Araştırma Makalesi
BibTex RIS Kaynak Göster

Retroperitoneal Yağ Dokusu Denerve Edilmiş Sıçanlarda Yüksek Yağlı Diyetin Yağ Dokusundaki Oksidatif Strese Etkisi

Yıl 2018, , 85 - 89, 01.08.2018
https://doi.org/10.22312/sdusbed.407365

Öz




Amaç:
Beyaz
yağ dokusu hem otonom sinir sistemi hem de duysal sinir sistemi tarafından
innerve edilir. Yağ dokusunu
innerve eden sinirlerin yağ dokusunda lipoliz başta olmak üzere çok sayıda
önemli rolleri bulunur.
Bu çalışmada yüksek yağlı diyetin denerve
edilmiş retroperitoneal yağ dokusundaki 
süperoksit dismutaz (SOD), katalaz (CAT) aktivitelerine ve oksidatif
stresin biyomarkırı malondialdehit (MDA) düzeyine etkisinin incelenmesi
amaçlandı.




 




Materyal-Method:
Çalışmada
16 adet 3-5 haftalık erkek Sprague-Dawley sıçanların retroperitoneal yağ
dokularındaki tüm sinir lifleri denerve edildi. Bu sıçanlardan rastgele kontrol
ve yüksek yağlı diyet grubu olmak üzere iki grup oluşturuldu. Sıçanlar
gruplarına özgü yemle 70 gün boyunca beslendi. Beslenme süresinin bitiminde
retroperitoneal yağ dokuları toplandı ve bu dokularda SOD, CAT ve MDA ölçümleri
yapıldı.




 




Bulgular:
Yüksek
yağlı diyetle beslenen grupta kontrol grubuna göre SOD enzim aktivitesi daha
düşük,  CAT enzim aktivitesi ise daha
yüksek olduğu tespit edildi (sırasıyla p = 0.002, p=0.006). MDA seviyesi ise
kontrol grubuna göre yüksek yağlı diyet grubunda daha yükek bulundu (p =
0.0039).




 




Sonuç:
Yüksek
yağlı diyetle beslenen grupta katalaz aktivitesi yüksek olmasına rağmen
oksidatif stres görülmektedir. Bunun nedeni, katalazın substratı SOD enzimi
tarafından üretildiği için SOD enzim aktivitesinin düşük olması durumunda
katalazın tek başına oksidatif stresi engelleyememesidir. Sonuç olarak,
çalışmamız retroperitoneal yağ dokusu denerve edilmiş sıçanlarda yüksek yağlı
diyetle beslenmenin yağ dokusundaki oksidatif stresi artırdığını gösterdi.




 




