Derleme
BibTex RIS Kaynak Göster

An Overview of Drug-loaded Contact Lenses

Yıl 2025, Cilt: 16 Sayı: 3, 433 - 445, 22.12.2025
https://doi.org/10.22312/sdusbed.1573846

Öz

Objective: Within the scope of this review, contact lens types designed for the treatment of ocular diseases, different drug loading methods, and in vitro and in vivo studies performed after drug loading are examined.
Result and Discussion: Topical ocular dosage forms have numerous problems, including low bioavailability, poor patient compliance, and potential side effects. Innovative ocular drug delivery systems are being studied to overcome the limitations associated with traditional formulations. One of these systems is drug-loaded contact lenses, which prolong the duration of drug retention in the eye and reduce the occurrence of side effects. Drug-loaded contact lenses have been effectively manufactured using a variety of techniques, including dipping, molecular imprinting, supercritical fluid nanosystems, and vitamin E modification technologies. These techniques have also proved successful in extending the drug's release period. The preparation techniques, in vitro and in vivo research, and future possibilities for drug-loaded contact lenses are all evaluated in this review of the most recent developments in the treatment of ocular illnesses.

Kaynakça

  • 1. Rodrigues FSC, Campos A, Martins J, Ambrósio AF, Campos EJ. Emerging Trends in Nanomedicine for Improving Ocular Drug Delivery: Light-Responsive Nanoparticles, Mesoporous Silica Nanoparticles, and Contact Lenses. ACS Biomater Sci Eng. 2020;6(12):6587-6597. doi:10.1021/acsbiomaterials.0c01347
  • 2. Zhao L, Song J, Du Y, Ren C, Guo B, Bi H. Therapeutic applications of contact lens-based drug delivery systems in ophthalmic diseases. Drug Deliv. 2023;30(1):2219419. doi:10.1080/10717544.2023.2219419
  • 3. Polat HK, Tunçel E, Gözcü S, Turanlı Y, Karakuyu NF, Ünal S. Herbal drug delivery for ocular treatments-an updated review. Exp Eye Res. 2025;260:110629. doi: 10.1016/j.exer.2025.110629.
  • 4. Polat HK, Kurt N, Aytekin E, Bozdağ Pehlivan S, Çalış S. Novel Drug Delivery Systems to Improve the Treatment of Keratitis. J Ocul Pharmacol Ther. 2022;38(6):376-395. doi:10.1089/jop.2021.0127
  • 5. Polat, H. K., Arslan, A., Ünal, S., Haydar, M. K., Aytekin, E., Gözcü, S., Mokhtare, B. (2023). Formulation development of dual drug-loaded thermosensitive ocular in situ gel using factorial design. J. Pharm. Innov. 2023;18(2):768-788. doi:10.1007/s12247-023-09762-1
  • 6. Mutlu Z, Shams Es-Haghi S, Cakmak M. Recent Trends in Advanced Contact Lenses. Adv Healthc Mater. 2019;8(10):e1801390. doi:10.1002/adhm.201801390
  • 7. Gözcü S, Polat HK, Gültekin Y, Ünal S, Karakuyu NF, Şafak EK, Doğan O, Pezik E, Haydar MK, Aytekin E, Kurt N, Laçin BB. Formulation of hesperidin-loaded in situ gel for ocular drug delivery: a comprehensive study. J Sci Food Agric. 2024;104(10):5846-5859. doi: 10.1002/jsfa.13407.
  • 8. Xu X, Awwad S, Diaz-Gomez L, et al. 3D Printed Punctal Plugs for Controlled Ocular Drug Delivery. Pharmaceutics. 2021;13(9):1421. Published 2021 Sep 8. doi:10.3390/pharmaceutics13091421
  • 9. Jumelle C, Gholizadeh S, Annabi N, Dana R. Advances and limitations of drug delivery systems formulated as eye drops. J Control Release. 2020;321:1-22. doi:10.1016/j.jconrel.2020.01.057
  • 10. Salih AE, Elsherif M, Alam F, Yetisen AK, Butt H. Gold Nanocomposite Contact Lenses for Color Blindness Management. ACS Nano. 2021;15(3):4870-4880. doi:10.1021/acsnano.0c09657
  • 11. Zhao L, Wang H, Feng C, Song F, Du X. Preparation and Evaluation of Starch Hydrogel/Contact Lens Composites as Epigallocatechin Gallate Delivery Systems for Inhibition of Bacterial Adhesion. Front Bioeng Biotechnol. 2021;9:759303. Published 2021 Nov 16. doi:10.3389/fbioe.2021.759303
  • 12. Xu J, Xue Y, Hu G, et al. A comprehensive review on contact lens for ophthalmic drug delivery. J Control Release. 2018;281:97-118. doi:10.1016/j.jconrel.2018.05.020
  • 13. Hales RH. Gas-permeable cellulose acetate butyrate (CAB) contact lenses. Ann Ophthalmol. 1977;9(9):1085-1090.
