Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 10 Sayı: 2, 172 - 176, 16.06.2019
https://doi.org/10.22312/sdusbed.543053

Öz

Kaynakça

  • 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018 Jan;68(1):7-30. doi: 10.3322/caac.21442.
  • 2. Petit T, Wilt M, Velten M, Millon R, Rodier J, Borel C, Mors R, Haegele P, Eber M, Ghnassia JP. Comparative value of tumour grade, hormonal receptors, Ki-67, HER-2 and topoisomerase II alpha status as predictive markers in breast cancer patients treated with neoadjuvant anthracycline-based chemotherapy. Eur J Cancer. 2004 Jan;40(2):205-11.
  • 3. Chua B, Olivotto IA, Weir L, Kwan W, Truong P, Ragaz J. Increased Use of Adjuvant Regional Radiotherapy for Node-Positive Breast Cancer in British Columbia. Breast J. 2004 Jan-Feb;10(1):38-44.
  • 4. Tominaga T, Takashima S, Danno M. Randomized clinical trial comparing level II and level III axillary node dissection in addition to mastectomy for breast cancer. Br J Surg. 2004 Jan;91(1):38-43.
  • 5. Chopra R.The Indian scene.J Clin Oncol. 2001 Sep 15;19(18 Suppl):106S-111S.
  • 6. Welm B, Behbod F, Goodell MA, Rosen JM. Isolation and characterization of functional mammary gland stem cells. Cell Prolif. 2003 Oct;36 Suppl 1:17-32.
  • 7. Albrecht MA, Evan CW, Raston CR. Green chemistry and the health implications of nanoparticles. Green Chem 2006; 8:417–432
  • 8. Osuwa JC, Anusionwu PC. Some advances and prospects in nanotechnology: a review. Asian J Inf Technol 2011; 10:96–100
  • 9. Akhtar M, Panwar J, Yun YS. Biogenic synthesis of metallic nanoparticles by plant extracts.ACS Sustain. Chem. Eng. 2013; 1:591–602.
  • 10. Kumar V, Yadav SK. Plant mediated synthesis of silver and gold nanoparticles and their applications. Journal of Chemical Technology and Biotechnology 2009; 84(2):151-157.
  • 11. Ghaffari-Moghaddam M, Hadi-Dabanlou R, Khajeh M, Rakhshanipour M, Shameli K. Korean J. Chem. Eng. 2014; 31:548–557.
  • 12. Conde J, Doria G, Baptista P. Noble metal nanoparticles applications in cancer. J Drug Deliv 2012:751075. doi:10.1155/2012/ 751075
  • 13. Sur I, Altunbek M, Kahraman M, Culha M. The influence of the surface chemistry of silver nanoparticles on cell death. Nanotechnology 2012;23:375102
  • 14. Singh P, Kim YJ, Wang C, Mathiyalagan R, El-Agamy Farh M, Yang DC. Biogenic silver and gold nanoparticles synthesized using red ginseng root extract, and their applications. Artif Cells Nanomed Biotechnol. 2016 May;44(3):811-6. doi: 10.3109/21691401.2015.1008514.
  • 15. Sankar R, Karthik A, Prabu A, Karthik S, Shivashangari KS, Ravikumar V. Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity. Colloids Surf B: Biointerfaces 2013;108:80–84.
  • 16. Kathiravan V, Ravi S, Ashokkumar S. Synthesis of silver nanoparticles from Melia dubia leaf extract and their in vitro anticancer activity. Spectrochim Acta A Mol Biomol Spectrosc 2014;130:116–121.
  • 17. Vasanth K, Ilango K, MohanKumar R, Agrawal A, Dubey GP. Anticancer activity of Moringa oleifera mediated silver nanoparticles on human cervical carcinoma cells by apoptosis induction. Colloids Surf B: Biointerfaces 2014;117:354–359.
  • 18. Rašković A, Milanović I, Pavlović N, Ćebović T, Vukmirović S, Mikov M. Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential. BMC Compl Altern Med 2014; 14: 225.
  • 19. da Silva BN, Nakassugi LP, Faggion POJ, Kohiyama CY, Mossini SA, Grespan R, Nerilo SB, Mallmann CA, Alves Abreu Filho B, Machinski M., Jr Antifungal activity and inhibition of fumonisin production by Rosmarinus officinalis L. essential oil in Fusarium verticillioides (Sacc.) Nirenberg. Food Chem 2015; 166: 330–6.
  • 20. Jardak M, Elloumi-Mseddi J, Aifa S, Mnif S. Chemical composition, anti-biofilm activity and potential cytotoxic effect on cancer cells of Rosmarinus officinalis L. essential oil from Tunisia. Lipids Health Dis. 2017 Oct 2;16(1):190. doi: 10.1186/s12944-017-0580-9.
  • 21. de Oliveira JR, de Jesus D, Figueira LW, de Oliveira FE, Pacheco Soares C, Camargo SE, Jorge AO, de Oliveira LD. Biological activities of Rosmarinus officinalis L. (rosemary) extract as analyzed in microorganisms and cells. Exp Biol Med (Maywood). 2017 Mar;242(6):625-634. doi: 10.1177/1535370216688571.
  • 22. Hussain AI, Anwar F, Chatha SA, Jabbar A, Mahboob S, Nigam PS. Rosmarinus officinalis essential oil: antiproliferative, antioxidant and antibacterial activities. Braz J Microbiol. 2010 Oct;41(4):1070-8. doi: 10.1590/S1517-838220100004000027.
  • 23. Edelstein AD and Cammarata RC. Nanomaterials Synthesis, Properties and Applications. Taylor & Francis, Boca Raton, Fla, USA, 1996.
  • 24. Kuppusamy P, Yusoff MM, Maniam GP, Govindan N.Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An updated report. Saudi Pharm J. 2016 Jul;24(4):473-84. doi: 10.1016/j.jsps.2014.11.013.
  • 25. Sastry M, Mayya KS, Bandyopadhyay K. pH Dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particles. Colloids and Surfaces A. 1997;127: 221. 27.
  • 26. Sastry M, Patil V, Sainkar SR. Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films. Journal of Physical Chemistry B. 1998;102(8):1404–1410.
  • 27. Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochemistry 2007; 42(5):919–923.
  • 28. Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids and Surfaces B. 2008;65(1):150–153.
  • 29. Rani PVA, Mun GLK, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2009; 3(2): 279–290.
  • 30. Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY, Choi J, Hyun JW. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett. 2011 Feb 25;201(1):92-100. doi: 10.1016/j.toxlet.2010.12.010.
  • 31. Park MV, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briedé JJ, van Loveren H, de Jong WH. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials. 2011 Dec;32(36):9810-7. doi: 10.1016/j.biomaterials.2011.08.085.
  • 32. Gurunathan S, Han JW, Eppakayala V, Jeyaraj M, Kim JH. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. Biomed Res Int. 2013;2013:535796. doi: 10.1155/2013/535796.
  • 33. Behboodi S, Baghbani-Arani F, Abdalan S, Sadat Shandiz SA. Green Engineered Biomolecule-Capped Silver Nanoparticles Fabricated from Cichorium intybus Extract: In Vitro Assessment on Apoptosis Properties Toward Human Breast Cancer (MCF-7) Cells. Biol Trace Elem Res. 2019 Feb;187(2):392-402. doi: 10.1007/s12011-018-1392-0.
  • 34. Jang SJ, Yang IJ, Tettey CO, Kim KM, Shin HM. In-vitro anticancer activity of green synthesized silver nanoparticles on MCF-7 human breast cancer cells. Mater Sci Eng C Mater Biol Appl. 2016 Nov 1;68:430-435. doi: 10.1016/j.msec.2016.03.101.
  • 35. AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009 Feb 24;3(2):279-90. doi: 10.1021/nn800596w.
  • 36. Nagajyothi PC, Sreekanth TV, Lee JI, Lee KD. Mycosynthesis: antibacterial, antioxidant and antiproliferative activities of silver nanoparticles synthesized from Inonotus obliquus (Chaga mushroom) extract. J Photochem Photobiol B. 2014 Jan 5;130:299-304. doi: 10.1016/j.jphotobiol.2013.11.02

