Araştırma Makalesi
BibTex RIS Kaynak Göster

Futbolcularda Alt Ekstremite Gücü İle Kas Hasarı Arasındaki İlişkinin İncelenmesi

Yıl 2025, Cilt: 16 Sayı: 3, 397 - 407, 22.12.2025
https://doi.org/10.22312/sdusbed.1684052

Öz

Bu çalışmanın amacı, birim antrenmanın ardından oluşan kas hasarının alt ekstremite gücüyle ilgisinin olup olmadığını belirlemektir. Bu araştırmaya 21 erkek amatör futbolcu (yaş: 21.63 ±1,12 yıl, boy: 179.25 ± 5.78 cm, kilo: 73.74± 9.14 kg, vücut kütlesi indeksi (VKİ): 22.93 ± 2.55 kg/m2 ve antrenman yaşı: 9.47±1.89 yıl) gönüllü olarak katılmıştır. Futbolculara squat, bacak kuvveti leg press ve leg curll kuvveti ölçümleri yapıldı. Antrenmandan önce, sonra, 24 ve 72 saat sonra futbolculardan alınan kanlardan kas hasarı belirteçleri olan Lactate Dehydrogenase (LDH), Creatine Kinase (CK), Aspartate Aminotransferase (AST) ve Tropinin T (TnT) değerleri, gruplaması yapılan alt ekstremite gücü değerleri ile zamansal olarak karşılaştırıldı. Yapılan biyokimya ölçümleri karşılaştırıldı ve tekrarlı ölçümler üzerinde anlamlı etkiye sahip egzersiz sonuçları saptanmaya çalışıldı. LDH ölçümleri antreman öncesi ve sonrasında benzer bulunurken 24 ve 72.saatlerde anlamlı düzeyde yüksek bulundu (p=0,003). LDH değişimleri üzerinde bacak kuvveti, leg curl, leg press ve squat egzersiz ölçümleri anlamlı etkiye sahip bulunmadı. AST ölçüm değerleri egzersiz öncesi ve hemen sonrası birbirine yakın bulunurken 72.saatte anlamlı düzeyde yüksek izlendi (p=0,001). Ancak, yapılan egzersizlere ait ölçüm sonuçlarının anlamlı etkisi bulunmadı. CK değerleri ortalama olarak ilerleyen saatlerde artış gösterse de istatistiksel olarak anlamlı bulunmadı. Ayrıca, yapılan egzersizlere ait ölçüm sonuçlarının da anlamlı etkiye sahip olmadığı gözlendi. Troponin değerlerinde ilerleyen sürelerde bir artış gözlendi ancak istatistiksel olarak anlamlı bulunmadı. Egzersiz ölçüm sonuçları anlamlı etkiye sahip bulunmadı, ancak bacak kuvveti ve squat sonuçlarının etkisi anlamlılığa yakın bulundu. Sonuç olarak, futbolda alt ekstremite gücü ile kas hasarı arasında anlamlı bir ilişkinin olmadığı anlaşılmakta fakat doğrulamak için daha fazla araştırmaya ihtiyaç vardır.

