxious-depressive-like phenotype of GABAA receptor-deficient mice Neuropharmacology 88 171–9
  • [43] Reid C A, Kim T, Phillips A M, Low J, Berkovic S F, Luscher B and Petrou S 2013 Multiple molecular mechanisms for a single GABAA mutation in epilepsy Neurology 80 1003–8
  • [44] Warner T A, Shen W, Huang X, Liu Z, Macdonald R L and Kang J Q 2016 Differential molecular and behavioural alterations in mouse models of GABRG2 haploinsufficiency versus dominant negative mutations associated with human epilepsy Hum Mol Genet 25 3192–207
  • [45] McDonald B J and Moss S J 1994 Differential phosphorylation of intracellular domains of gamma-aminobutyric acid type A receptor subunits by calcium/calmodulin type 2-dependent protein kinase and cGMP-dependent protein kinase J. Biol. Chem. 269 18111–7
  • [46] Nani F, Bright D P, Revilla-Sanchez R, Tretter V, Moss S J and Smart T G 2013 Tyrosine phosphorylation of GABAA receptor γ2-subunit regulates tonic and phasic inhibition in the thalamus J. Neurosci. Off. J. Soc. Neurosci. 33 12718–27
  • [47] Martenson J S, Yamasaki T, Chaudhury N H, Albrecht D and Tomita S 2017 Assembly rules for GABAA receptor complexes in the brain eLife 6 27443
  • [48] Oflaz F E, Son Ç D and Arslan A 2019 Oligomerization and cell surface expression of recombinant GABAA receptors tagged in the δ subunit J. Integr. Neurosci. 18 341–50
  • [49] Christie S B, Li R W, Miralles C P, Yang B- and Blas A L 2006 Clustered and non-clustered GABAA receptors in cultured hippocampal neurons Mol. Cell. Neurosci. 31 1–14
  • [50] Arslan A, Engelhardt J and Wisden W 2014 Cytoplasmic domain of δ subunit is important for the extra-synaptic targeting of GABAA receptor subtypes J. Integr. Neurosci. 13 617–31
  • [51] Alldred M J, Mulder-Rosi J, Lingenfelter S E, Chen G and Lüscher B 2005 Distinct gamma2 subunit domains mediate clustering and synaptic function of postsynaptic GABAA receptors and gephyrin J. Neurosci. Off. J. Soc. Neurosci. 25 594–603
  • [52] Connolly CN, Krishek BJ, McDonald BJ, Smart TG, Moss SJ. 1996 Assembly and cell surface expression of heteromeric and homomeric gamma-aminobutyric acid type A receptors. J Biol Chem 271 89-96.
  • [53] Arslan, A. 2006 Specifying molecular determinants of the subcellular targeting of synaptic and extrasynaptic GABA A receptors (Doctoral dissertation). (Germany: Ruprecht Karl University of Heidelberg)
  • [54] Wu, X., Wu, Z., Ning, G., Guo, Y., Ali, R., Macdonald, R. L., De Blas, A. L., Luscher, B., & Chen, G. 2012 γ-Aminobutyric acid type A (GABAA) receptor α subunits play a direct role in synaptic versus extrasynaptic targeting. J. Biol. Chem. 287(33), 27417–27430.
  • [55] Ghit A, Assal D, Al-Shami A S and Hussein D E E 2021 GABAA receptors: structure, function, pharmacology, and related disorders J. Genet. Eng. Biotechnol. 19 123
  • [56] Olsen R. W. (2018). GABAA receptor: Positive and negative allosteric modulators. Neuropharmacology, 136(Pt A), 10–22.
