Araştırma Makalesi
BibTex RIS Kaynak Göster

Verification of Percentage Depth-Doses with Monte Carlo Simulation and Calculation of Mass Attenuation Coefficients for Various Patient Tissues in Radiation Therapy

Yıl 2020, Cilt: 11 Sayı: 2, 224 - 230, 15.06.2020
https://doi.org/10.22312/sdusbed.705468

Öz

Objective: First part of this work dedicated to the verification of the percentage depth dose curves that obtained experimentally for 6 MV and 18 MV x-ray photon beams via using Geant4 Monte Carlo simulation. Second part of this study compared the computed mass attenuation coefficients of various human tissues and water between MATLAB and XCOM.
Material-Methods: The central-axis percentage depth doses of Varian Clinac IX linear accelerator were verified via Monte Carlo simulation (Geant4) with square field sizes (10x10 and 30x30 cm2) for 6 MV and 18 MV x-ray photon energies. In addition, mass attenuation coefficients of adipose tissue, blood, muscle, bone, skin and water were computed with MATLAB and were compared with the NIST XCOM data.
Results: Results of the Geant4 modeling were in line with the experimental measurements for percentage depth dose curves. The consistency of Geant4 with experimental results was more explicit for 6 MV photons with the field size of 10x10 cm2. No statistical significant difference between MATLAB and XCOM were found for all mentioned human tissues, except for bone (p=0.039 for bone in both genders). The minimum median percentage difference were calculated for water and skin with a result of 1.23% and 2.19%, respectively.
Conclusion: Geant4 can be used to predict percentage depth dose curves for medical linacs. Mass attenuation coefficients calculated with MATLAB yielded consistent results with previous studies, which means MATLAB can be used as an alternative simulation tool for estimating mass attenuation coefficients of various human tissues and water.

Kaynakça

  • 1. Gottfried KLD, Penn G, editors. Institute of Medicine (US) Committee for Review and Evaluation of the Medical Use Program of the Nuclear Regulatory Commission; Radiation In Medicine: A need for regulatory reform. Washington (DC): National Academies Press (US); 1996. Available from: https://www.ncbi.nlm.nih.gov/books/NBK232715/
  • 2. Caccia B, Andenna C, Cirrone GA. MedLinac2: a GEANT4 based software package for radiotherapy. Ann Ist Super Sanita. 2010; 46(2): 173-177. DOI: 10.4415/ANN_10_02_11.
  • 3. Stewart BW, Wild CP, editors. World cancer report 2014. Lyon: International Agency for Research on Cancer; 2014.
  • 4. Xu XG, Bednarz B, Paganetti H. A review of dosimetry studies on external-beam radiation treatment with respect to second cancer induction phases. Phys in Med Biol. 2008; 53: R193-R241.
  • 5. Agostinelli S., Allison J., Amako K., Apostolaki J., Araujo H., Arce P, et al. Geant4 – a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2003; 56 (3): 250-303.
  • 6. El Bakkali J and El Bardouni T. Validation of Monte Carlo Geant4 code for a 6 MV varian linac. J. King Saud Univ. Sci. 2017; 29: 106–113.
  • 7. Carrier JF, Archambault L, Beaulieu L. Validation of GEANT4 (an object-oriented Monte Carlo toolkit) for simulations in medical physics. Med Phys. 2004; 31: 484-492.
  • 8. Kienböch R. On the quantimetric method. Arch Roentgen Ray. 1906; 11: 17.
  • 9. Tekin HO, Singh VP, Altunsoy EE, Manici T, Sayyed M. Mass attenuation coefficients of human body organs using MCNPX Monte Carlo code. Iran J Med Phys. 2017; 14: 229-240. DOI:10.22038/ijmp.2017.23478.1230.
  • 10. Jones AK, Hintenlang DE and Bolch WE. Tissue-equivalent materials for construction of tomographic dosimetry phamtons in pediatric radiology. Med. Phys. 2003; 30: 2072-2081.
  • 11. ICRU. Tissue substitutes in radiation dosimetry and measurement ICRU Report 44. Bethesda, MD, USA: International Commission on Radiation Units and Measurements; 1989.
  • 12. ICRP. Basic Anatomical and physiological data for use in radiological protection: Reference Values: ICRP Publication 89. Ann. ICRP 32 (3-4). Pergamon; 2002.
  • 13. Hubbell JH. Review and history of photon cross section calculations. Phys. Med. Biol. 2006; 51: 245-262.
  • 14. Foppiano F, Mascialino B, Pia MG, Piergentili M (2004) A Geant4 based simulation of an accelerator head for intensity modulated radiation therapy. In: Nuclear Science Symposium Conference Record, IEEE. 2004; 4: 2128–2132.
  • 15. Chauvie S, Depaola G, Ivanchenko V, Longo F, Nieminen P, Pia MG. Geant4 low energy electromagnetic physics. In: Proceedings of CHEP. 2001; p. 337–340.
  • 16. Cirrone GAP, Cuttone G, Guatelli S, Lo Nigro S, Mascialino B, Pia MG, et al. Implementation of a new Monte Carlo - GEANT4 simulation tool for the development of a proton therapy beam line and verification of the related dose distributions. IEEE Transactions on Nuclear Science. 2005; 52(1): 1756-1758.
  • 17. ICRP. Adult reference computational phantoms: ICRP Publication 110. Ann. ICRP 39 (2). Elsevier; 2009.
  • 18. Ding GX. Dose discrepancies between Monte Carlo calculations and measurements in the buildup region for a high-energy photon beam. Med Phys. 2002; 29(11): 2459-2463. DOI: 10.1118/1.1514237.
  • 19. Sardari D, Maleki R, Samavat H, Esmaeeli A. Measurement of depth-dose of linear accelerator and simulation by use of Geant4 computer code. Reports of Practical Oncology & Radiotherapy. 2010; 15(3): 64-68.
  • 20. Mesbahi A, Fix M, Allahverdi M, Grein E, Garaati H. Monte Carlo calculation of Varian 2300C/D linac photon beam characteristics: a comparison between MCNP4C, GEANT3 and measurements. Appl. Radiat. Isot. 2005; 62: 469–477.
  • 21. Akar A, Baltas H, Cevik U, Korkmaz F, Okumusoglu NT. Measurement of attenuation coefficients for bone, muscle, fat and water at 140, 364 and 662keV γ-ray energies. Journal of Quantitative Spectroscopy and Radiative Transfer. 2006; 102(2): 203-211. DOI:101016/jjqsrt200602007.
  • 22. Hubbell JH, Seltzer SM. Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20MeV for elements Z ¼ 1 to 92 and 48 an additional substances of dosimetric interest. National Institute of Standards and Technology, Physical Reference Data. 1995; p. 5632.