Kaynakça

  • 1. Lehance C, Binet J, Bury T, Croisier JL. Muscular strength, functional performances and injury risk in professional and junior elite soccer players. Scand J Med Sci Sports. 2009;19(2):243-51.
  • 2. Siff MC. Biomechanical foundations of strength and power training. In: Zatsiorsky VM, editor. Biomechanics in sport: performance enhancement and injury prevention. Oxford: Blackwell Science; 2000. p. 103-39.
  • 3. Friden J, Lieber RL. Eccentric exercise‐induced injuries to contractile and cytoskeletal muscle fibre components. Acta Physiol Scand. 2001;171(3):321-6.
  • 4. Warren GL, Lowe DA, Armstrong RB. Measurement tools used in the study of eccentric contraction-induced injury. Sports Med. 1999;27(1):43-59.
  • 5. Mair SD, Seaber AV, Glisson RR, Garrett WE Jr. The role of fatigue in susceptibility to acute muscle strain injury. Am J Sports Med. 1996;24(2):137-43.
  • 6. Taylor DC, Dalton JD Jr, Seaber AV, Garrett WE Jr. Experimental muscle strain injury: early functional and structural deficits and the increased risk for reinjury. Am J Sports Med. 1993;21(2):190-4.
  • 7. Paasuke M, Ereline J, Gapeyeva H. Knee extension strength and vertical jumping performance in nordic combined athletes. J Sports Med Phys Fitness. 2001;41(3):354.
  • 8. Zakas A, Mandroukas K, Vamvakoudis E, Christoulas K, Aggelopoulou N. Peak torque of quadriceps and hamstring muscles in basketball and soccer players of different divisions. J Sports Med Phys Fitness. 1995;35(3):199-205.
  • 9. Croisier JL, Ganteaume S, Ferret JM. Preseason isokinetic intervention as a preventive strategy for hamstring injury in professional soccer players. Br J Sports Med. 2005;39(6):379.
  • 10. Stølen T, Chamari K, Castagna C, Wisløff U. Physiology of soccer. Sports Med. 2005;35(6):501-36.
  • 11. Tsepis E, Vagenas G, Ristanis S, Georgoulis AD. Thigh muscle weakness in ACL-deficient knees persists without structured rehabilitation. Clin Orthop Relat Res. 2006;450:211-8.
  • 12. Le Gall F, Carling C, Reilly T, Vandewalle H, Church J, Rochcongar P. Incidence of injuries in elite French youth soccer players: a 10-season study. Am J Sports Med. 2006;34(6):928-38.
  • 13. Papaiakovou G, Giannakos A, Michailidis C, Patikas D, Bassa E, Kalopisis V, et al. The effect of chronological age and gender on the development of sprint performance during childhood and puberty. J Strength Cond Res. 2009;23(9):2568-73.
  • 14. Croisier JL, Ganteaume S, Binet J, Genty M, Ferret JM. Strength imbalances and prevention of hamstring injury in professional soccer players: a prospective study. Am J Sports Med. 2008;36(8):1469-75.
  • 15. Ispirlidis I, Fatouros IG, Jamurtas AZ, Nikolaidis MG, Michailidis I, Douroudos I, et al. Time-course of changes in inflammatory and performance responses following a soccer game. Clin J Sport Med. 2008;18(5):423-31.
  • 16. Zainuddin Z, Newton M, Sacco P, Nosaka K. Effects of massage on delayed-onset muscle soreness, swelling, and recovery of muscle function. J Athl Train. 2005;40(3):174.
  • 17. Magal M, Dumke CL, Urbiztondo ZG, Cavill MJ, Triplett NT, Quindry JC, et al. Relationship between serum creatine kinase activity following exercise-induced muscle damage and muscle fibre composition. J Sports Sci. 2010;28(3):257-66.
  • 18. Thomas AC, Villwock M, Wojtys EM, Palmieri-Smith RM. Lower extremity muscle strength after anterior cruciate ligament injury and reconstruction. J Athl Train. 2013;48(5):610-20.
  • 19. Murphy DF, Connolly DAJ, Beynnon B. Risk factors for lower extremity injury: a review of the literature. Br J Sports Med. 2003;37(1):13-29.
  • 20. Kraus JF, Conroy C. Mortality and morbidity from injuries in sports and recreation. Annu Rev Public Health. 1984;5(1):163-92.
  • 21. Brancaccio P, Lippi G, Maffulli N. Biochemical markers of muscular damage. Clin Chem Lab Med. 2010;48(6):757-67.
  • 22. Hesselink MK, Kuipers H, Geurten P, Van Straaten H. Structural muscle damage and muscle strength after incremental number of isometric and forced lengthening contractions. J Muscle Res Cell Motil. 1996;17:335-41.
  • 23. Paulsen G, Crameri R, Benestad HB, Fjeld JG, Mørkrid L, Hallén J, et al. Time course of leukocyte accumulation in human muscle after eccentric exercise. Med Sci Sports Exerc. 2010;42(1):75-85.
  • 24. Stupka N, Tarnopolsky MA, Yardley NJ, Phillips SM. Cellular adaptation to repeated eccentric exercise-induced muscle damage. J Appl Physiol. 2001;91(4):1669-78.
  • 25. Owen A, Dunlop G, Rouissi M, Chtara M, Paul D, Zouhal H, et al. The relationship between lower-limb strength and match-related muscle damage in elite level professional European soccer players. J Sports Sci. 2015;33(20):2100-5.
  • 26. Baird MF, Graham SM, Baker JS, Bickerstaff GF. Creatine‐kinase‐and exercise‐related muscle damage implications for muscle performance and recovery. J Nutr Metab. 2012;2012:960363.
  • 27. Brewster LM, Mairuhu G, Bindraban NR, Koopmans RP, Clark JF, Van Montfrans GA. Creatine kinase activity is associated with blood pressure. Circulation. 2006;114(19):2034-9.
  • 28. Suchomel TJ, Nimphius S, Stone MH. The importance of muscular strength in athletic performance. Sports Med. 2016;46:1419-44.
  • 29. Hunter JP, Marshall RN, McNair PJ. Relationships between ground reaction force impulse and kinematics of sprint-running acceleration. J Appl Biomech. 2005;21(1):31-43.
  • 30. Spiteri T, Newton RU, Binetti M, Hart NH, Sheppard JM, Nimphius S. Mechanical determinants of faster change of direction and agility performance in female basketball athletes. J Strength Cond Res. 2015;29(8):2205-14.
  • 31. Wang X, Guo Y. The intelligent football players’ motion recognition system based on convolutional neural network and big data. Heliyon. 2023;9(11):e22316.
  • 32. Clarkson PM, Tremblay I. Exercise-induced muscle damage, repair, and adaptation in humans. J Appl Physiol. 1988;65(1):1-6.
  • 33. Ascensão A, Rebelo A, Oliveira E, Marques F, Pereira L, Magalhães J. Biochemical impact of a soccer match-analysis of oxidative stress and muscle damage markers throughout recovery. Clin Biochem. 2008;41(10-11):841-51.
  • 34. Kim J, So WY. High body mass index is associated with the extent of muscle damage after eccentric exercise. Int J Environ Res Public Health. 2018;15(7):1378.
  • 35. Söderman K, Alfredson H, Pietilä T, Werner S. Risk factors for leg injuries in female soccer players: a prospective investigation during one out-door season. Knee Surg Sports Traumatol Arthrosc. 2001;9(5):313-21.
  • 36. Baumhauer JF, Alosa DM, Renström PA, Trevino S, Beynnon B. A prospective study of ankle injury risk factors. Am J Sports Med. 1995;23(5):564-70.
  • 37. Ekstrand J, Gillquist J. Soccer injuries and their mechanisms: a prospective study. Med Sci Sports Exerc. 1983;15(3):267-70.
  • 38. Augustsson SR, Ageberg E. Weaker lower extremity muscle strength predicts traumatic knee injury in youth female but not male athletes. BMJ Open Sport Exerc Med. 2017;3(1):e000222.
  • 39. Khayambashi K, Ghoddosi N, Straub RK, Powers CM. Hip muscle strength predicts noncontact anterior cruciate ligament injury in male and female athletes: a prospective study. Am J Sports Med. 2016;44(2):355-61.
  • 40. Andersson HM, Raastad T, Nilsson J, Paulsen G, Garthe I, Kadi F. Neuromuscular fatigue and recovery in elite female soccer: effects of active recovery. Med Sci Sports Exerc. 2008;40(2):372-80.

