Araştırma Makalesi
BibTex RIS Kaynak Göster

Diyabetik Hasta Yönetiminde Hemşirelik Stratejileri: Eksenatid Tedavisi Sonrası Parametrelerin Değerlerinin Makine Öğrenme Algoritmasıyla Tahmin Edilmesi

Yıl 2024, Cilt: 15 Sayı: 1, 92 - 105, 22.04.2024
https://doi.org/10.22312/sdusbed.1449989

Öz

Diabetes Mellitus'un (DM) küresel ölçekteki artışı obezite oranlarındaki artışa paraleldir; Türkiye'de yetişkinler arasında diyabet prevalansı %13,7, obezite ise %32'dir. Diyabet ve obezitenin iç içe geçmiş doğası ve ilave kronik hastalık riskinin artması nedeniyle diyabet hastalarının yönetimi kapsamlı bir yaklaşımı gerektirmektedir. Diyabet hemşireleri, düzenli değerlendirmeler, kan şekeri takibi, ilaç yönetimi ve hasta eğitimini kapsayan diyabet bakımında çok önemli bir rol oynamaktadır. İnkretin-mimetik glukagon benzeri peptid-1 reseptör agonistleri (GLP-1A), diyabet ve kilo kontrolünde üstünlük göstererek bunları ikinci basamak tedaviler olarak konumlandırmıştır. Diyabet hemşirelerinin diyabet hastalarına diyet rehberliği, fiziksel aktivite teşviki ve kilo verme yardımı yoluyla hayati destek sağlamasıyla, kilo yönetimi diyabet bakımında temel olmaya devam etmektedir. GLP-1A tedavisine hasta yanıtlarını tahmin etmek, tedavi sonuçlarını optimize etmek, kararları kolaylaştırmak ve potansiyel komplikasyonları önlemek için çok önemlidir.
Yapay zeka (AI) ve makine öğrenimi (ML), sağlık hizmeti sunumunu geliştirmek için umut verici yollar sunmaktadır. Çalışma eksenatid kullanan diyabet hastalarında makine öğrenmesi algoritmalarını kullanarak açlık kan şekeri düzeylerini, HbA1C değerlerini ve kilo kaybı sonuçlarını tahmin etmeyi amaçlamaktadır. Batı Akdeniz'deki gerçek hasta verilerinin analiz edildiği bu çalışma, kilo kaybı, açlık kan şekeri düzeyleri ve HbA1C değerlerini tahmin etmede SVR algoritması sırasıyla %99.9, %99.9 ve %97.3'lük başarı oranlarına ulaşmıştır.
Bulgularımız hemşirelikte, özellikle de diyabetik hasta yönetimine yönelik prognostik modellemede yapay zeka odaklı yaklaşımların potansiyelinin altını çizmektedir. Hemşireler, makine öğreniminden yararlanarak tedavi yanıtlarını tahmin edebilir, karar alma sürecini kolaylaştırabilir ve hasta bakım kalitesini yükseltebilir. Yapay zeka uygulamaları geliştikçe, bu teknolojileri hemşirelik rollerine entegre etmek, hasta merkezli bakımı ilerletmeyi ve sağlık sonuçlarını optimize etmeyi vaat etmektedir.
.

Kaynakça

  • [1] TEMD: Türkiye Endokrinoloji ve Metabolizma Dernegi, “, Diabetes Mellitus ve Komplikasyonlarının Tanı, Tedavi ve Izlem Kılavuzu-2019,” Miki Matbaacılık San. ve Tic. Ltd, vol. 12, no. 1, 2019.
  • [2] T. H. S. K. T.C. Sağlık Bakanlığı, “TC. Sağlık Bakanlığı: Türkiye Diyabet Programı 2015-20,” Ankara, 2014.
  • [3] IDF: Internatıonal Dıabetes Federation., “ Diabetes Atlas 2013,” 2013.
  • [4] A. H. Mokdad et al., “Prevalence of Obesity, Diabetes, and Obesity-Related Health Risk Factors, 2001,” JAMA, vol. 289, no. 1, pp. 76–79, Jan. 2003, doi: 10.1001/JAMA.289.1.76.