  • 14. Bhamra TS, Tighe BJ. Mechanical properties of contact lenses: The contribution of measurement techniques and clinical feedback to 50 years of materials development. Cont Lens Anterior Eye. 2017;40(2):70-81. doi:10.1016/j.clae.2016.11.005
  • 15. Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review. J Adv Res. 2015;6(2):105-121. doi:10.1016/j.jare.2013.07.006
  • 16. Moreddu R, Vigolo D, Yetisen AK. Contact Lens Technology: From Fundamentals to Applications. Adv Healthc Mater. 2019;8(15):e1900368. doi:10.1002/adhm.201900368
  • 17. Nicolson PC, Vogt J. Soft contact lens polymers: an evolution. Biomaterials. 2001;22(24):3273-3283. doi:10.1016/s0142-9612(01)00165-x
  • 18. Dutta D, Cole N, Kumar N, Willcox MD. Broad spectrum antimicrobial activity of melimine covalently bound to contact lenses. Invest Ophthalmol Vis Sci. 2013;54(1):175-182. Published 2013 Jan 7. doi:10.1167/iovs.12-10989
  • 19. Tran NPD, Yang MC. Synthesis and Characterization of Silicone Contact Lenses Based on TRIS-DMA-NVP-HEMA Hydrogels. Polymers. 2019; 11(6):944. https://doi.org/10.3390/polym11060944
  • 20. Rad MS, Mohajeri SA. Simultaneously Load and Extended Release of Betamethasone and Ciprofloxacin from Vitamin E-Loaded Silicone-Based Soft Contact Lenses. Curr Eye Res. 2016;41(9):1185-1191. doi:10.3109/02713683.2015.1107591
  • 21. Soluri A, Hui A, Jones L. Delivery of ketotifen fumarate by commercial contact lens materials. Optom Vis Sci. 2012;89(8):1140-1149. doi:10.1097/OPX.0b013e3182639dc8
  • 22. Franco P, De Marco I. Contact Lenses as Ophthalmic Drug Delivery Systems: A Review. Polymers (Basel). 2021;13(7):1102. Published 2021 Mar 30. doi:10.3390/polym13071102
  • 23. Maulvi FA, Soni TG, Shah DO. A review on therapeutic contact lenses for ocular drug delivery. Drug Deliv. 2016;23(8):3017-3026. doi:10.3109/10717544.2016.1138342
  • 24. Karlgard CC, Jones LW, Moresoli C. Ciprofloxacin interaction with silicon-based and conventional hydrogel contact lenses. Eye Contact Lens. 2003;29(2):83-89. doi:10.1097/01.ICL.0000061756.66151.1C
  • 25. Phan CM, Subbaraman LN, Jones L. In vitro uptake and release of natamycin from conventional and silicone hydrogel contact lens materials. Eye Contact Lens. 2013;39(2):162-168. doi:10.1097/ICL.0b013e31827a7a07
  • 26. Maulvi FA, Soni TG, Shah DO. Extended release of hyaluronic acid from hydrogel contact lenses for dry eye syndrome. J Biomater Sci Polym Ed. 2015;26(15):1035-1050. doi:10.1080/09205063.2015.1072902
  • 27. Daza JHU, Righetto GM, Chaud MV, da Conceição Amaro Martins V, Lopes Baratella da Cunha Camargo I, Maria de Guzzi Plepis A. PVA/anionic collagen membranes as drug carriers of ciprofloxacin hydrochloride with sustained antibacterial activity and potential use in the treatment of ulcerative keratitis. J Biomater Appl. 2020;35(3):301-312. doi:10.1177/0885328220931733
  • 28. Maulvi FA, Soni TG, Shah DO. Effect of timolol maleate concentration on uptake and release from hydrogel contact lenses using soaking method. J Pharm Appl Sci. 2014;1(1):17-23.
  • 29. Torres-Luna C, Hu N, Fan X, et al. Extended delivery of cationic drugs from contact lenses loaded with unsaturated fatty acids. Eur J Pharm Biopharm. 2020;155:1-11. doi:10.1016/j.ejpb.2020.07.033
  • 30. García-Millán E, Koprivnik S, Otero-Espinar FJ. Drug loading optimization and extended drug delivery of corticoids from pHEMA based soft contact lenses hydrogels via chemical and microstructural modifications. Int J Pharm. 2015;487(1-2):260-269. doi:10.1016/j.ijpharm.2015.04.037
  • 31. White CJ, Byrne ME. Molecularly imprinted therapeutic contact lenses. Expert Opin Drug Deliv. 2010;7(6):765-780. doi:10.1517/17425241003770098
  • 32. Zhang X, Cao X, Qi P. Therapeutic contact lenses for ophthalmic drug delivery: major challenges. J Biomater Sci Polym Ed. 2020;31(4):549-560. doi:10.1080/09205063.2020.1712175
  • 33. Lanier OL, Christopher KG, Macoon RM, Yu Y, Sekar P, Chauhan A. Commercialization challenges for drug eluting contact lenses. Expert Opin Drug Deliv. 2020;17(8):1133-1149. doi:10.1080/17425247.2020.1787983
  • 34. Tieppo A, White CJ, Paine AC, Voyles ML, McBride MK, Byrne ME. Sustained in vivo release from imprinted therapeutic contact lenses. J Control Release. 2012;157(3):391-397. doi:10.1016/j.jconrel.2011.09.087