Gümüş Nanopartiküllerin Biberiye Özütü ile Biyosentezi ve MCF-7 Meme Kanseri Hücrelerinde Sitotoksik Etkisi

Yıl 2019, Cilt: 10 Sayı: 2, 172 - 176, 16.06.2019
https://doi.org/10.22312/sdusbed.543053

Öz

Amaç: Gümüş nanopartiküller (AgNP'ler), antimikrobiyal ve dezenfektan maddeler olarak uzun yıllar kullanılmıştır. Bununla birlikte, gümüş nanopartiküllerin antikanser potansiyeli hakkında oldukça sınırlı bilgi mevcuttur. Bu nedenle, bu çalışmada AgNP’lerin MCF7 meme kanseri hücreleri üzerindeki sitotoksik etkisinin değerlendirilmesi amaçlanmıştır. 

Materyal-Metot: Biberiye (Rosmarinus officinalis) özütü kullanılarak gümüş nanopartiküllerin sentezi için bir biyosentez metodu geliştirildi. Sentezlenmiş gümüş nanopartiküllerin UV-Visible Spektrofotometre ile karakterizasyonu yapıldı. MCF7 meme kanseri hücreleri çeşitli konsantrasyonlarda AgNP’ler (0-10 μg/mL) ile 24 saat boyunca muamele edildi.  Gümüş nanopartiküllerin sitotoksik etkisi MTT test ile belirlendi. 

