Araştırma Makalesi
BibTex RIS Kaynak Göster

THE EFFECT OF VOLATILITY IN THE BORSA ISTANBUL CORPORATE GOVERNANCE INDEX (XKURY): AN EXAMINATION WITH THE ARCH, GARCH AND SWARCH MODELS

Yıl 2017, Cilt: 22 Sayı: 3, 697 - 711, 30.07.2017

Öz

This paper aims to examine the volatility of Borsa Istanbul Corporate Governance Index (XKURY) by means of ARCH, GARCH and SWARCH models and by using the daily closing values of the index between 03.03.2014 and 10.03.2017. Volatility is considered as one of the most important measures of risk in the financial markets and measuring volatility has been one of the most attractive areas of research for the researchers. Our main goal in this research is to determine whether XKURY is influenced from any kind of movements or from any assymmetric information due to an increase in volatility. Therefore, this study evaluates the risk of XKURY for the determined time period. Our empirical findings indicate that the SWARCH models perform better in forecasting the volatility than the ARCH and GARCH models. The researchers therefore can employ the SWARCH models as an alternative to the ARCH and GARCH models when conducting studies.

Kaynakça

  • ADLIĞ, G. Ş. (2009). “Finansal Piyasalarda Ardışık Bağlanımlı Koşullu Varyans Etkileri, Oynaklık Tahmini ve Türkiye Üzerine Bir Uygulama. Yüksek Lisans Tezi, İstanbul Üni. Sosyal Bil. Enst.
  • AKAIKE, H. (1976). “Canonical Correlation Analysis of Time Series and the Use of an Information Criterion” in Raman K. Mehra and Dimitri G. Lainiotis, (eds.), System Identification: Advances and Case Studies, New York: Academic Press.
  • ALBERG, D., HAIM, S ve RAMI, Y. (2008). “Estimating Stock Market Volatility Using Asymmetric GARCH Models”. Applied Financial Economics, 28: 1201-1208.
  • ATAKAN, T. (2009).“İstanbul Menkul Kıymetler Borsası’nda Değişkenliğin (Volatilitenin) ARCH-GARCH Yöntemleri İle Modellenmesi”. Yönetim Dergisi, 62, 48-61.
  • BALA, L. ve GAMINI, P. (2004). “Stock Market Volatility: Examining N. America, Europe and Asia”. Econometric Society 2004 Far East Meeting, No: 479.
  • BAUTISTA, C.C. (2003). "Stock Market Volatility in the Philippines". Applied Economics Letters, 10: 315-318.
  • BOLLERSLEV, T. (1986). “Generalized Autoregressive Conditional Heteroscedasticity". Journal of Econometrics, 31: 307-327.
  • CAI, J. (1994). “A Markov Model of Switching-regime ARCH." Journal of Business and Economic Statistics, 12: 309-316.
  • CHAND, S., KAMAL, S ve IMRAN, A. (2012). “Modeling and Volatility Analysis of Share Prices Using ARCH and GARCH Models". World Applied Sciences Journal, 19(1): 77-82.
  • Choudhry, T. and Hassan, S. S. (2015). Exchange Rate Volatility and UK Imports from Devoloping Countries: Effect of the Global Financial Crisis. Proceedings of the Second European Academic Research Conference on Global Business, Economics, Finance and Banking (EAR15Swiss Conference) ISBN: 978-1-63415-477-2 Zurich- Switzerland, 3-5 July, 2015 Paper ID: Z594.
  • CHOW, Y. F. (1998). "Regime Switching and Cointegration Tests of the Efficiency of Futures Markets". The Journal of Futures Markets, 18: 871-901.