  • 35. Omranipour HM, Sajadi Tabassi SA, Kowsari R, Rad MS, Mohajeri SA. Brimonidine Imprinted Hydrogels and Evaluation of Their Binding and Releasing Properties as New Ocular Drug Delivery Systems. Curr Drug Deliv. 2015;12(6):717-725. doi:10.2174/1567201812666150316110838
  • 36. Anirudhan TS, Nair AS, Parvathy J. Extended wear therapeutic contact lens fabricated from timolol imprinted carboxymethyl chitosan-g-hydroxy ethyl methacrylate-g-poly acrylamide as a onetime medication for glaucoma. Eur J Pharm Biopharm. 2016;109:61-71. doi:10.1016/j.ejpb.2016.09.010
  • 37. Varela-Garcia A, Gomez-Amoza JL, Concheiro A, Alvarez-Lorenzo C. Imprinted Contact Lenses for Ocular Administration of Antiviral Drugs. Polymers (Basel). 2020;12(9):2026. Published 2020 Sep 4. doi:10.3390/polym12092026
  • 38. DiPasquale SA, Uricoli B, DiCerbo MC, Brown TL, Byrne ME. Controlled Release of Multiple Therapeutics From Silicone Hydrogel Contact Lenses for Post-Cataract/Post-Refractive Surgery and Uveitis Treatment. Transl Vis Sci Technol. 2021;10(14):5. doi:10.1167/tvst.10.14.5
  • 39. Pereira-da-Mota AF, Vivero-Lopez M, Serramito M, et al. Contact lenses for pravastatin delivery to eye segments: Design and in vitro-in vivo correlations. J Control Release. 2022;348:431-443. doi:10.1016/j.jconrel.2022.06.001
  • 40. Jung HJ, Chauhan A. Temperature sensitive contact lenses for triggered ophthalmic drug delivery. Biomaterials. 2012;33(7):2289-2300. doi:10.1016/j.biomaterials.2011.10.076
  • 41. Nasr FH, Khoee S, Dehghan MM, Chaleshtori SS, Shafiee A. Preparation and Evaluation of Contact Lenses Embedded with Polycaprolactone-Based Nanoparticles for Ocular Drug Delivery. Biomacromolecules. 2016;17(2):485-495. doi:10.1021/acs.biomac.5b01387
  • 42. Maulvi FA, Patil RJ, Desai AR, et al. Effect of gold nanoparticles on timolol uptake and its release kinetics from contact lenses: In vitro and in vivo evaluation. Acta Biomater. 2019;86:350-362. doi:10.1016/j.actbio.2019.01.004
  • 43. Maulvi FA, Lakdawala DH, Shaikh AA, et al. In vitro and in vivo evaluation of novel implantation technology in hydrogel contact lenses for controlled drug delivery. J Control Release. 2016;226:47-56. doi:10.1016/j.jconrel.2016.02.012
  • 44. Huang JF, Zhong J, Chen GP, et al. A Hydrogel-Based Hybrid Theranostic Contact Lens for Fungal Keratitis. ACS Nano. 2016;10(7):6464-6473. doi:10.1021/acsnano.6b00601
  • 45. Akbari E, Imani R, Shokrollahi P, Heidari Keshel S. Preparation of Nanoparticle-Containing Ring-Implanted Poly(Vinyl Alcohol) Contact Lens for Sustained Release of Hyaluronic Acid. Macromol Biosci. 2021;21(7):e2100043. doi:10.1002/mabi.202100043
  • 46. Xu J, Ge Y, Bu R, et al. Co-delivery of latanoprost and timolol from micelles-laden contact lenses for the treatment of glaucoma. J Control Release. 2019;305:18-28. doi:10.1016/j.jconrel.2019.05.025
  • 47. Mun J, Mok JW, Jeong S, et al. Drug-eluting contact lens containing cyclosporine-loaded cholesterol-hyaluronate micelles for dry eye syndrome. RSC advances. 2019;9(29):16578–16585.
  • 48. Maulvi FA, Mangukiya MA, Patel PA, et al. Extended release of ketotifen from silica shell nanoparticle-laden hydrogel contact lenses: in vitro and in vivo evaluation. J Mater Sci Mater Med. 2016;27(6):113. doi:10.1007/s10856-016-5724-3
  • 49. Jain RL, Shastri JP. Study of ocular drug delivery system using drug-loaded liposomes. Int J Pharm Investig. 2011;1(1):35-41. doi:10.4103/2230-973X.76727
  • 50. Danion A, Arsenault I, Vermette P. Antibacterial activity of contact lenses bearing surface-immobilized layers of intact liposomes loaded with levofloxacin. J Pharm Sci. 2007;96(9):2350-2363. doi:10.1002/jps.20871
  • 51. Yang H, Zhao M, Xing D, et al. Contact lens as an emerging platform for ophthalmic drug delivery: A systematic review. Asian J Pharm Sci. 2023;18(5):100847. doi:10.1016/j.ajps.2023.100847
  • 52. Liu Z, Kompella UB, Chauhan A. Gold nanoparticle synthesis in contact lenses for drug-less ocular cystinosis treatment. Eur J Pharm Biopharm. 2021;165:271-278. doi:10.1016/j.ejpb.2021.05.019
  • 53. Rad MS, Sajadi Tabassi SA, Moghadam MH, Mohajeri SA. Controlled release of betamethasone from vitamin E-loaded silicone-based soft contact lenses. Pharm Dev Technol. 2016;21(7):894-899. doi:10.3109/10837450.2015.1078355