Bulgular: AgNP’lerin MTT testi kullanılarak doza bağımlı hücre büyümesini inhibe ettiği belirlendi. 

Sonuç: Bu çalışma ile bitki özütü kullanılarak nanopartiküllerin sentezinin fiziksel ve kimyasal yöntemlere göre daha iyi bir alternatif olduğu ve AgNP’lerin meme kanseri tedavisinde potansiyel alternatif bir ajan olabileceğini sonucuna varılmıştır.  

Kaynakça

  • 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018 Jan;68(1):7-30. doi: 10.3322/caac.21442.
  • 2. Petit T, Wilt M, Velten M, Millon R, Rodier J, Borel C, Mors R, Haegele P, Eber M, Ghnassia JP. Comparative value of tumour grade, hormonal receptors, Ki-67, HER-2 and topoisomerase II alpha status as predictive markers in breast cancer patients treated with neoadjuvant anthracycline-based chemotherapy. Eur J Cancer. 2004 Jan;40(2):205-11.
  • 3. Chua B, Olivotto IA, Weir L, Kwan W, Truong P, Ragaz J. Increased Use of Adjuvant Regional Radiotherapy for Node-Positive Breast Cancer in British Columbia. Breast J. 2004 Jan-Feb;10(1):38-44.
  • 4. Tominaga T, Takashima S, Danno M. Randomized clinical trial comparing level II and level III axillary node dissection in addition to mastectomy for breast cancer. Br J Surg. 2004 Jan;91(1):38-43.
  • 5. Chopra R.The Indian scene.J Clin Oncol. 2001 Sep 15;19(18 Suppl):106S-111S.
  • 6. Welm B, Behbod F, Goodell MA, Rosen JM. Isolation and characterization of functional mammary gland stem cells. Cell Prolif. 2003 Oct;36 Suppl 1:17-32.
  • 7. Albrecht MA, Evan CW, Raston CR. Green chemistry and the health implications of nanoparticles. Green Chem 2006; 8:417–432
  • 8. Osuwa JC, Anusionwu PC. Some advances and prospects in nanotechnology: a review. Asian J Inf Technol 2011; 10:96–100
  • 9. Akhtar M, Panwar J, Yun YS. Biogenic synthesis of metallic nanoparticles by plant extracts.ACS Sustain. Chem. Eng. 2013; 1:591–602.
  • 10. Kumar V, Yadav SK. Plant mediated synthesis of silver and gold nanoparticles and their applications. Journal of Chemical Technology and Biotechnology 2009; 84(2):151-157.
  • 11. Ghaffari-Moghaddam M, Hadi-Dabanlou R, Khajeh M, Rakhshanipour M, Shameli K. Korean J. Chem. Eng. 2014; 31:548–557.
  • 12. Conde J, Doria G, Baptista P. Noble metal nanoparticles applications in cancer. J Drug Deliv 2012:751075. doi:10.1155/2012/ 751075
  • 13. Sur I, Altunbek M, Kahraman M, Culha M. The influence of the surface chemistry of silver nanoparticles on cell death. Nanotechnology 2012;23:375102
  • 14. Singh P, Kim YJ, Wang C, Mathiyalagan R, El-Agamy Farh M, Yang DC. Biogenic silver and gold nanoparticles synthesized using red ginseng root extract, and their applications. Artif Cells Nanomed Biotechnol. 2016 May;44(3):811-6. doi: 10.3109/21691401.2015.1008514.
  • 15. Sankar R, Karthik A, Prabu A, Karthik S, Shivashangari KS, Ravikumar V. Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity. Colloids Surf B: Biointerfaces 2013;108:80–84.
  • 16. Kathiravan V, Ravi S, Ashokkumar S. Synthesis of silver nanoparticles from Melia dubia leaf extract and their in vitro anticancer activity. Spectrochim Acta A Mol Biomol Spectrosc 2014;130:116–121.
  • 17. Vasanth K, Ilango K, MohanKumar R, Agrawal A, Dubey GP. Anticancer activity of Moringa oleifera mediated silver nanoparticles on human cervical carcinoma cells by apoptosis induction. Colloids Surf B: Biointerfaces 2014;117:354–359.
  • 18. Rašković A, Milanović I, Pavlović N, Ćebović T, Vukmirović S, Mikov M. Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential. BMC Compl Altern Med 2014; 14: 225.
  • 19. da Silva BN, Nakassugi LP, Faggion POJ, Kohiyama CY, Mossini SA, Grespan R, Nerilo SB, Mallmann CA, Alves Abreu Filho B, Machinski M., Jr Antifungal activity and inhibition of fumonisin production by Rosmarinus officinalis L. essential oil in Fusarium verticillioides (Sacc.) Nirenberg. Food Chem 2015; 166: 330–6.