  • ÇABUK, A.H., ÖZMEN, M. ve KÖKCEN, A. (2011). "Koşullu Varyans Modelleri: İMKB Serileri Üzerine Bir Uygulama". Çukurova Üniversitesi İİBF Dergisi. 15(2): 1-18.
  • DAĞLI, H. (1996). Türkiye’nin Risk ve Getiri Açısından Gelişen Hisse Senedi Piyasaları Arasındaki Yeri. İşletme ve Finans Yayınları.
  • DEMİR, S. (2016). Modelling the Conjectural Effects of on Volatility in Emerging Markets: Comparison Between GARCH Models and Markov Switching (MS) Model. Proceedings of the International Conference of Strategic Research in Social Science and Research. 14-16 October, 2016, Antalya.
  • DICKEY, D.A. ve FULLER, W.A. (1979). "Autoregressive Time Series with a Unit Root". Journal of the American Statistical Association, 74: 427-431.
  • ENGLE, C. (1994). “Can the Markov Switching Model Forecast Exchange Rates?”. Journal of International Economics, 36: 151-165.
  • ENGLE, C. ve HAMILTON, J. D. (1990). “Long Swings in the Dollar: Are they in the Data and Do Markets Know it?”. American Economic Review, 80: 689-713.
  • ENGLE, R. F. (1982). “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation". Econometrica, 50: 987-1007.
  • ENGLE, R. F., LILIEN, M. D. ve ROBINS, P.R. (1987). "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model". Ekonometrica, 55(2): 391-407.
  • FONG, W.M. (1997). "Volatility Persistence and Switching ARCH in Japanese Markets”. Financial Engineering and the Japanese Markets, 4: 37-57.
  • GARCIA, R. ve PERRON, P. (1996). “An Analysis of the Real Interest Rate Under Regime Shifts". The Review of Economics and Statistics, 78: 111-125.
  • GLOSTEN, L. R., JANANNATHAN, R. ve RUNKLE, D. (1993). “On the Relation Between the Expected Value and the Volatility of the Nominal Excess Return on Stocks". Journal of Finance, 48: 1779-1801.
  • GÖKÇE, A. (2001). "İstanbul Menkul Kıymetler Borsası Getirilerindeki Volatilitenin ARCH Teknikleri ile Ölçülmesi". Gazi Universitesi İ.İ.B.F Dergisi, 36.
  • GRAY, S. F. (1996). “Modelling the Conditional Distribution of Interest Rates as a Regime-switching Process". Journal of Financial Economics, 42: 27-62.
  • GÜRİŞ, S. ve SAÇAKLI, S.İ. (2011). “İstanbul Menkul Kıymetler Borsası’nda Hisse Senedi Getiri Volatilitesinin Klasik ve Bayesyen GARCH Modelleri İle Analizi". Trakya Üniversitesi Sosyal Bilimler Dergisi, 13: 153-172.
  • HAMILTON, J. D. ve SUSMEL, R. (1994). “Autoregressive Conditional Heteroskedasticity and Change in Regime". Journal of Econometrics, 64: 307-333.
  • KENDİRLİ, S. ve KARADENİZ, G. (2012). "2008 Kriz Sonrası İMKB 30 Endeksi Volatilitesinin Genelleştirilmiş ARCH Modeli ile Tahmini". KSÜ Sosyal Bilimler Dergisi.
  • KUMAR, S. S. S., (2006). “Forecasting Volatility – Evidence from Indian Stock and Forex Markets”. Indian Institute of Management Kozhikode, http://dspace.iimk.ac.in/bitstream/2259/ 289/1/ForecastingVolatility.pdf (Erişim Tarihi: 18.03.2017).
  • KUTLAR, A. ve TORUN, P. (2013). "İMKB 100 Endeksi Günlük Getirileri İçin Uygun Genelleştirilmiş Farklı Varyans Modelini Seçimi". Erciyes Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, (42):1-24.
  • LAMOUREUX, C. G. ve LASTRAPES, W.D. (1990). “Persistence in Variance, Structural Change and the GARCH Model". Journal of Business and Economic Statistics, 8: 225-234.