Investigation of the Relationship Between Lower Extremity Strength and Muscle Damage in Football Players

Yıl 2025, Cilt: 16 Sayı: 3, 397 - 407, 22.12.2025
https://doi.org/10.22312/sdusbed.1684052

Öz

The aim of this study was to determine whether muscle damage following unit training is related to lower extremity strength. 21 male amateur football players volunteered for this study (age: 21.63 ± 1.12 yrs, height: 179.25 ± 5.78 cm, weight: 73.74 ± 9.14 kg, body mass index (BMI): 22.93 ± 2.55 kg/m2 and age at training: 9.47 ± 1.89 yrs). Leg press, leg curl, vertical jump and leg strength measurements were performed on the players. Muscle damage markers such as Creatine Kinase (CK), Lactate Dehydrogenase (LDH), Aspartate Aminotransferase (AST) and Tropinin T (TnT) were taken from blood samples taken from the players before, after and 24 and 72 hours after training and compared temporally with grouped lower extremity strength values. The biochemistry measurements were compared and an attempt was made to determine the exercise results that had a significant effect on repeated measurements. While LDH measurements were found to be similar before and after exercise, they were found to be significantly higher at 24 and 72 hours (p=0.003). Leg strength, leg curl, leg press and squat exercise measurements were not found to have a significant effect on LDH changes. AST measurement values were found to be close to each other before and immediately after exercise, but they were significantly higher at 72 hours (p=0.001). However, no significant effect was found in the measurement results of the exercises performed. Although CK values increased on average in the following hours, they were not found to be statistically significant. In addition, it was observed that the measurement results of the exercises performed did not have a significant effect. An increase was observed in troponin values in the following periods, but it was not found to be statistically significant. Exercise measurement results were not found to have a significant effect, but the effect of leg strength and squat results was found to be close to significance. As a result, it is understood that there is no significant relationship between lower extremity strength and muscle damage in football, but further research is needed to confirm it.