  • [57] Baulac S, Huberfeld G, Gourfinkel-An I, Mitropoulou G, Beranger A, Prud’homme J F, Baulac M, Brice A, Bruzzone R and LeGuern E 2001 First genetic evidence of GABA(A) receptor dysfunction in epilepsy: a mutation in the gamma2-subunit gene Nat. Genet. 28 46–8
  • [58] Kang J Q, Shen W, Zhou C, Xu D and Macdonald R L 2015 The human epilepsy mutation GABRG2(Q390X) causes chronic subunit accumulation and neurodegeneration Nat Neurosci 18 988–96
  • [59] Shen D, Hernandez C C, Shen W, Hu N, Poduri A, Shiedley B, Rotenberg A, Datta A N, Leiz S, Patzer S, Boor R, Ramsey K, Goldberg E, Helbig I, Ortiz-Gonzalez X R, Lemke J R, Marsh E D and Macdonald R L 2017 De novo GABRG2 mutations associated with epileptic encephalopathies Brain J. Neurol. 140 49–67
  • [60] Todd E, Gurba K N, Botzolakis E J, Stanic A K and Macdonald R L 2014 GABAA receptor biogenesis is impaired by the γ2 subunit febrile seizure-associated mutation, GABRG2(R177G Neurobiol. Dis. 69 215–24
  • [61] Bouthour W, Leroy F, Emmanuelli C, Carnaud M, Dahan M, Poncer J C and Lévi S 2012 A human mutation in Gabrg2 associated with generalized epilepsy alters the membrane dynamics of GABAA receptors Cereb. Cortex 22 1542–53
  • [62] Huang X, Hernandez C C, Hu N and Macdonald R L 2014 Three epilepsy-associated GABRG2 missense mutations at the γ+/β- interface disrupt GABAA receptor assembly and trafficking by similar mechanisms but to different extents Neurobiol. Dis. 68 167–79
  • [63] Frugier G, Coussen F, Giraud M F, Odessa M F, Emerit M B, Boué-Grabot E and Garret M 2007 A gamma 2(R43Q) mutation, linked to epilepsy in humans, alters GABAA receptor assembly and modifies subunit composition on the cell surface J. Biol. Chem. 282 3819–28
  • [64] Löscher, W., & Rogawski, M. A. 2012 How theories evolved concerning the mechanism of action of barbiturates. Epilepsia, 53 Suppl 8, 12–25.
  • [65] Richardson R, Petrou S, Bryson A. 2024 Established and emerging GABAA receptor pharmacotherapy for epilepsy Frontiers in Pharmacology.
  • [66] Kim, J. J., Gharpure, A., Teng, J., Zhuang, Y., Howard, R. J., Zhu, S., Noviello, C. M., Walsh, R. M., Jr, Lindahl, E., & Hibbs, R. E. 2020 Shared structural mechanisms of general anaesthetics and benzodiazepines. Nature, 585(7824), 303–308.
  • [67] Scheffer, I. E., Berkovic, S. et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology.
  • [68] Knowles, J. K., Helbig, I., Metcalf, C. S., Lubbers, L. S., Isom, L. L., Demarest, S., Goldberg, E. M., George, A. L., Jr, Lerche, H., Weckhuysen, S., Whittemore, V., Berkovic, S. F., & Lowenstein, D. H. 2022 Precision medicine for genetic epilepsy on the horizon: Recent advances, present challenges, and suggestions for continued progress. Epilepsia 63 2461–75
  • [69] Katsonis, P., Wilhelm, K., Williams, A., & Lichtarge, O. 2022 Genome interpretation using in silico predictors of variant impact. Hum. Genet. 141(10) 1549–77
  • [70] Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody W W, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm H L and Committee A C M G L Q A 2015 Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology Genet. Med. Off. J. Am. Coll. Med. Genet. 17 405–24
  • [71] Katsonis P, Wilhelm K, Williams A and Lichtarge O 2022 Genome interpretation using in silico predictors of variant impact Hum. Genet. 141 1549–77
  • [72] Caswell R C, Gunning A C, Owens M M, Ellard S and Wright C F 2022 Assessing the clinical utility of protein structural analysis in genomic variant classification: experiences from a diagnostic laboratory Genome Med. 14 77