  • LEEVES, G. (2007). “Asimetric Volatility Of Stock Returns During The Asian Crisis: Evidence From Indonesia”. International Review Of Economics And Finance, 16: 272-286.
  • MAZIBAŞ, M. (2005). “İMKB Piyasalarındaki Volatilitenin Modellenmesi ve Öngörülmesi: Asimetrik Garch Modelleri İle Bir Uygulama". VII. Ulusal Ekonometri ve İstatistik Sempozyumu, İstanbul Üniversitesi, 26-27 Mayıs.
  • MCMILLIAN, D., SPEIGHT, A. ve APGWILYM, O. (2000). "Forecasting UK Stock Market Volatility”. Applied Financial Economics, 10, 435-488.
  • MURARI, K. (2015). "Exchange Rate Volatility Estimation Using GARCH Models, with Special Reference to Indian Rupee Against World Currencies". IUP Journal of Applied Finance. (21): 1, 22-37.
  • NELSON, D. (1991). “Conditional Heteroscedasticity in Asset Returns: A New Approach,” Econometrica, 59: 347-370.
  • ÖZER, M. ve TÜRKYILMAZ, S. (2004). Türkiye Finansal Piyasalarında Oynaklıkların ARCH Modelleri ile Analizi. T.C. Anadolu Üniversitesi Yayınları, No:1593, Eskişehir.
  • PAN, H. ve ZHANG, Z. (2006). “Forecasting Financial Volatility: Evidence From Chinese Stock Market”, Working Paper In Economics and Finance, No:06/02, 1-29.
  • PARVARESH, M. ve BAVAGHAR, M. (2012). "Forecasting Volatility in Tehran Stock Market with GARCH Models”. Journal of Basic and Applied Scientific Research, 2(1), 150-155.
  • PHILLIPS, B.C.P. ve PERRON, P. (1988). "Testing for a Unit Root in Time Series Refression". Biometrika, 75(2): 335-346.
  • POPOVICI, O. C. (2015). "A Volatility Analysis of the Euro Currency and the Bond Market". Financial Studies. (19): 1, 67-79.
  • RACICOT, F. E. ve RAYMOND, T. (2010). “Forecasting Stochastic Volatility Using The Kalman Filter: An Application to Canadian Interest Rates and Price-Earnings Ratio”. The Ieb International Journal of Finance, 2010 (1): 28-47.
  • SCHWARZ, G. (1978). “Estimating the Dimension of a Model". Annual of Statistics, 6: 461-464.
  • SENTENA, E., (1992). Quadratic ARCH Models. A Potential Interpretation of ARCH Models, London School of Economics Financial Markets Study Group Discussion Paper.
  • SEVÜKTEKİN, M. ve NARGELEÇEKENLER, M. (2008), “ İstanbul Menkul Kıymetler Borsası’nda Getiri Volatilitesinin Modellenmesi ve Önraporlanması”. Ankara Üniversitesi SBF Dergisi, 61: 243-265.
  • SIOUROUNIS, G.D. (2002). “Modelling Volatility and Testing for Efficiency in Emerging Capital Markets: The Case of The Athens Stock Exchange”. Applied Financial Economics, 12: 47-55.
  • SOLA, M. ve DRIFFIL, J. (1994). "Testing the Term Structure of Interest Rates Using a Stationary Vector Autoregression with Regime Switching". Journal of Economic Dynamics and Control, 18: 601-628.
  • ŞAHİN, Ö., ÖNCÜ, M.A. ve SAKARYA, Ş. (2015). "BIST 100 ve Kurumsal Yönetim Endeksi Volatilitelerinin Karşılaştırmalı Analizi". C.Ü. İktisadi ve İdari Bilimler Dergisi. (16): 2, 107-126.
  • TSAY, S. R. (2002). Analysis of Financial Time Series. New York: John Wiley & Sons, Inc.
  • ZOKAIAN, J.M. (1994). “Threshold Heteroscedastic Models”. Journal Of Economic and Dynamic Control, 18: 931-55.