  • 20. Jardak M, Elloumi-Mseddi J, Aifa S, Mnif S. Chemical composition, anti-biofilm activity and potential cytotoxic effect on cancer cells of Rosmarinus officinalis L. essential oil from Tunisia. Lipids Health Dis. 2017 Oct 2;16(1):190. doi: 10.1186/s12944-017-0580-9.
  • 21. de Oliveira JR, de Jesus D, Figueira LW, de Oliveira FE, Pacheco Soares C, Camargo SE, Jorge AO, de Oliveira LD. Biological activities of Rosmarinus officinalis L. (rosemary) extract as analyzed in microorganisms and cells. Exp Biol Med (Maywood). 2017 Mar;242(6):625-634. doi: 10.1177/1535370216688571.
  • 22. Hussain AI, Anwar F, Chatha SA, Jabbar A, Mahboob S, Nigam PS. Rosmarinus officinalis essential oil: antiproliferative, antioxidant and antibacterial activities. Braz J Microbiol. 2010 Oct;41(4):1070-8. doi: 10.1590/S1517-838220100004000027.
  • 23. Edelstein AD and Cammarata RC. Nanomaterials Synthesis, Properties and Applications. Taylor & Francis, Boca Raton, Fla, USA, 1996.
  • 24. Kuppusamy P, Yusoff MM, Maniam GP, Govindan N.Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An updated report. Saudi Pharm J. 2016 Jul;24(4):473-84. doi: 10.1016/j.jsps.2014.11.013.
  • 25. Sastry M, Mayya KS, Bandyopadhyay K. pH Dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particles. Colloids and Surfaces A. 1997;127: 221. 27.
  • 26. Sastry M, Patil V, Sainkar SR. Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films. Journal of Physical Chemistry B. 1998;102(8):1404–1410.
  • 27. Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochemistry 2007; 42(5):919–923.
  • 28. Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids and Surfaces B. 2008;65(1):150–153.
  • 29. Rani PVA, Mun GLK, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2009; 3(2): 279–290.
  • 30. Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY, Choi J, Hyun JW. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett. 2011 Feb 25;201(1):92-100. doi: 10.1016/j.toxlet.2010.12.010.
  • 31. Park MV, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briedé JJ, van Loveren H, de Jong WH. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials. 2011 Dec;32(36):9810-7. doi: 10.1016/j.biomaterials.2011.08.085.
  • 32. Gurunathan S, Han JW, Eppakayala V, Jeyaraj M, Kim JH. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. Biomed Res Int. 2013;2013:535796. doi: 10.1155/2013/535796.
  • 33. Behboodi S, Baghbani-Arani F, Abdalan S, Sadat Shandiz SA. Green Engineered Biomolecule-Capped Silver Nanoparticles Fabricated from Cichorium intybus Extract: In Vitro Assessment on Apoptosis Properties Toward Human Breast Cancer (MCF-7) Cells. Biol Trace Elem Res. 2019 Feb;187(2):392-402. doi: 10.1007/s12011-018-1392-0.
  • 34. Jang SJ, Yang IJ, Tettey CO, Kim KM, Shin HM. In-vitro anticancer activity of green synthesized silver nanoparticles on MCF-7 human breast cancer cells. Mater Sci Eng C Mater Biol Appl. 2016 Nov 1;68:430-435. doi: 10.1016/j.msec.2016.03.101.
  • 35. AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009 Feb 24;3(2):279-90. doi: 10.1021/nn800596w.
  • 36. Nagajyothi PC, Sreekanth TV, Lee JI, Lee KD. Mycosynthesis: antibacterial, antioxidant and antiproliferative activities of silver nanoparticles synthesized from Inonotus obliquus (Chaga mushroom) extract. J Photochem Photobiol B. 2014 Jan 5;130:299-304. doi: 10.1016/j.jphotobiol.2013.11.02
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Araştırma Makaleleri
Yazarlar

Çiğdem Aydın Acar 0000-0002-1311-2314

Suray Pehlivanoğlu 0000-0001-7422-2974

Yayımlanma Tarihi 16 Haziran 2019
Gönderilme Tarihi 21 Mart 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 10 Sayı: 2

Kaynak Göster

Vancouver Aydın Acar Ç, Pehlivanoğlu S. Gümüş Nanopartiküllerin Biberiye Özütü ile Biyosentezi ve MCF-7 Meme Kanseri Hücrelerinde Sitotoksik Etkisi. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi. 2019;10(2):172-6.

Cc-by-nc-nd-icon-svg

Creative Commons Attribution 4.0 International License 

Atıf gereklidir, ticari olmayan amaçlarla kullanılabilir ve değişiklik yapılarak türev eser üretilemez.