  • [73] Akbar F, Saleh R, Kirmani S, Chand P, Mukhtiar K, Jan F, Kumar R and Ibrahim S 2022 Utility of genetic testing in pediatric epilepsy: Experience from a low to middle-income country Epilepsy Behav. Rep. 20 100575
  • [74] Johannesen K M, Nikanorova N, Marjanovic D, Pavbro A, Larsen L H G, Rubboli G and Møller R S 2020 Utility of genetic testing for therapeutic decision-making in adults with epilepsy Epilepsia 61 1234–9
  • [75] Landrum M J, Lee J M, Riley G R, Jang W, Rubinstein W S, Church D M and Maglott D R 2014 ClinVar: public archive of relationships among sequence variation and human phenotype Nucleic Acids Res. 42 980–5
  • [76] Ng P C and Henikoff S 2003 SIFT: Predicting amino acid changes that affect protein function Nucleic Acids Res. 31 3812–4
  • [77] Thomas P D, Campbell M J, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A and Narechania A 2003 PANTHER: a library of protein families and subfamilies indexed by function Genome Res. 13 2129–41
  • [78] Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, Shaw N, Lane C R, Lim E P, Kalyanaraman N, Nemesh J, Ziaugra L, Friedland L, Rolfe A, Warrington J, Lipshutz R, Daley G Q and Lander E S 1999 Characterization of single-nucleotide polymorphisms in coding regions of human genes Nat. Genet. 22 231–8
  • [79] Capriotti E, Calabrese R and Casadio R 2006 Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information 22 2729–34
  • [80] Capriotti E, Calabrese R, Fariselli P, Martelli P L, Altman R B and Casadio R 2013 WS-SNPs&GO: a web server for predicting the deleterious effect of human protein variants using functional annotation BMC Genomics 3 6
  • [81] Pejaver V, Urresti J, Lugo-Martinez J, Pagel K A, Lin G N, Nam H J, Mort M, Cooper D N, Sebat J, Iakoucheva L M, Mooney S D and Radivojac P 2020 Inferring the molecular and phenotypic impact of amino acid variants with MutPred2 Nat. Commun. 11 5918
  • [82] Capriotti E, Fariselli P and Casadio R 2005 I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure Nucleic Acids Res. 33 306–10
  • [83] Glaser F, Pupko T, Paz I, Bell R E, Bechor-Shental D, Martz E and Ben-Tal N 2003 ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information 19 163–4
  • [84] Ashkenazy H, Erez E, Martz E, Pupko T and Ben-Tal N 2010 ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids Nucleic Acids Res. 38 529–33
  • [85] Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T and Ben-Tal N 2016 ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules Nucleic Acids Res. 44 344–50
  • [86] Adzhubei I A, Schmidt S, Peshkin L, Ramensky V E, Gerasimova A, Bork P, Kondrashov A S and Sunyaev S R 2010 A method and server for predicting damaging missense mutations Nat. Methods 7 248–9
  • [87] Sigel E and Steinmann M E 2012 Structure, function, and modulation of GABA(A) receptors J. Biol. Chem. 287 40224–31
  • [88] Wang, H., Bedford, F. K., Brandon, N. J., Moss, S. J., & Olsen, R. W. 1999 GABA(A)-receptor-associated protein links GABA(A) receptors and the cytoskeleton. Nature 397(6714), 69–72.
  • [89] Sayers, E. W., Barrett, T., Benson, D. A., Bolton, E., Bryant, S. H., Canese, K., Chetvernin, V., Church, D. M., DiCuccio, M., Federhen, S., Feolo, M., Fingerman, I. M., Geer, L. Y., Helmberg, W., Kapustin, Y., Landsman, D., Lipman, D. J., Lu, Z., Madden, T. L., Madej, T., … Ye, J. 2011 Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. D38-D51.