Verification Of Percentage Depth-Doses With Monte Carlo Simulation and Calculation Of Mass Attenuation Coefficients For Various Patient Tissues In Radiation Therapy

Yıl 2020, Cilt: 11 Sayı: 2, 224 - 230, 15.06.2020
https://doi.org/10.22312/sdusbed.705468

Öz

Amaç: Bu çalışmanın ilk kısmında, 6 MV ve 18 MV x-ışını foton demeti için deneysel olarak elde edilen yüzde derin doz eğrilerinin, Geant4 Monte Carlo simülasyonu kullanılarak doğrulanması amaçlanmıştır. Buna ek olarak; çalışmanın ikinci kısmında, MATLAB ve XCOM programları kullanılarak, çeşitli insan dokularının ve suyun kütle zayıflatma katsayıları hesap edilerek karşılaştırıldı.
Materyal-Metot: Varian Clinac IX lineer hızlandırıcı cihazında deneysel olarak ölçülen merkezi eksen yüzde derin dozları; 6 MV ve 18 MV x- ışını foton enerjileri için 10x10 cm2 ve 30x30 cm2 alan boyutlarında, Monte Carlo simülasyonu (Geant4) ile hesap edilerek doğrulandı. Ek olarak; kan, kemik, yağ dokusu, kas, deri ve suyun kütle zayıflama katsayıları MATLAB ile hesaplanarak, NIST XCOM verileri ile karşılaştırıldı.
Bulgular: Geant4 modellemesinin sonuçları, yüzde derin doz eğrileri için deneysel ölçümlerle uyumlu bulundu. Geant4' ün; deneysel sonuçlar ile tutarlılığı, 10x10 cm2 alan büyüklüğünde 6 MV foton enerjisi için daha belirgindi. MATLAB ve XCOM sonuçları arasında; bahsi geçen tüm insan dokuları için kemik hariç hiçbirinde istatistiksel olarak anlamlı bir fark bulunmadı (her iki cinsiyette kemik için p=0.039). En düşük medyan yüzde farkı, su ve cilt için sırasıyla 1.23% ve 2.19% olarak hesaplandı.
Sonuç: Geant4, tıbbi linaklarda, yüzde derin doz eğrilerini hesaplamak için kullanılabilir. MATLAB ile hesaplanan kütle zayıflatma katsayıları önceki çalışmalarda diğer yazılım programları ile elde edilen sonuçlarla tutarlı bulundu. Bu da, MATLAB'ın çeşitli insan dokularının yanı sıra suyun kütle zayıflama katsayılarını hesap etmek için alternatif bir simülasyon aracı olarak kullanılabileceğini göstermektedir.