  • [5] H. E. Bays, R. H. Chapman, and S. Grandy, “The relationship of body mass index to diabetes mellitus, hypertension and dyslipidaemia: comparison of data from two national surveys,” Int J Clin Pract, vol. 61, no. 5, pp. 737–747, May 2007, doi: 10.1111/J.1742-1241.2007.01336.X.
  • [6] I. Satman et al., “Twelve-year trends in the prevalence and risk factors of diabetes and prediabetes in Turkish adults,” Eur J Epidemiol, vol. 28, no. 2, pp. 169–180, Feb. 2013, doi: 10.1007/S10654-013-9771-5/TABLES/2.
  • [7] A. B. Evert et al., “Nutrition therapy for adults with diabetes or prediabetes: A consensus report,” Diabetes Care, vol. 42, no. 5, pp. 731–754, 2019, doi: 10.2337/DCI19-0014/-/DC1.
  • [8] M. A. Powers et al., “Diabetes Self-management Education and Support in Type 2 Diabetes: A Joint Position Statement of the American Diabetes Association, the American Association of Diabetes Educators, and the Academy of Nutrition and Dietetics,” Diabetes Educator, vol. 43, no. 1, pp. 40–53, Feb. 2017, doi: 10.1177/0145721716689694/ASSET/IMAGES/LARGE/ 10.1177_0145721716689694-FIG2.JPEG.
  • [9] E. L. Johnson et al., “Standards of Medical Care in Diabetes—2019 Abridged for Primary Care Providers,” Clin Diabetes, vol. 37, no. 1, p. 11, Jan. 2019, doi: 10.2337/CD18-0105.
  • [10] A. D. Association, “6. Glycemic Targets: Standards of Medical Care in Diabetes—2018,” Diabetes Care, vol. 41, no. Supplement_1, pp. S55–S64, Jan. 2018, doi: 10.2337/DC18-S006.
  • [11] M. Lambert, “ADA Releases Revisions to Recommendations for Standards of Medical Care in Diabetes,” Am Fam Physician, vol. 85, no. 5, pp. 514–515, Mar. 2012, Accessed: Mar. 01, 2024. [Online]. Available: https://www.aafp.org/pubs/afp/issues/2012/0301/p514.html
  • [12] H. Elrıck, L. Stımmler, C. J. Hlad, and Y. Araı, “Plasma Insulin Response to Oral and Intravenous Glucose Administration,” J Clin Endocrinol Metab, vol. 24, no. 10, pp. 1076–1082, Oct. 1964, doi: 10.1210/JCEM-24-10-1076.
  • [13] R. Çolak, “Tip 2 diabetes mellitus tedavisinde inkretinler,” J Exp Clin Med, vol. 29, no. 1s, pp. 30–38, Jun. 2012, doi: 10.5835/JECM.OMU.29.S1.007.
  • [14] R. S. Poyatos, P. R. Servan, and C. V. Martínez, “[Effects of exenatide lar in type 2 diabetes mellitus and obesity],” Nutr Hosp, vol. 31, no. 1, pp. 292–298, 2014, doi: 10.3305/NH.2015.31.1.8283.
  • [15] J. L. Faillie, O. H. Yu, H. Yin, D. Hillaire-Buys, A. Barkun, and L. Azoulay, “Association of Bile Duct and Gallbladder Diseases With the Use of Incretin-Based Drugs in Patients With Type 2 Diabetes Mellitus,” JAMA Intern Med, vol. 176, no. 10, pp. 1474–1481, Oct. 2016, doi: 10.1001/ JAMAINTERNMED.2016.1531.
  • [16] A. J. Garber et al., “Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the Comprehensive Type 2 Diabetes Management Algorithm – 2020 Executive Summary,” Endocrine Practice, vol. 26, no. 1, pp. 107–139, Jan. 2020, doi: 10.4158/CS-2019-0472.
  • [17] S. E. Inzucchi et al., “Management of Hyperglycemia in Type 2 Diabetes, 2015: A Patient-Centered Approach: Update to a Position Statement of the American Diabetes Association and the European Association for the Study of Diabetes,” Diabetes Care, vol. 38, no. 1, pp. 140–149, Jan. 2015, doi: 10.2337/DC14-2441.
  • [18] M. E. Lean et al., “Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial,” The Lancet, vol. 391, no. 10120, pp. 541–551, Feb. 2018, doi: 10.1016/S0140-6736(17)33102-1.