  • 54. Shayani Rad M, Mohajeri SA. Extended Ciprofloxacin Release Using Vitamin E Diffusion Barrier From Commercial Silicone-Based Soft Contact Lenses. Eye Contact Lens. 2017;43(2):103-109. doi:10.1097/ICL.0000000000000245
  • 55. Hsu KH, Carbia BE, Plummer C, Chauhan A. Dual drug delivery from vitamin E loaded contact lenses for glaucoma therapy. Eur J Pharm Biopharm. 2015;94:312-321. doi:10.1016/j.ejpb.2015.06.001
  • 56. Ubani-Ukoma U, Gibson D, Schultz G, Silva BO, Chauhan A. Evaluating the potential of drug eluting contact lenses for treatment of bacterial keratitis using an ex vivo corneal model. Int J Pharm. 2019;565:499-508. doi:10.1016/j.ijpharm.2019.05.031
  • 57. Braga ME, Costa VP, Pereira MJ, et al. Effects of operational conditions on the supercritical solvent impregnation of acetazolamide in Balafilcon A commercial contact lenses. Int J Pharm. 2011;420(2):231-243. doi:10.1016/j.ijpharm.2011.08.040
  • 58. Ongkasin K, Masmoudi Y, Wertheimer CM, Hillenmayer A, Eibl-Lindner KH, Badens E. Supercritical fluid technology for the development of innovative ophthalmic medical devices: Drug loaded intraocular lenses to mitigate posterior capsule opacification. Eur J Pharm Biopharm. 2020;149:248-256. doi:10.1016/j.ejpb.2020.02.011
  • 59. Duarte AR, Simplicio AL, Vega-González A, et al. Impregnation of an intraocular lens for ophthalmic drug delivery. Curr Drug Deliv. 2008;5(2):102-107. doi:10.2174/156720108783954851
  • 60. Masmoudi Y, Azzouk LB, Forzano O, et al. Supercritical impregnation of intraocular lenses. The Journal of Supercritical Fluids. 2011;60:98-105.
  • 61. García-Fernández MJ, Tabary N, Martel B, et al. Poly-(cyclo)dextrins as ethoxzolamide carriers in ophthalmic solutions and in contact lenses. Carbohydr Polym. 2013;98(2):1343-1352. doi:10.1016/j.carbpol.2013.08.003
  • 62. Li R, Guan X, Lin X, et al. Poly(2-hydroxyethyl methacrylate)/β-cyclodextrin-hyaluronan contact lens with tear protein adsorption resistance and sustained drug delivery for ophthalmic diseases. Acta Biomater. 2020;110:105-118. doi:10.1016/j.actbio.2020.04.002
  • 63. Young MR. "Use google's smart contact lens for measuring glucose levels in tears to enhance executive and non-executive functions in humans" U.S. Patent Application No. 2016;14/545,441.
  • 64. Deng M, Song G, Zhong K, et al. Wearable fluorescent contact lenses for monitoring glucose via a smartphone. Sensors and Actuators B: Chemical. 2022;352:131067.
  • 65. Keum DH, Kim SK, Koo J, et al. Wireless smart contact lens for diabetic diagnosis and therapy. Sci Adv. 2020;6(17):eaba3252. Published 2020 Apr 24. doi:10.1126/sciadv.aba3252
  • 66. Kim TY, Mok JW, Hong SH, et al. Wireless theranostic smart contact lens for monitoring and control of intraocular pressure in glaucoma. Nat Commun. 2022;13(1):6801. Published 2022 Nov 10. doi:10.1038/s41467-022-34597-8
  • 67. Maulvi FA, Choksi HH, Desai AR, et al. pH triggered controlled drug delivery from contact lenses: Addressing the challenges of drug leaching during sterilization and storage. Colloids Surf B Biointerfaces. 2017;157:72-82. doi:10.1016/j.colsurfb.2017.05.064
  • 68. Galante R, Oliveira AS, Topete A, et al. Drug-eluting silicone hydrogel for therapeutic contact lenses: Impact of sterilization methods on the system performance. Colloids Surf B Biointerfaces. 2018;161:537-546. doi:10.1016/j.colsurfb.2017.11.021
  • 69. Desai AR , Maulvi FA , Pandya MM , et al. Co-delivery of timolol and hyaluronic acid from semi-circular ring-implanted contact lenses for the treatment of glaucoma: in vitro and in vivo evaluation. Biomater Sci. 2018;6(6):1580-1591. doi:10.1039/c8bm00212f
  • 70. Maulvi FA, Singhania SS, Desai AR, et al. Contact lenses with dual drug delivery for the treatment of bacterial conjunctivitis. Int J Pharm. 2018;548(1):139-150. doi:10.1016/j.ijpharm.2018.06.059
  • 71. Fan X, Torres-Luna C, Azadi M, et al. Evaluation of commercial soft contact lenses for ocular drug delivery: A review. Acta Biomater. 2020;115:60-74. doi:10.1016/j.actbio.2020.08.025
  • 72. Novack GD. Ophthalmic drug delivery: development and regulatory considerations. Clin Pharmacol Ther. 2009;85(5):539-543. doi:10.1038/clpt.2008.297