  • [90] Stenson P D, Ball E V, Mort M, Phillips A D, Shiel J A, Thomas N S, Abeysinghe S, Krawczak M and Cooper D N 2003 Human Gene Mutation Database (HGMD): 2003 update Hum. Mutat. 21 577–81
  • [91] Mottaz, A., David, F. P., Veuthey, A. L., & Yip, Y. L. 2010 Easy retrieval of single amino-acid polymorphisms and phenotype information using SwissVar. Bioinforma. Oxf. Engl. 26(6), 851-852.
  • [92] Armstrong D R, Berrisford J M, Conroy M J, Gutmanas A, Anyango S, Choudhary P, Clark A R, Dana J M, Deshpande M, Dunlop R, Gane P, Gáborová R, Gupta D, Haslam P, Koča J, Mak L, Mir S, Mukhopadhyay A, Nadzirin N, Nair S and Velankar S 2020 PDBe: improved findability of macromolecular structure data in the PDB Nucleic Acids Res. 48 335–43
  • [93] consortium Pdb-K B 2020 PDBe-KB: a community-driven resource for structural and functional annotations Nucleic Acids Res. 48 344–53
  • [94] Luscher B, Fuchs T and Kilpatrick C L 2011 GABAA receptor trafficking-mediated plasticity of inhibitory synapses Neuron 70 385–409
  • [95] Lorenz-Guertin J M and Jacob T C 2018 GABA type a receptor trafficking and the architecture of synaptic inhibition Dev. Neurobiol. 78 238–70
  • [96] Wong, L. W., Tae, H. S., & Cromer, B. A. 2015 Assembly, trafficking and function of α1β2γ2 GABAA receptors are regulated by N-terminal regions, in a subunit-specific manner. Journal of neurochemistry, 134(5), 819–832.
  • [97] Lachance-Touchette P, Brown P, Meloche C, Kinirons P, Lapointe L, Lacasse H, Lortie A, Carmant L, Bedford F, Bowie D and Cossette P 2011 Novel α1 and γ2 GABAA receptor subunit mutations in families with idiopathic generalized epilepsy Eur. J. Neurosci. 34 237–49
  • [98] Draguhn A, Verdorn T A, Ewert M, Seeburg P H and Sakmann B 1990 Functional and molecular distinction between recombinant rat GABAA receptor subtypes by Zn2+ Neuron 5 781–8
  • [99] Smart T G, Moss S J, Xie X and Huganir R L 1991 GABAA receptors are differentially sensitive to zinc: dependence on subunit composition Br. J. Pharmacol. 103 1837–9
  • [100] Kasaragod V B, Mortensen M, Hardwick S W, Wahid A A, Dorovykh V, Chirgadze D Y, Smart T G and Miller P S 2022 Mechanisms of inhibition and activation of extrasynaptic αβ GABAA receptors Nature 602 529–33
  • [101] Glaser F, Pupko T, Paz I, Bell R E, Bechor-Shental D, Martz E and Ben-Tal N 2003 ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information Bioinformatics 19 163–4
  • [102] Kelley L A, Mezulis S, Yates C M, Wass M N and Sternberg M J 2015 The Phyre2 web portal for protein modeling, prediction and analysis Nat. Protoc. 10 845–58
  • [103] Zhang Y and Skolnick J 2005 TM-align: a protein structure alignment algorithm based on the TM-score Nucleic Acids Res. 33 2302–9
  • [104] Zhang, Y., & Skolnick, J. 2004 Scoring function for automated assessment of protein structure template quality. Proteins
  • [105] Carugo O and Pongor S 2001 A normalized root-mean-square distance for comparing protein three-dimensional structures Protein Sci. Publ. Protein Soc. 10 1470–3
  • [106] Roy A, Kucukural A and Zhang Y 2010 I-TASSER: a unified platform for automated protein structure and function prediction Nat. Protoc. 5 725–38