  • [19] T. L. A. R. Group, “Cardiovascular Effects of Intensive Lifestyle Intervention in Type 2 Diabetes,” https://doi.org/10.1056/NEJMoa1212914, vol. 369, no. 2, pp. 145–154, Jul. 2013, doi: 10.1056/NEJMOA1212914.
  • [20] M. Espeland, “Look AHEAD (Action for Health in Diabetes): design and methods for a clinical trial of weight loss for the prevention of cardiovascular disease in type 2 diabetes,” Control Clin Trials, vol. 24, no. 5, pp. 610–628, Oct. 2003, doi: 10.1016/S0197-2456(03)00064-3.
  • [21] C. M. Bishop, Prml. 2006. Accessed: Mar. 07, 2024. [Online]. Available:https://link.springer.com /book/ 9780387310732
  • [22] Z. Obermeyer and E. J. Emanuel, “Predicting the Future — Big Data, Machine Learning, and Clinical Medicine,” N Engl J Med, vol. 375, no. 13, p. 1216, Sep. 2016, doi: 10.1056/NEJMP1606181.
  • [23] R. C. Deo, “Machine Learning in Medicine,” Circulation, vol. 132, no. 20, pp. 1920–1930, Nov. 2015, doi: 10.1161/CIRCULATIONAHA.115.001593.
  • [24] M. Long, Y. Cao, Z. Cao, J. Wang, and M. I. Jordan, “Transferable Representation Learning with Deep Adaptation Networks,” IEEE Trans Pattern Anal Mach Intell, vol. 41, no. 12, pp. 3071–3085, Dec. 2019, doi: 10.1109/TPAMI.2018.2868685.
  • [25] S. Spanig, A. Emberger-Klein, J. P. Sowa, A. Canbay, K. Menrad, and D. Heider, “The virtual doctor: An interactive clinical-decision-support system based on deep learning for non-invasive prediction of diabetes,” Artif Intell Med, vol. 100, p. 101706, Sep. 2019, doi: 10.1016/J.ARTMED.2019.101706.
  • [26] J. Baumbach and H. H. H. W. Schmidt, “The End of Medicine as We Know It: Introduction to the New Journal, Systems Medicine,” https://home.liebertpub.com/sysm, vol. 1, no. 1, pp. 1–2, Feb. 2018, doi: 10.1089/SYSM.2017.28999.JBA.
  • [27] A. Talaei-Khoei and J. M. Wilson, “Identifying people at risk of developing type 2 diabetes: A comparison of predictive analytics techniques and predictor variables,” Int J Med Inform, vol. 119, pp. 22–38, Nov. 2018, doi: 10.1016/J.IJMEDINF.2018.08.008.
  • [28] E. Rosten and T. Drummond, “Machine Learning for High-Speed Corner Detection,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3951 LNCS, pp. 430–443, 2006, doi: 10.1007/11744023_34.
  • [29] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, “Quantum machine learning,” Nature 2017 549:7671, vol. 549, no. 7671, pp. 195–202, Sep. 2017, doi: 10.1038/nature23474.
  • [30] J. Peters, “Machine Learning for Robotics: Learning Methods for Robot Motor Skills,” 2008, Accessed: Mar. 07, 2024. [Online]. Available: https://www.ias.informatik.tu-darmstadt.de/uploads/Research/Thesis/thesis_1.pdf
  • [31] A. T. Hammid, M. H. Bin Sulaiman, and A. N. Abdalla, “Prediction of small hydropower plant power production in Himreen Lake dam (HLD) using artificial neural network,” Alexandria Engineering Journal, vol. 57, no. 1, pp. 211–221, Mar. 2018, doi: 10.1016/J.AEJ.2016.12.011.
  • [32] G. Mishra, D. Sehgal, and J. K. Valadi, “Quantitative Structure Activity Relationship study of the Anti-Hepatitis Peptides employing Random Forests and Extra-trees regressors,” Bioinformation, vol. 13, no. 3, p. 60, Mar. 2017, doi: 10.6026/97320630013060.
  • [33] M. K. AlOmar, M. M. Hameed, and M. A. AlSaadi, “Multi hours ahead prediction of surface ozone gas concentration: Robust artificial intelligence approach,” Atmos Pollut Res, vol. 11, no. 9, pp. 1572–1587, Sep. 2020, doi: 10.1016/J.APR.2020.06.024.