BORSA ISTANBUL KURUMSAL YÖNETİM ENDEKSİ'NDE (XKURY) VOLATİLİTENİN ETKİSİ: ARCH, GARCH ve SWARCH MODELLERİ İLE BİR İNCELEME

Yıl 2017, Cilt: 22 Sayı: 3, 697 - 711, 30.07.2017

Öz

Bu çalışma Borsa İstanbul Kurumsal Yönetim Endeksi'nin (XKURY) volatilitesini ARCH, GARCH ve SWARCH modelleri yardımıyla ve endeksin 03.03.2014 ile 10.03.2017 arasındaki günlük kapanış verilerini kullanarak incelemeyi amaçlamaktadır. Finansal piyasalarda volatilite yani oynaklık en önemli risk ölçüm aracı olarak görülmekte ve volatilitenin ölçümü de araştırmacılar arasında giderek daha fazla ilgi çeken bir araştırma konusu haline gelmektedir. Bu çalışmadaki ana amacımız herhangi bir hareketlenmeden veya asimetrik bilgiden dolayı volatilitenin artmasından ötürü XKURY'nin bu durumdan etkilenip etkilenmediğini belirlemektir. Dolayısıyla bu çalışma Borsa İstanbul Kurumsal Yönetim Endeksi'nin (XKURY) riskini belirlenen dönem için ölçmektedir. Ampirik bulgularımız bize SWARCH modellerinin ARCH ve GARCH modellerine göre volatiliteyi ölçmede daha başarılı bir performans sergilediğini göstermektedir. Dolayısıyla, araştırmacılar çalışma yaparken ARCH ve GARCH modellerine alternatif olarak SWARCH modellerini de kullanabilirler.