  • [107] Yang J and Zhang Y 2015 Protein Structure and Function Prediction Using I-TASSER Curr. Protoc. Bioinforma. 52 5 8 1-5 8 15
  • [108] Colovos C and Yeates T O 1993 Verification of protein structures: patterns of nonbonded atomic interactions Protein Sci. Publ. Protein Soc. 2 1511–9
  • [109] Pettersen E F, Goddard T D, Huang C C, Couch G S, Greenblatt D M, Meng E C and Ferrin T E 2004 UCSF Chimera–a visualization system for exploratory research and analysis J. Comput. Chem. 25 1605–12
  • [110] Hernandez C C, Tian X, Hu N, Shen W, Catron M A, Yang Y, Chen J, Jiang Y, Zhang Y and Macdonald R L 2021 Dravet syndrome-associated mutations in GABRA1, GABRB2 and GABRG2 define the genetic landscape of defects of GABAA receptors Brain Commun. 3 033
  • [111] Maillard P Y, Baer S, Schaefer É, Desnous B, Villeneuve N, Lépine A, Fabre A, Lacoste C, El Chehadeh S, Piton A, Porter L F, Perriard C, Wardé M A, Spitz M A, Laugel V, Lesca G, Putoux A, Ville D, Mignot C and Milh M 2022 Molecular and clinical descriptions of patients with GABAA receptor gene variants (GABRA1, GABRB2, GABRB3, GABRG2): A cohort study, review of literature, and genotype-phenotype correlation Epilepsia 63 2519–33
  • [112] Kang J Q and Macdonald R L 2016 Molecular Pathogenic Basis for GABRG2 Mutations Associated With a Spectrum of Epilepsy Syndromes, From Generalized Absence Epilepsy to Dravet Syndrome JAMA Neurol. 73 1009–16
  • [113] Yang Y, Niu X, Cheng M, Zeng Q, Deng J, Tian X, Wang Y, Yu J, Shi W, Wu W, Ma J, Li Y, Yang X, Zhang X, Jia T, Yang Z, Liao J, Sun Y, Zheng H, Sun S and Zhang Y 2022 Phenotypic Spectrum and Prognosis of Epilepsy Patients With GABRG2 Variants Front. Mol. Neurosci. 15 809163
  • [114] Zou F, McWalter K, Schmidt L, Decker A, Picker J D, Lincoln S, Sweetser D A, Briere L C, Harini C, Undiagnosed Diseases Network M, Marsh E, Medne L, Wang R Y, Leydiker K, Mower A, Visser G, Cuppen I, Gassen K L, Smagt J, Yousaf A and McKnight D 2017 Expanding the phenotypic spectrum of GABRG2 variants: a recurrent GABRG2 missense variant associated with a severe phenotype J. Neurogenet. 31 30–6
  • [115] Hernandez C C and Macdonald R L 2019 A structural look at GABAA receptor mutations linked to epilepsy syndromes Brain Res. 1714 234–47
  • [116] Mele M, Costa R O and Duarte C B 2019 Alterations in GABAA-Receptor Trafficking and Synaptic Dysfunction in Brain Disorders Front. Cell. Neurosci. 13 77
  • [117] Arslan A 2023 Pathogenic variants of human GABRA1 gene associated with epilepsy: A computational approach Heliyon 9
  • [118] Köhler S, Gargano M, Matentzoglu N, Carmody L C, Lewis-Smith D, Vasilevsky N A, Danis D, Balagura G, Baynam G, Brower A M, Callahan T J, Chute C G, Est J L, Galer P D, Ganesan S, Griese M, Haimel M, Pazmandi J, Hanauer M, Harris N L and Robinson P N 2021 The Human Phenotype Ontology in 2021 Nucleic Acids Res. 49 1207–17
  • [119] Rácz, A., Galvis-Montes, D. S., Borger, V., Becker, A. J., & Pitsch, J. 2024 Focused review: Clinico-neuropathological aspects of late onset epilepsies: Pathogenesis. Seizure, S1059-1311(24)00182-1.