İlaç Yüklü Kontakt Lenslere Genel Bakış

Yıl 2025, Cilt: 16 Sayı: 3, 433 - 445, 22.12.2025
https://doi.org/10.22312/sdusbed.1573846

Öz

Amaç: Bu derleme kapsamında oküler hastalıkaların tedavisi için tasarlanan kontakt lens tipleri, bu kontakt lenslere ilaç yükleme yöntemleri ve ilaç yüklemesi sonrası yapılan in vitro ve in vivo çalışmalar incelenmiştir.
Sonuç ve Tartışma: Topikal oküler ilaçların; düşük biyoyararlanım, zayıf hasta uyuncu ve yüksek yan etki oluşma ihtimali gibi pek çok sorunu bulunmaktadır. Klasik formülasyonlarla ilişkili sınırlamaların üstesinden gelmek için yeni oküler ilaç taşıyıcı sistemler geliştirmek üzere çalışmalar yapılmaktadır. Bu sistemlerden birisi de ilaçların gözde kalış süresini uzatan, yan etki oluşumunu azaltan bir sistem olan ilaç yüklü kontakt lenslerdir. İlaç yüklü kontakt lenslere; daldırma, moleküler baskılama, nanosistemler, E vitamini değişimi ve süperkritik sıvı teknolojisi gibi çeşitli yöntemler başarıyla uygulanmış ve ilaçların salım süresi uzatılmıştır. Bu yayında, ilaç yüklü kontakt lenslerin hazırlanma yöntemleri, yapılan in vitro ve in vivo çalışamaları ve geleceğe yönelik beklentiler de dahil olmak üzere oküler hastalıkların tedavisindeki son gelişmeler değerlendirilmektedir.