Kaynakça

  • ADLIĞ, G. Ş. (2009). “Finansal Piyasalarda Ardışık Bağlanımlı Koşullu Varyans Etkileri, Oynaklık Tahmini ve Türkiye Üzerine Bir Uygulama. Yüksek Lisans Tezi, İstanbul Üni. Sosyal Bil. Enst.
  • AKAIKE, H. (1976). “Canonical Correlation Analysis of Time Series and the Use of an Information Criterion” in Raman K. Mehra and Dimitri G. Lainiotis, (eds.), System Identification: Advances and Case Studies, New York: Academic Press.
  • ALBERG, D., HAIM, S ve RAMI, Y. (2008). “Estimating Stock Market Volatility Using Asymmetric GARCH Models”. Applied Financial Economics, 28: 1201-1208.
  • ATAKAN, T. (2009).“İstanbul Menkul Kıymetler Borsası’nda Değişkenliğin (Volatilitenin) ARCH-GARCH Yöntemleri İle Modellenmesi”. Yönetim Dergisi, 62, 48-61.
  • BALA, L. ve GAMINI, P. (2004). “Stock Market Volatility: Examining N. America, Europe and Asia”. Econometric Society 2004 Far East Meeting, No: 479.
  • BAUTISTA, C.C. (2003). "Stock Market Volatility in the Philippines". Applied Economics Letters, 10: 315-318.
  • BOLLERSLEV, T. (1986). “Generalized Autoregressive Conditional Heteroscedasticity". Journal of Econometrics, 31: 307-327.
  • CAI, J. (1994). “A Markov Model of Switching-regime ARCH." Journal of Business and Economic Statistics, 12: 309-316.
  • CHAND, S., KAMAL, S ve IMRAN, A. (2012). “Modeling and Volatility Analysis of Share Prices Using ARCH and GARCH Models". World Applied Sciences Journal, 19(1): 77-82.
  • Choudhry, T. and Hassan, S. S. (2015). Exchange Rate Volatility and UK Imports from Devoloping Countries: Effect of the Global Financial Crisis. Proceedings of the Second European Academic Research Conference on Global Business, Economics, Finance and Banking (EAR15Swiss Conference) ISBN: 978-1-63415-477-2 Zurich- Switzerland, 3-5 July, 2015 Paper ID: Z594.
  • CHOW, Y. F. (1998). "Regime Switching and Cointegration Tests of the Efficiency of Futures Markets". The Journal of Futures Markets, 18: 871-901.
  • ÇABUK, A.H., ÖZMEN, M. ve KÖKCEN, A. (2011). "Koşullu Varyans Modelleri: İMKB Serileri Üzerine Bir Uygulama". Çukurova Üniversitesi İİBF Dergisi. 15(2): 1-18.
  • DAĞLI, H. (1996). Türkiye’nin Risk ve Getiri Açısından Gelişen Hisse Senedi Piyasaları Arasındaki Yeri. İşletme ve Finans Yayınları.
  • DEMİR, S. (2016). Modelling the Conjectural Effects of on Volatility in Emerging Markets: Comparison Between GARCH Models and Markov Switching (MS) Model. Proceedings of the International Conference of Strategic Research in Social Science and Research. 14-16 October, 2016, Antalya.
  • DICKEY, D.A. ve FULLER, W.A. (1979). "Autoregressive Time Series with a Unit Root". Journal of the American Statistical Association, 74: 427-431.
  • ENGLE, C. (1994). “Can the Markov Switching Model Forecast Exchange Rates?”. Journal of International Economics, 36: 151-165.
  • ENGLE, C. ve HAMILTON, J. D. (1990). “Long Swings in the Dollar: Are they in the Data and Do Markets Know it?”. American Economic Review, 80: 689-713.
  • ENGLE, R. F. (1982). “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation". Econometrica, 50: 987-1007.
  • ENGLE, R. F., LILIEN, M. D. ve ROBINS, P.R. (1987). "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model". Ekonometrica, 55(2): 391-407.
  • FONG, W.M. (1997). "Volatility Persistence and Switching ARCH in Japanese Markets”. Financial Engineering and the Japanese Markets, 4: 37-57.
  • GARCIA, R. ve PERRON, P. (1996). “An Analysis of the Real Interest Rate Under Regime Shifts". The Review of Economics and Statistics, 78: 111-125.
  • GLOSTEN, L. R., JANANNATHAN, R. ve RUNKLE, D. (1993). “On the Relation Between the Expected Value and the Volatility of the Nominal Excess Return on Stocks". Journal of Finance, 48: 1779-1801.
  • GÖKÇE, A. (2001). "İstanbul Menkul Kıymetler Borsası Getirilerindeki Volatilitenin ARCH Teknikleri ile Ölçülmesi". Gazi Universitesi İ.İ.B.F Dergisi, 36.
  • GRAY, S. F. (1996). “Modelling the Conditional Distribution of Interest Rates as a Regime-switching Process". Journal of Financial Economics, 42: 27-62.
  • GÜRİŞ, S. ve SAÇAKLI, S.İ. (2011). “İstanbul Menkul Kıymetler Borsası’nda Hisse Senedi Getiri Volatilitesinin Klasik ve Bayesyen GARCH Modelleri İle Analizi". Trakya Üniversitesi Sosyal Bilimler Dergisi, 13: 153-172.
  • HAMILTON, J. D. ve SUSMEL, R. (1994). “Autoregressive Conditional Heteroskedasticity and Change in Regime". Journal of Econometrics, 64: 307-333.