  • [120] Trowbridge, S., Poduri, A., & Olson, H. 2021 Early diagnosis and experimental treatment with fenfluramine via the Investigational New Drug mechanism in a boy with Dravet syndrome and recurrent status epilepticus. Epileptic Disord. Int. Epilepsy J. Videotape 954–6
Toplam 120 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Bilimi (Diğer)
Bölüm Makaleler
Yazarlar

Nabaa Khudhair Abdullah 0000-0003-1785-0522

Ayla Arslan 0000-0002-3119-101X

Yayımlanma Tarihi 23 Aralık 2024
Gönderilme Tarihi 22 Kasım 2023
Kabul Tarihi 30 Ağustos 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 28 Sayı: 3

Kaynak Göster

APA Khudhair Abdullah, N., & Arslan, A. (2024). Integrated Bioinformatic Approach for Precision Medicine: Prediction of Human GABRG2 Gene Pathogenic Variants, Characterized with Cellular Pathology and Epilepsy Phenotype Severity. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(3), 300-315. https://doi.org/10.19113/sdufenbed.1394695
AMA Khudhair Abdullah N, Arslan A. Integrated Bioinformatic Approach for Precision Medicine: Prediction of Human GABRG2 Gene Pathogenic Variants, Characterized with Cellular Pathology and Epilepsy Phenotype Severity. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Aralık 2024;28(3):300-315. doi:10.19113/sdufenbed.1394695
Chicago Khudhair Abdullah, Nabaa, ve Ayla Arslan. “Integrated Bioinformatic Approach for Precision Medicine: Prediction of Human GABRG2 Gene Pathogenic Variants, Characterized With Cellular Pathology and Epilepsy Phenotype Severity”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28, sy. 3 (Aralık 2024): 300-315. https://doi.org/10.19113/sdufenbed.1394695.
EndNote Khudhair Abdullah N, Arslan A (01 Aralık 2024) Integrated Bioinformatic Approach for Precision Medicine: Prediction of Human GABRG2 Gene Pathogenic Variants, Characterized with Cellular Pathology and Epilepsy Phenotype Severity. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28 3 300–315.
IEEE N. Khudhair Abdullah ve A. Arslan, “Integrated Bioinformatic Approach for Precision Medicine: Prediction of Human GABRG2 Gene Pathogenic Variants, Characterized with Cellular Pathology and Epilepsy Phenotype Severity”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 28, sy. 3, ss. 300–315, 2024, doi: 10.19113/sdufenbed.1394695.
ISNAD Khudhair Abdullah, Nabaa - Arslan, Ayla. “Integrated Bioinformatic Approach for Precision Medicine: Prediction of Human GABRG2 Gene Pathogenic Variants, Characterized With Cellular Pathology and Epilepsy Phenotype Severity”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28/3 (Aralık 2024), 300-315. https://doi.org/10.19113/sdufenbed.1394695.
JAMA Khudhair Abdullah N, Arslan A. Integrated Bioinformatic Approach for Precision Medicine: Prediction of Human GABRG2 Gene Pathogenic Variants, Characterized with Cellular Pathology and Epilepsy Phenotype Severity. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2024;28:300–315.
MLA Khudhair Abdullah, Nabaa ve Ayla Arslan. “Integrated Bioinformatic Approach for Precision Medicine: Prediction of Human GABRG2 Gene Pathogenic Variants, Characterized With Cellular Pathology and Epilepsy Phenotype Severity”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 28, sy. 3, 2024, ss. 300-15, doi:10.19113/sdufenbed.1394695.
Vancouver Khudhair Abdullah N, Arslan A. Integrated Bioinformatic Approach for Precision Medicine: Prediction of Human GABRG2 Gene Pathogenic Variants, Characterized with Cellular Pathology and Epilepsy Phenotype Severity. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2024;28(3):300-15.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.