Kaynakça

  • 1. Rodrigues FSC, Campos A, Martins J, Ambrósio AF, Campos EJ. Emerging Trends in Nanomedicine for Improving Ocular Drug Delivery: Light-Responsive Nanoparticles, Mesoporous Silica Nanoparticles, and Contact Lenses. ACS Biomater Sci Eng. 2020;6(12):6587-6597. doi:10.1021/acsbiomaterials.0c01347
  • 2. Zhao L, Song J, Du Y, Ren C, Guo B, Bi H. Therapeutic applications of contact lens-based drug delivery systems in ophthalmic diseases. Drug Deliv. 2023;30(1):2219419. doi:10.1080/10717544.2023.2219419
  • 3. Polat HK, Tunçel E, Gözcü S, Turanlı Y, Karakuyu NF, Ünal S. Herbal drug delivery for ocular treatments-an updated review. Exp Eye Res. 2025;260:110629. doi: 10.1016/j.exer.2025.110629.
  • 4. Polat HK, Kurt N, Aytekin E, Bozdağ Pehlivan S, Çalış S. Novel Drug Delivery Systems to Improve the Treatment of Keratitis. J Ocul Pharmacol Ther. 2022;38(6):376-395. doi:10.1089/jop.2021.0127
  • 5. Polat, H. K., Arslan, A., Ünal, S., Haydar, M. K., Aytekin, E., Gözcü, S., Mokhtare, B. (2023). Formulation development of dual drug-loaded thermosensitive ocular in situ gel using factorial design. J. Pharm. Innov. 2023;18(2):768-788. doi:10.1007/s12247-023-09762-1
  • 6. Mutlu Z, Shams Es-Haghi S, Cakmak M. Recent Trends in Advanced Contact Lenses. Adv Healthc Mater. 2019;8(10):e1801390. doi:10.1002/adhm.201801390
  • 7. Gözcü S, Polat HK, Gültekin Y, Ünal S, Karakuyu NF, Şafak EK, Doğan O, Pezik E, Haydar MK, Aytekin E, Kurt N, Laçin BB. Formulation of hesperidin-loaded in situ gel for ocular drug delivery: a comprehensive study. J Sci Food Agric. 2024;104(10):5846-5859. doi: 10.1002/jsfa.13407.
  • 8. Xu X, Awwad S, Diaz-Gomez L, et al. 3D Printed Punctal Plugs for Controlled Ocular Drug Delivery. Pharmaceutics. 2021;13(9):1421. Published 2021 Sep 8. doi:10.3390/pharmaceutics13091421
  • 9. Jumelle C, Gholizadeh S, Annabi N, Dana R. Advances and limitations of drug delivery systems formulated as eye drops. J Control Release. 2020;321:1-22. doi:10.1016/j.jconrel.2020.01.057
  • 10. Salih AE, Elsherif M, Alam F, Yetisen AK, Butt H. Gold Nanocomposite Contact Lenses for Color Blindness Management. ACS Nano. 2021;15(3):4870-4880. doi:10.1021/acsnano.0c09657
  • 11. Zhao L, Wang H, Feng C, Song F, Du X. Preparation and Evaluation of Starch Hydrogel/Contact Lens Composites as Epigallocatechin Gallate Delivery Systems for Inhibition of Bacterial Adhesion. Front Bioeng Biotechnol. 2021;9:759303. Published 2021 Nov 16. doi:10.3389/fbioe.2021.759303
  • 12. Xu J, Xue Y, Hu G, et al. A comprehensive review on contact lens for ophthalmic drug delivery. J Control Release. 2018;281:97-118. doi:10.1016/j.jconrel.2018.05.020
  • 13. Hales RH. Gas-permeable cellulose acetate butyrate (CAB) contact lenses. Ann Ophthalmol. 1977;9(9):1085-1090.
  • 14. Bhamra TS, Tighe BJ. Mechanical properties of contact lenses: The contribution of measurement techniques and clinical feedback to 50 years of materials development. Cont Lens Anterior Eye. 2017;40(2):70-81. doi:10.1016/j.clae.2016.11.005
  • 15. Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review. J Adv Res. 2015;6(2):105-121. doi:10.1016/j.jare.2013.07.006
  • 16. Moreddu R, Vigolo D, Yetisen AK. Contact Lens Technology: From Fundamentals to Applications. Adv Healthc Mater. 2019;8(15):e1900368. doi:10.1002/adhm.201900368
  • 17. Nicolson PC, Vogt J. Soft contact lens polymers: an evolution. Biomaterials. 2001;22(24):3273-3283. doi:10.1016/s0142-9612(01)00165-x
  • 18. Dutta D, Cole N, Kumar N, Willcox MD. Broad spectrum antimicrobial activity of melimine covalently bound to contact lenses. Invest Ophthalmol Vis Sci. 2013;54(1):175-182. Published 2013 Jan 7. doi:10.1167/iovs.12-10989
  • 19. Tran NPD, Yang MC. Synthesis and Characterization of Silicone Contact Lenses Based on TRIS-DMA-NVP-HEMA Hydrogels. Polymers. 2019; 11(6):944. https://doi.org/10.3390/polym11060944
  • 20. Rad MS, Mohajeri SA. Simultaneously Load and Extended Release of Betamethasone and Ciprofloxacin from Vitamin E-Loaded Silicone-Based Soft Contact Lenses. Curr Eye Res. 2016;41(9):1185-1191. doi:10.3109/02713683.2015.1107591
  • 21. Soluri A, Hui A, Jones L. Delivery of ketotifen fumarate by commercial contact lens materials. Optom Vis Sci. 2012;89(8):1140-1149. doi:10.1097/OPX.0b013e3182639dc8
  • 22. Franco P, De Marco I. Contact Lenses as Ophthalmic Drug Delivery Systems: A Review. Polymers (Basel). 2021;13(7):1102. Published 2021 Mar 30. doi:10.3390/polym13071102
  • 23. Maulvi FA, Soni TG, Shah DO. A review on therapeutic contact lenses for ocular drug delivery. Drug Deliv. 2016;23(8):3017-3026. doi:10.3109/10717544.2016.1138342
  • 24. Karlgard CC, Jones LW, Moresoli C. Ciprofloxacin interaction with silicon-based and conventional hydrogel contact lenses. Eye Contact Lens. 2003;29(2):83-89. doi:10.1097/01.ICL.0000061756.66151.1C
  • 25. Phan CM, Subbaraman LN, Jones L. In vitro uptake and release of natamycin from conventional and silicone hydrogel contact lens materials. Eye Contact Lens. 2013;39(2):162-168. doi:10.1097/ICL.0b013e31827a7a07
  • 26. Maulvi FA, Soni TG, Shah DO. Extended release of hyaluronic acid from hydrogel contact lenses for dry eye syndrome. J Biomater Sci Polym Ed. 2015;26(15):1035-1050. doi:10.1080/09205063.2015.1072902