Kaynakça

  • 1. Gottfried KLD, Penn G, editors. Institute of Medicine (US) Committee for Review and Evaluation of the Medical Use Program of the Nuclear Regulatory Commission; Radiation In Medicine: A need for regulatory reform. Washington (DC): National Academies Press (US); 1996. Available from: https://www.ncbi.nlm.nih.gov/books/NBK232715/
  • 2. Caccia B, Andenna C, Cirrone GA. MedLinac2: a GEANT4 based software package for radiotherapy. Ann Ist Super Sanita. 2010; 46(2): 173-177. DOI: 10.4415/ANN_10_02_11.
  • 3. Stewart BW, Wild CP, editors. World cancer report 2014. Lyon: International Agency for Research on Cancer; 2014.
  • 4. Xu XG, Bednarz B, Paganetti H. A review of dosimetry studies on external-beam radiation treatment with respect to second cancer induction phases. Phys in Med Biol. 2008; 53: R193-R241.
  • 5. Agostinelli S., Allison J., Amako K., Apostolaki J., Araujo H., Arce P, et al. Geant4 – a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2003; 56 (3): 250-303.
  • 6. El Bakkali J and El Bardouni T. Validation of Monte Carlo Geant4 code for a 6 MV varian linac. J. King Saud Univ. Sci. 2017; 29: 106–113.
  • 7. Carrier JF, Archambault L, Beaulieu L. Validation of GEANT4 (an object-oriented Monte Carlo toolkit) for simulations in medical physics. Med Phys. 2004; 31: 484-492.
  • 8. Kienböch R. On the quantimetric method. Arch Roentgen Ray. 1906; 11: 17.
  • 9. Tekin HO, Singh VP, Altunsoy EE, Manici T, Sayyed M. Mass attenuation coefficients of human body organs using MCNPX Monte Carlo code. Iran J Med Phys. 2017; 14: 229-240. DOI:10.22038/ijmp.2017.23478.1230.
  • 10. Jones AK, Hintenlang DE and Bolch WE. Tissue-equivalent materials for construction of tomographic dosimetry phamtons in pediatric radiology. Med. Phys. 2003; 30: 2072-2081.
  • 11. ICRU. Tissue substitutes in radiation dosimetry and measurement ICRU Report 44. Bethesda, MD, USA: International Commission on Radiation Units and Measurements; 1989.
  • 12. ICRP. Basic Anatomical and physiological data for use in radiological protection: Reference Values: ICRP Publication 89. Ann. ICRP 32 (3-4). Pergamon; 2002.
  • 13. Hubbell JH. Review and history of photon cross section calculations. Phys. Med. Biol. 2006; 51: 245-262.
  • 14. Foppiano F, Mascialino B, Pia MG, Piergentili M (2004) A Geant4 based simulation of an accelerator head for intensity modulated radiation therapy. In: Nuclear Science Symposium Conference Record, IEEE. 2004; 4: 2128–2132.
  • 15. Chauvie S, Depaola G, Ivanchenko V, Longo F, Nieminen P, Pia MG. Geant4 low energy electromagnetic physics. In: Proceedings of CHEP. 2001; p. 337–340.
  • 16. Cirrone GAP, Cuttone G, Guatelli S, Lo Nigro S, Mascialino B, Pia MG, et al. Implementation of a new Monte Carlo - GEANT4 simulation tool for the development of a proton therapy beam line and verification of the related dose distributions. IEEE Transactions on Nuclear Science. 2005; 52(1): 1756-1758.
  • 17. ICRP. Adult reference computational phantoms: ICRP Publication 110. Ann. ICRP 39 (2). Elsevier; 2009.
  • 18. Ding GX. Dose discrepancies between Monte Carlo calculations and measurements in the buildup region for a high-energy photon beam. Med Phys. 2002; 29(11): 2459-2463. DOI: 10.1118/1.1514237.
  • 19. Sardari D, Maleki R, Samavat H, Esmaeeli A. Measurement of depth-dose of linear accelerator and simulation by use of Geant4 computer code. Reports of Practical Oncology & Radiotherapy. 2010; 15(3): 64-68.
  • 20. Mesbahi A, Fix M, Allahverdi M, Grein E, Garaati H. Monte Carlo calculation of Varian 2300C/D linac photon beam characteristics: a comparison between MCNP4C, GEANT3 and measurements. Appl. Radiat. Isot. 2005; 62: 469–477.
  • 21. Akar A, Baltas H, Cevik U, Korkmaz F, Okumusoglu NT. Measurement of attenuation coefficients for bone, muscle, fat and water at 140, 364 and 662keV γ-ray energies. Journal of Quantitative Spectroscopy and Radiative Transfer. 2006; 102(2): 203-211. DOI:101016/jjqsrt200602007.
  • 22. Hubbell JH, Seltzer SM. Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20MeV for elements Z ¼ 1 to 92 and 48 an additional substances of dosimetric interest. National Institute of Standards and Technology, Physical Reference Data. 1995; p. 5632.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Araştırma Makaleleri
Yazarlar

Alper Özseven 0000-0001-6128-6426

Ümit Kara 0000-0002-1435-9810

Yayımlanma Tarihi 15 Haziran 2020
Gönderilme Tarihi 19 Ocak 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 11 Sayı: 2

Kaynak Göster

Vancouver Özseven A, Kara Ü. Verification of Percentage Depth-Doses with Monte Carlo Simulation and Calculation of Mass Attenuation Coefficients for Various Patient Tissues in Radiation Therapy. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi. 2020;11(2):224-30.

Cc-by-nc-nd-icon-svg

Creative Commons Attribution 4.0 International License 

Atıf gereklidir, ticari olmayan amaçlarla kullanılabilir ve değişiklik yapılarak türev eser üretilemez.