Kaynakça

  • 1. Bjorndal B, Burri L, Staalesen V, Skorve J, Berge RK. Different Adipose Depots: Their Role in the Development of Metabolic Syndrome and Mitochondrial Response to Hypolipidemic Agents. Journal of Obesity 201; 11-15. 2. Bartness TJ, Liu Y, Shrestha YB, Ryu V. Neural innervation of white adipose tissue and the control of lipolysis. Front Neuroendocrinol 2014; 35: 473-93.
  • 2. Bartness TJ, Liu Y, Shrestha YB, Ryu V. Neural innervation of white adipose tissue and the control of lipolysis. Front Neuroendocrinol 2014; 35: 473-93.
  • 3. Giordano A, Morroni M, Santone G, Marchesi GF, Cinti S. Tyrosine hydroxylase, neuropeptide Y, substance P, calcitonin gene-related peptide and vasoactive intestinal peptide in nerves of rat periovarian adipose tissue: an immunohistochemical and ultrastructural investigation. J Neurocytol 1996; 25:125–136.
  • 4. Kreier F, Fliers E, Voshol PJ, Van Eden CG, Havekes LM, Kalsbeek A, et al. Selective parasympathetic intra-abdominal fat—functional innervation of subcutaneous and implications. The Journal of Clinical Investigation 2002; 1243-1250.
  • 5. Pénicaud L, Lorsignol A. Chatting Between the Brain and White Adipose Tissues. Physiology and Physiopathology of Adipose Tissue (Ed: Bastard JP, Fève B). Paris, 2013; 171-181. 6. Potter K. Neuropeptide Y as an autonomic neurotransmitter. Pharmacol Ther 1988; 37:251 7. Mansfeld G, Muller F. Der Einfluss der Nervensystem auf die Mobilisierung von Fett. Arch Physiol. 1913; 152:61–67.
  • 6. Potter K. Neuropeptide Y as an autonomic neurotransmitter. Pharmacol Ther 1988; 37:251
  • 7. Mansfeld G, Muller F. Der Einfluss der Nervensystem auf die Mobilisierung von Fett. Arch Physiol. 1913; 152:61–67.
  • 8. Lafontan M, Berlan M. Fat cell adrenergic receptor and the control of white and brown fat cell function. J Lipid Res 1993; 34:1057–1091. 9. Lafontan M, Berlan M. Fat cell a2-adrenoceptors: the regulation of fat cell function and lipolysis. Endorine Rev 1995; 16:716–738. 10. Kreier F, Kap YS, Mettenleiter TC, Heijningen C, Vliet J, Kalsbeek A, et al. Tracing from fat tissue, liver and pancreas:A neuroanatomical framework for the role of the brain in type 2 diabetes. Endocrinology 2006; 1-7.
  • 9. Lafontan M, Berlan M. Fat cell a2-adrenoceptors: the regulation of fat cell function and lipolysis. Endorine Rev 1995; 16:716–738.
  • 10. Kreier F, Kap YS, Mettenleiter TC, Heijningen C, Vliet J, Kalsbeek A, et al. Tracing from fat tissue, liver and pancreas:A neuroanatomical framework for the role of the brain in type 2 diabetes. Endocrinology 2006; 1-7.
  • 11. Available from: URL: https://www.proteinatlas.org/ENSG00000109610-SOD3/tissue
  • 12. Brieger K, Schiavone S, Miller FJ, Krause KH. Reactive oxygen species: from health to disease. Swiss Med Wkly. 2012; 142: 13659.
  • 13. Del Rio D, Stewart AJ, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases 2005; 15: 316-328.
  • 14. Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem 1988; 34: 497-500.
  • 15. Aebi H. Methods of Enzymatics Analysis. 1987; 3: 273-285.
  • 16. Mihara M, Uchiyama M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 1978; 86: 271-278.
  • 17. Lowry OH, Rosebrough NJ, Farr AL, Randal RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193:265–75
  • 18. Kim HS , Ryoo ZY, Choi SU, Lee S. Gene expression profiles reveal effect of a high-fat diet on the development of white and brown adipose tissues. Gene. 2015; 15-21
  • 19. Kwon EY, Shin SK, ChoYY, Jung UJ, Kim E, Park T, et al. Time-course microarrays reveal early activation of the immune transcriptome and adipokine dysregulation leads to fibrosis in visceral adipose depots during diet-induced obesity. BMC Genomics, 2012; 13:450. 20. Nunes-Souza V, César-Gomes CJ, Fonseca LJSD, Guedes GDS, Smaniotto S, and Rabelo LA. Aging Increases Susceptibility to High Fat Diet-Induced Metabolic Syndrome in C57BL/6 Mice: Improvement in Glycemic and Lipid Profile after Antioxidant Therapy. Oxidative Medicine and Cellular Longevity 2016; 1-17.
  • 20. Nunes-Souza V, César-Gomes CJ, Fonseca LJSD, Guedes GDS, Smaniotto S, and Rabelo LA. Aging Increases Susceptibility to High Fat Diet-Induced Metabolic Syndrome in C57BL/6 Mice: Improvement in Glycemic and Lipid Profile after Antioxidant Therapy. Oxidative Medicine and Cellular Longevity 2016; 1-17.
  • 21. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest. 2004; 114:1752–1761.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Araştırma Makaleleri
Yazarlar

Cemil Kahraman

Ahmet Alver

İmran İnce Akça Bu kişi benim

Taghi Ahmadi Rendi Bu kişi benim

Neslihan Sağlam

Yayımlanma Tarihi 1 Ağustos 2018
Gönderilme Tarihi 18 Mart 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

Vancouver Kahraman C, Alver A, İnce Akça İ, Ahmadi Rendi T, Sağlam N. Retroperitoneal Yağ Dokusu Denerve Edilmiş Sıçanlarda Yüksek Yağlı Diyetin Yağ Dokusundaki Oksidatif Strese Etkisi. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi. 2018;9(2):85-9.

Cc-by-nc-nd-icon-svg

Creative Commons Attribution 4.0 International License 

Atıf gereklidir, ticari olmayan amaçlarla kullanılabilir ve değişiklik yapılarak türev eser üretilemez.