  • 27. Daza JHU, Righetto GM, Chaud MV, da Conceição Amaro Martins V, Lopes Baratella da Cunha Camargo I, Maria de Guzzi Plepis A. PVA/anionic collagen membranes as drug carriers of ciprofloxacin hydrochloride with sustained antibacterial activity and potential use in the treatment of ulcerative keratitis. J Biomater Appl. 2020;35(3):301-312. doi:10.1177/0885328220931733
  • 28. Maulvi FA, Soni TG, Shah DO. Effect of timolol maleate concentration on uptake and release from hydrogel contact lenses using soaking method. J Pharm Appl Sci. 2014;1(1):17-23.
  • 29. Torres-Luna C, Hu N, Fan X, et al. Extended delivery of cationic drugs from contact lenses loaded with unsaturated fatty acids. Eur J Pharm Biopharm. 2020;155:1-11. doi:10.1016/j.ejpb.2020.07.033
  • 30. García-Millán E, Koprivnik S, Otero-Espinar FJ. Drug loading optimization and extended drug delivery of corticoids from pHEMA based soft contact lenses hydrogels via chemical and microstructural modifications. Int J Pharm. 2015;487(1-2):260-269. doi:10.1016/j.ijpharm.2015.04.037
  • 31. White CJ, Byrne ME. Molecularly imprinted therapeutic contact lenses. Expert Opin Drug Deliv. 2010;7(6):765-780. doi:10.1517/17425241003770098
  • 32. Zhang X, Cao X, Qi P. Therapeutic contact lenses for ophthalmic drug delivery: major challenges. J Biomater Sci Polym Ed. 2020;31(4):549-560. doi:10.1080/09205063.2020.1712175
  • 33. Lanier OL, Christopher KG, Macoon RM, Yu Y, Sekar P, Chauhan A. Commercialization challenges for drug eluting contact lenses. Expert Opin Drug Deliv. 2020;17(8):1133-1149. doi:10.1080/17425247.2020.1787983
  • 34. Tieppo A, White CJ, Paine AC, Voyles ML, McBride MK, Byrne ME. Sustained in vivo release from imprinted therapeutic contact lenses. J Control Release. 2012;157(3):391-397. doi:10.1016/j.jconrel.2011.09.087
  • 35. Omranipour HM, Sajadi Tabassi SA, Kowsari R, Rad MS, Mohajeri SA. Brimonidine Imprinted Hydrogels and Evaluation of Their Binding and Releasing Properties as New Ocular Drug Delivery Systems. Curr Drug Deliv. 2015;12(6):717-725. doi:10.2174/1567201812666150316110838
  • 36. Anirudhan TS, Nair AS, Parvathy J. Extended wear therapeutic contact lens fabricated from timolol imprinted carboxymethyl chitosan-g-hydroxy ethyl methacrylate-g-poly acrylamide as a onetime medication for glaucoma. Eur J Pharm Biopharm. 2016;109:61-71. doi:10.1016/j.ejpb.2016.09.010
  • 37. Varela-Garcia A, Gomez-Amoza JL, Concheiro A, Alvarez-Lorenzo C. Imprinted Contact Lenses for Ocular Administration of Antiviral Drugs. Polymers (Basel). 2020;12(9):2026. Published 2020 Sep 4. doi:10.3390/polym12092026
  • 38. DiPasquale SA, Uricoli B, DiCerbo MC, Brown TL, Byrne ME. Controlled Release of Multiple Therapeutics From Silicone Hydrogel Contact Lenses for Post-Cataract/Post-Refractive Surgery and Uveitis Treatment. Transl Vis Sci Technol. 2021;10(14):5. doi:10.1167/tvst.10.14.5
  • 39. Pereira-da-Mota AF, Vivero-Lopez M, Serramito M, et al. Contact lenses for pravastatin delivery to eye segments: Design and in vitro-in vivo correlations. J Control Release. 2022;348:431-443. doi:10.1016/j.jconrel.2022.06.001
  • 40. Jung HJ, Chauhan A. Temperature sensitive contact lenses for triggered ophthalmic drug delivery. Biomaterials. 2012;33(7):2289-2300. doi:10.1016/j.biomaterials.2011.10.076
  • 41. Nasr FH, Khoee S, Dehghan MM, Chaleshtori SS, Shafiee A. Preparation and Evaluation of Contact Lenses Embedded with Polycaprolactone-Based Nanoparticles for Ocular Drug Delivery. Biomacromolecules. 2016;17(2):485-495. doi:10.1021/acs.biomac.5b01387
  • 42. Maulvi FA, Patil RJ, Desai AR, et al. Effect of gold nanoparticles on timolol uptake and its release kinetics from contact lenses: In vitro and in vivo evaluation. Acta Biomater. 2019;86:350-362. doi:10.1016/j.actbio.2019.01.004
  • 43. Maulvi FA, Lakdawala DH, Shaikh AA, et al. In vitro and in vivo evaluation of novel implantation technology in hydrogel contact lenses for controlled drug delivery. J Control Release. 2016;226:47-56. doi:10.1016/j.jconrel.2016.02.012
  • 44. Huang JF, Zhong J, Chen GP, et al. A Hydrogel-Based Hybrid Theranostic Contact Lens for Fungal Keratitis. ACS Nano. 2016;10(7):6464-6473. doi:10.1021/acsnano.6b00601
  • 45. Akbari E, Imani R, Shokrollahi P, Heidari Keshel S. Preparation of Nanoparticle-Containing Ring-Implanted Poly(Vinyl Alcohol) Contact Lens for Sustained Release of Hyaluronic Acid. Macromol Biosci. 2021;21(7):e2100043. doi:10.1002/mabi.202100043
  • 46. Xu J, Ge Y, Bu R, et al. Co-delivery of latanoprost and timolol from micelles-laden contact lenses for the treatment of glaucoma. J Control Release. 2019;305:18-28. doi:10.1016/j.jconrel.2019.05.025
  • 47. Mun J, Mok JW, Jeong S, et al. Drug-eluting contact lens containing cyclosporine-loaded cholesterol-hyaluronate micelles for dry eye syndrome. RSC advances. 2019;9(29):16578–16585.
  • 48. Maulvi FA, Mangukiya MA, Patel PA, et al. Extended release of ketotifen from silica shell nanoparticle-laden hydrogel contact lenses: in vitro and in vivo evaluation. J Mater Sci Mater Med. 2016;27(6):113. doi:10.1007/s10856-016-5724-3
  • 49. Jain RL, Shastri JP. Study of ocular drug delivery system using drug-loaded liposomes. Int J Pharm Investig. 2011;1(1):35-41. doi:10.4103/2230-973X.76727
  • 50. Danion A, Arsenault I, Vermette P. Antibacterial activity of contact lenses bearing surface-immobilized layers of intact liposomes loaded with levofloxacin. J Pharm Sci. 2007;96(9):2350-2363. doi:10.1002/jps.20871