Kaynakça

  • 1. Lehance C, Binet J, Bury T, Croisier JL. Muscular strength, functional performances and injury risk in professional and junior elite soccer players. Scand J Med Sci Sports. 2009;19(2):243-51.
  • 2. Siff MC. Biomechanical foundations of strength and power training. In: Zatsiorsky VM, editor. Biomechanics in sport: performance enhancement and injury prevention. Oxford: Blackwell Science; 2000. p. 103-39.
  • 3. Friden J, Lieber RL. Eccentric exercise‐induced injuries to contractile and cytoskeletal muscle fibre components. Acta Physiol Scand. 2001;171(3):321-6.
  • 4. Warren GL, Lowe DA, Armstrong RB. Measurement tools used in the study of eccentric contraction-induced injury. Sports Med. 1999;27(1):43-59.
  • 5. Mair SD, Seaber AV, Glisson RR, Garrett WE Jr. The role of fatigue in susceptibility to acute muscle strain injury. Am J Sports Med. 1996;24(2):137-43.
  • 6. Taylor DC, Dalton JD Jr, Seaber AV, Garrett WE Jr. Experimental muscle strain injury: early functional and structural deficits and the increased risk for reinjury. Am J Sports Med. 1993;21(2):190-4.
  • 7. Paasuke M, Ereline J, Gapeyeva H. Knee extension strength and vertical jumping performance in nordic combined athletes. J Sports Med Phys Fitness. 2001;41(3):354.
  • 8. Zakas A, Mandroukas K, Vamvakoudis E, Christoulas K, Aggelopoulou N. Peak torque of quadriceps and hamstring muscles in basketball and soccer players of different divisions. J Sports Med Phys Fitness. 1995;35(3):199-205.
  • 9. Croisier JL, Ganteaume S, Ferret JM. Preseason isokinetic intervention as a preventive strategy for hamstring injury in professional soccer players. Br J Sports Med. 2005;39(6):379.
  • 10. Stølen T, Chamari K, Castagna C, Wisløff U. Physiology of soccer. Sports Med. 2005;35(6):501-36.
  • 11. Tsepis E, Vagenas G, Ristanis S, Georgoulis AD. Thigh muscle weakness in ACL-deficient knees persists without structured rehabilitation. Clin Orthop Relat Res. 2006;450:211-8.
  • 12. Le Gall F, Carling C, Reilly T, Vandewalle H, Church J, Rochcongar P. Incidence of injuries in elite French youth soccer players: a 10-season study. Am J Sports Med. 2006;34(6):928-38.
  • 13. Papaiakovou G, Giannakos A, Michailidis C, Patikas D, Bassa E, Kalopisis V, et al. The effect of chronological age and gender on the development of sprint performance during childhood and puberty. J Strength Cond Res. 2009;23(9):2568-73.
  • 14. Croisier JL, Ganteaume S, Binet J, Genty M, Ferret JM. Strength imbalances and prevention of hamstring injury in professional soccer players: a prospective study. Am J Sports Med. 2008;36(8):1469-75.
  • 15. Ispirlidis I, Fatouros IG, Jamurtas AZ, Nikolaidis MG, Michailidis I, Douroudos I, et al. Time-course of changes in inflammatory and performance responses following a soccer game. Clin J Sport Med. 2008;18(5):423-31.
  • 16. Zainuddin Z, Newton M, Sacco P, Nosaka K. Effects of massage on delayed-onset muscle soreness, swelling, and recovery of muscle function. J Athl Train. 2005;40(3):174.
  • 17. Magal M, Dumke CL, Urbiztondo ZG, Cavill MJ, Triplett NT, Quindry JC, et al. Relationship between serum creatine kinase activity following exercise-induced muscle damage and muscle fibre composition. J Sports Sci. 2010;28(3):257-66.
  • 18. Thomas AC, Villwock M, Wojtys EM, Palmieri-Smith RM. Lower extremity muscle strength after anterior cruciate ligament injury and reconstruction. J Athl Train. 2013;48(5):610-20.
  • 19. Murphy DF, Connolly DAJ, Beynnon B. Risk factors for lower extremity injury: a review of the literature. Br J Sports Med. 2003;37(1):13-29.
  • 20. Kraus JF, Conroy C. Mortality and morbidity from injuries in sports and recreation. Annu Rev Public Health. 1984;5(1):163-92.
  • 21. Brancaccio P, Lippi G, Maffulli N. Biochemical markers of muscular damage. Clin Chem Lab Med. 2010;48(6):757-67.
  • 22. Hesselink MK, Kuipers H, Geurten P, Van Straaten H. Structural muscle damage and muscle strength after incremental number of isometric and forced lengthening contractions. J Muscle Res Cell Motil. 1996;17:335-41.