  • KENDİRLİ, S. ve KARADENİZ, G. (2012). "2008 Kriz Sonrası İMKB 30 Endeksi Volatilitesinin Genelleştirilmiş ARCH Modeli ile Tahmini". KSÜ Sosyal Bilimler Dergisi.
  • KUMAR, S. S. S., (2006). “Forecasting Volatility – Evidence from Indian Stock and Forex Markets”. Indian Institute of Management Kozhikode, http://dspace.iimk.ac.in/bitstream/2259/ 289/1/ForecastingVolatility.pdf (Erişim Tarihi: 18.03.2017).
  • KUTLAR, A. ve TORUN, P. (2013). "İMKB 100 Endeksi Günlük Getirileri İçin Uygun Genelleştirilmiş Farklı Varyans Modelini Seçimi". Erciyes Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, (42):1-24.
  • LAMOUREUX, C. G. ve LASTRAPES, W.D. (1990). “Persistence in Variance, Structural Change and the GARCH Model". Journal of Business and Economic Statistics, 8: 225-234.
  • LEEVES, G. (2007). “Asimetric Volatility Of Stock Returns During The Asian Crisis: Evidence From Indonesia”. International Review Of Economics And Finance, 16: 272-286.
  • MAZIBAŞ, M. (2005). “İMKB Piyasalarındaki Volatilitenin Modellenmesi ve Öngörülmesi: Asimetrik Garch Modelleri İle Bir Uygulama". VII. Ulusal Ekonometri ve İstatistik Sempozyumu, İstanbul Üniversitesi, 26-27 Mayıs.
  • MCMILLIAN, D., SPEIGHT, A. ve APGWILYM, O. (2000). "Forecasting UK Stock Market Volatility”. Applied Financial Economics, 10, 435-488.
  • MURARI, K. (2015). "Exchange Rate Volatility Estimation Using GARCH Models, with Special Reference to Indian Rupee Against World Currencies". IUP Journal of Applied Finance. (21): 1, 22-37.
  • NELSON, D. (1991). “Conditional Heteroscedasticity in Asset Returns: A New Approach,” Econometrica, 59: 347-370.
  • ÖZER, M. ve TÜRKYILMAZ, S. (2004). Türkiye Finansal Piyasalarında Oynaklıkların ARCH Modelleri ile Analizi. T.C. Anadolu Üniversitesi Yayınları, No:1593, Eskişehir.
  • PAN, H. ve ZHANG, Z. (2006). “Forecasting Financial Volatility: Evidence From Chinese Stock Market”, Working Paper In Economics and Finance, No:06/02, 1-29.
  • PARVARESH, M. ve BAVAGHAR, M. (2012). "Forecasting Volatility in Tehran Stock Market with GARCH Models”. Journal of Basic and Applied Scientific Research, 2(1), 150-155.
  • PHILLIPS, B.C.P. ve PERRON, P. (1988). "Testing for a Unit Root in Time Series Refression". Biometrika, 75(2): 335-346.
  • POPOVICI, O. C. (2015). "A Volatility Analysis of the Euro Currency and the Bond Market". Financial Studies. (19): 1, 67-79.
  • RACICOT, F. E. ve RAYMOND, T. (2010). “Forecasting Stochastic Volatility Using The Kalman Filter: An Application to Canadian Interest Rates and Price-Earnings Ratio”. The Ieb International Journal of Finance, 2010 (1): 28-47.
  • SCHWARZ, G. (1978). “Estimating the Dimension of a Model". Annual of Statistics, 6: 461-464.
  • SENTENA, E., (1992). Quadratic ARCH Models. A Potential Interpretation of ARCH Models, London School of Economics Financial Markets Study Group Discussion Paper.
  • SEVÜKTEKİN, M. ve NARGELEÇEKENLER, M. (2008), “ İstanbul Menkul Kıymetler Borsası’nda Getiri Volatilitesinin Modellenmesi ve Önraporlanması”. Ankara Üniversitesi SBF Dergisi, 61: 243-265.
  • SIOUROUNIS, G.D. (2002). “Modelling Volatility and Testing for Efficiency in Emerging Capital Markets: The Case of The Athens Stock Exchange”. Applied Financial Economics, 12: 47-55.
  • SOLA, M. ve DRIFFIL, J. (1994). "Testing the Term Structure of Interest Rates Using a Stationary Vector Autoregression with Regime Switching". Journal of Economic Dynamics and Control, 18: 601-628.
  • ŞAHİN, Ö., ÖNCÜ, M.A. ve SAKARYA, Ş. (2015). "BIST 100 ve Kurumsal Yönetim Endeksi Volatilitelerinin Karşılaştırmalı Analizi". C.Ü. İktisadi ve İdari Bilimler Dergisi. (16): 2, 107-126.
  • TSAY, S. R. (2002). Analysis of Financial Time Series. New York: John Wiley & Sons, Inc.
  • ZOKAIAN, J.M. (1994). “Threshold Heteroscedastic Models”. Journal Of Economic and Dynamic Control, 18: 931-55.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Şeyma Çalışkan Çavdar Bu kişi benim

Alev Dilek Aydın Bu kişi benim

Yayımlanma Tarihi 30 Temmuz 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 22 Sayı: 3

Kaynak Göster

APA Çavdar, Ş. Ç., & Aydın, A. D. (2017). BORSA ISTANBUL KURUMSAL YÖNETİM ENDEKSİ’NDE (XKURY) VOLATİLİTENİN ETKİSİ: ARCH, GARCH ve SWARCH MODELLERİ İLE BİR İNCELEME. Süleyman Demirel Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, 22(3), 697-711.