  • 51. Yang H, Zhao M, Xing D, et al. Contact lens as an emerging platform for ophthalmic drug delivery: A systematic review. Asian J Pharm Sci. 2023;18(5):100847. doi:10.1016/j.ajps.2023.100847
  • 52. Liu Z, Kompella UB, Chauhan A. Gold nanoparticle synthesis in contact lenses for drug-less ocular cystinosis treatment. Eur J Pharm Biopharm. 2021;165:271-278. doi:10.1016/j.ejpb.2021.05.019
  • 53. Rad MS, Sajadi Tabassi SA, Moghadam MH, Mohajeri SA. Controlled release of betamethasone from vitamin E-loaded silicone-based soft contact lenses. Pharm Dev Technol. 2016;21(7):894-899. doi:10.3109/10837450.2015.1078355
  • 54. Shayani Rad M, Mohajeri SA. Extended Ciprofloxacin Release Using Vitamin E Diffusion Barrier From Commercial Silicone-Based Soft Contact Lenses. Eye Contact Lens. 2017;43(2):103-109. doi:10.1097/ICL.0000000000000245
  • 55. Hsu KH, Carbia BE, Plummer C, Chauhan A. Dual drug delivery from vitamin E loaded contact lenses for glaucoma therapy. Eur J Pharm Biopharm. 2015;94:312-321. doi:10.1016/j.ejpb.2015.06.001
  • 56. Ubani-Ukoma U, Gibson D, Schultz G, Silva BO, Chauhan A. Evaluating the potential of drug eluting contact lenses for treatment of bacterial keratitis using an ex vivo corneal model. Int J Pharm. 2019;565:499-508. doi:10.1016/j.ijpharm.2019.05.031
  • 57. Braga ME, Costa VP, Pereira MJ, et al. Effects of operational conditions on the supercritical solvent impregnation of acetazolamide in Balafilcon A commercial contact lenses. Int J Pharm. 2011;420(2):231-243. doi:10.1016/j.ijpharm.2011.08.040
  • 58. Ongkasin K, Masmoudi Y, Wertheimer CM, Hillenmayer A, Eibl-Lindner KH, Badens E. Supercritical fluid technology for the development of innovative ophthalmic medical devices: Drug loaded intraocular lenses to mitigate posterior capsule opacification. Eur J Pharm Biopharm. 2020;149:248-256. doi:10.1016/j.ejpb.2020.02.011
  • 59. Duarte AR, Simplicio AL, Vega-González A, et al. Impregnation of an intraocular lens for ophthalmic drug delivery. Curr Drug Deliv. 2008;5(2):102-107. doi:10.2174/156720108783954851
  • 60. Masmoudi Y, Azzouk LB, Forzano O, et al. Supercritical impregnation of intraocular lenses. The Journal of Supercritical Fluids. 2011;60:98-105.
  • 61. García-Fernández MJ, Tabary N, Martel B, et al. Poly-(cyclo)dextrins as ethoxzolamide carriers in ophthalmic solutions and in contact lenses. Carbohydr Polym. 2013;98(2):1343-1352. doi:10.1016/j.carbpol.2013.08.003
  • 62. Li R, Guan X, Lin X, et al. Poly(2-hydroxyethyl methacrylate)/β-cyclodextrin-hyaluronan contact lens with tear protein adsorption resistance and sustained drug delivery for ophthalmic diseases. Acta Biomater. 2020;110:105-118. doi:10.1016/j.actbio.2020.04.002
  • 63. Young MR. "Use google's smart contact lens for measuring glucose levels in tears to enhance executive and non-executive functions in humans" U.S. Patent Application No. 2016;14/545,441.
  • 64. Deng M, Song G, Zhong K, et al. Wearable fluorescent contact lenses for monitoring glucose via a smartphone. Sensors and Actuators B: Chemical. 2022;352:131067.
  • 65. Keum DH, Kim SK, Koo J, et al. Wireless smart contact lens for diabetic diagnosis and therapy. Sci Adv. 2020;6(17):eaba3252. Published 2020 Apr 24. doi:10.1126/sciadv.aba3252
  • 66. Kim TY, Mok JW, Hong SH, et al. Wireless theranostic smart contact lens for monitoring and control of intraocular pressure in glaucoma. Nat Commun. 2022;13(1):6801. Published 2022 Nov 10. doi:10.1038/s41467-022-34597-8
  • 67. Maulvi FA, Choksi HH, Desai AR, et al. pH triggered controlled drug delivery from contact lenses: Addressing the challenges of drug leaching during sterilization and storage. Colloids Surf B Biointerfaces. 2017;157:72-82. doi:10.1016/j.colsurfb.2017.05.064
  • 68. Galante R, Oliveira AS, Topete A, et al. Drug-eluting silicone hydrogel for therapeutic contact lenses: Impact of sterilization methods on the system performance. Colloids Surf B Biointerfaces. 2018;161:537-546. doi:10.1016/j.colsurfb.2017.11.021
  • 69. Desai AR , Maulvi FA , Pandya MM , et al. Co-delivery of timolol and hyaluronic acid from semi-circular ring-implanted contact lenses for the treatment of glaucoma: in vitro and in vivo evaluation. Biomater Sci. 2018;6(6):1580-1591. doi:10.1039/c8bm00212f
  • 70. Maulvi FA, Singhania SS, Desai AR, et al. Contact lenses with dual drug delivery for the treatment of bacterial conjunctivitis. Int J Pharm. 2018;548(1):139-150. doi:10.1016/j.ijpharm.2018.06.059
  • 71. Fan X, Torres-Luna C, Azadi M, et al. Evaluation of commercial soft contact lenses for ocular drug delivery: A review. Acta Biomater. 2020;115:60-74. doi:10.1016/j.actbio.2020.08.025
  • 72. Novack GD. Ophthalmic drug delivery: development and regulatory considerations. Clin Pharmacol Ther. 2009;85(5):539-543. doi:10.1038/clpt.2008.297
Toplam 72 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İlaç Dağıtım Teknolojileri
Bölüm Derleme
Yazarlar

Heybet Kerem Polat 0000-0001-5006-3091

Nasıf Fatih Karakuyu 0000-0002-2249-4668

Gönderilme Tarihi 25 Ekim 2024
Kabul Tarihi 12 Mart 2025
Yayımlanma Tarihi 22 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 16 Sayı: 3

Kaynak Göster

Vancouver Polat HK, Karakuyu NF. An Overview of Drug-loaded Contact Lenses. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi. 2025;16(3):433-45.

CC

Creative Commons Attribution 4.0 International License

Atıf gereklidir, ticari olmayan amaçlarla kullanılabilir ve değişiklik yapılarak türev eser üretilemez.