  • 23. Paulsen G, Crameri R, Benestad HB, Fjeld JG, Mørkrid L, Hallén J, et al. Time course of leukocyte accumulation in human muscle after eccentric exercise. Med Sci Sports Exerc. 2010;42(1):75-85.
  • 24. Stupka N, Tarnopolsky MA, Yardley NJ, Phillips SM. Cellular adaptation to repeated eccentric exercise-induced muscle damage. J Appl Physiol. 2001;91(4):1669-78.
  • 25. Owen A, Dunlop G, Rouissi M, Chtara M, Paul D, Zouhal H, et al. The relationship between lower-limb strength and match-related muscle damage in elite level professional European soccer players. J Sports Sci. 2015;33(20):2100-5.
  • 26. Baird MF, Graham SM, Baker JS, Bickerstaff GF. Creatine‐kinase‐and exercise‐related muscle damage implications for muscle performance and recovery. J Nutr Metab. 2012;2012:960363.
  • 27. Brewster LM, Mairuhu G, Bindraban NR, Koopmans RP, Clark JF, Van Montfrans GA. Creatine kinase activity is associated with blood pressure. Circulation. 2006;114(19):2034-9.
  • 28. Suchomel TJ, Nimphius S, Stone MH. The importance of muscular strength in athletic performance. Sports Med. 2016;46:1419-44.
  • 29. Hunter JP, Marshall RN, McNair PJ. Relationships between ground reaction force impulse and kinematics of sprint-running acceleration. J Appl Biomech. 2005;21(1):31-43.
  • 30. Spiteri T, Newton RU, Binetti M, Hart NH, Sheppard JM, Nimphius S. Mechanical determinants of faster change of direction and agility performance in female basketball athletes. J Strength Cond Res. 2015;29(8):2205-14.
  • 31. Wang X, Guo Y. The intelligent football players’ motion recognition system based on convolutional neural network and big data. Heliyon. 2023;9(11):e22316.
  • 32. Clarkson PM, Tremblay I. Exercise-induced muscle damage, repair, and adaptation in humans. J Appl Physiol. 1988;65(1):1-6.
  • 33. Ascensão A, Rebelo A, Oliveira E, Marques F, Pereira L, Magalhães J. Biochemical impact of a soccer match-analysis of oxidative stress and muscle damage markers throughout recovery. Clin Biochem. 2008;41(10-11):841-51.
  • 34. Kim J, So WY. High body mass index is associated with the extent of muscle damage after eccentric exercise. Int J Environ Res Public Health. 2018;15(7):1378.
  • 35. Söderman K, Alfredson H, Pietilä T, Werner S. Risk factors for leg injuries in female soccer players: a prospective investigation during one out-door season. Knee Surg Sports Traumatol Arthrosc. 2001;9(5):313-21.
  • 36. Baumhauer JF, Alosa DM, Renström PA, Trevino S, Beynnon B. A prospective study of ankle injury risk factors. Am J Sports Med. 1995;23(5):564-70.
  • 37. Ekstrand J, Gillquist J. Soccer injuries and their mechanisms: a prospective study. Med Sci Sports Exerc. 1983;15(3):267-70.
  • 38. Augustsson SR, Ageberg E. Weaker lower extremity muscle strength predicts traumatic knee injury in youth female but not male athletes. BMJ Open Sport Exerc Med. 2017;3(1):e000222.
  • 39. Khayambashi K, Ghoddosi N, Straub RK, Powers CM. Hip muscle strength predicts noncontact anterior cruciate ligament injury in male and female athletes: a prospective study. Am J Sports Med. 2016;44(2):355-61.
  • 40. Andersson HM, Raastad T, Nilsson J, Paulsen G, Garthe I, Kadi F. Neuromuscular fatigue and recovery in elite female soccer: effects of active recovery. Med Sci Sports Exerc. 2008;40(2):372-80.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Egzersiz Fizyolojisi
Bölüm Araştırma Makalesi
Yazarlar

Aydın Karabulak 0000-0001-7741-3899

Gönderilme Tarihi 29 Nisan 2025
Kabul Tarihi 10 Ekim 2025
Yayımlanma Tarihi 22 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 16 Sayı: 3

Kaynak Göster

Vancouver Karabulak A. Futbolcularda Alt Ekstremite Gücü İle Kas Hasarı Arasındaki İlişkinin İncelenmesi. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi. 2025;16(3):397-40.

CC

Creative Commons Attribution 4.0 International License

Atıf gereklidir, ticari olmayan amaçlarla kullanılabilir ve değişiklik yapılarak türev eser üretilemez.