  • [34] C. J. Willmott and K. Matsuura, “Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance,” Clim Res, vol. 30, no. 1, pp. 79–82, Dec. 2005, doi: 10.3354/CR030079.
  • [35] S. Ersoy, İ. H. Ersoy, and Ş. Özkahraman-Koç, “Examination of Quality of life in Patients Using Exenatide with Different Dimensions,” Journal Of Pakistan Medical Association, vol. 72, no. 5, pp. 817–821, 2022.
  • [36] F. A. Spanhol, L. S. Oliveira, C. Petitjean, and L. Heutte, “Breast cancer histopathological image classification using Convolutional Neural Networks,” Proceedings of the International Joint Conference on Neural Networks, vol. 2016-October, pp. 2560–2567, Oct. 2016, doi: 10.1109/IJCNN.2016.7727519.
  • [37] J. Shan, S. K. Alam, B. Garra, Y. Zhang, and T. Ahmed, “Computer-Aided Diagnosis for Breast Ultrasound Using Computerized BI-RADS Features and Machine Learning Methods,” Ultrasound Med Biol, vol. 42, no. 4, pp. 980–988, Apr. 2016, doi: 10.1016/J.ULTRASMEDBIO.2015.11.016.
  • [38] X. Yang and B. Fei, “3D prostate segmentation of ultrasound images combining longitudinal image registration and machine learning,” https://doi.org/10.1117/12.912188, vol. 8316, pp. 803–811, Feb. 2012, doi: 10.1117/12.912188.
  • [39] X. G. Zhang, J. J. Xu, and G. Y. Ge, “Defects recognition on X-ray images for weld inspection using SVM,” Proceedings of 2004 International Conference on Machine Learning and Cybernetics, vol. 6, pp. 3721–3725, 2004, doi: 10.1109/ICMLC.2004.1380463.
  • [40] E. I. Zacharaki et al., “Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme,” Magn Reson Med, vol. 62, no. 6, p. 1609–1618, Dec. 2009, doi: 10.1002/MRM.22147.
  • [41] A. A. Süzen, “LSTM Derin Sinir Ağları ile Üniversite Giriş Sınavındaki Matematik Soru Sayılarının Konulara Göre Tahmini”, Engineering Sciences (NWSAENS), 2019, vol. 14, no. 3, p. 112-118.doi: 10.12739/NWSA.2019.14.3.1A0436.
  • [42] A. A. Süzen and K. Kayaalp, “Classification of Induction Motors by Fault Type with bidirectional Long-Short Term Memory Method”, 4. Uluslararası Mühendislik ve Doğa Bilimlerinde Yenilikçi Yaklaşımlar Sempozyumu, Samsun, Türkiye, 22 Kasım 2019. doi: 10.36287/setsci.4.6.074.
  • [43] Qeethara Kadhim Al-Shayea, “Artificial Neural Networks in Medical Diagnosis,” IJCSI International Journal of Computer Science Issues, vol. 8, no. 2, p. 150–154, 2011.
  • [44] C. Zhao, G. Z. Li, C. Wang, and J. Niu, “Advances in patient classification for traditional Chinese medicine: a machine learning perspective,” Evid Based Complement Alternat Med, vol. 2015, pp. 1–18, 2015.
  • [45] M. Barrios, M. Jimeno, P. Villalba, and E. Navarro, “Novel Data Mining Methodology for Healthcare Applied to a New Model to Diagnose Metabolic Syndrome without a Blood Test,” Diagnostics 2019, Vol. 9, Page 192, vol. 9, no. 4, p. 192, Nov. 2019, doi: 10.3390/ DIAGNOSTICS9040192.
  • [46] H. Lotfi et al., “Machine learning as new promising technique for selection of significant features in obese women with type 2 diabetes,” Horm Mol Biol Clin Investig, vol. 41, no. 1, Mar. 2020, doi: 10.1515/HMBCI-2019-0019/MACHINEREADABLECITATION/RIS.
  • [47] H. Riaz, J. Park, H. Choi, H. Kim, and J. Kim, “Deep and Densely Connected Networks for Classification of Diabetic Retinopathy,” Diagnostics 2020, Vol. 10, Page 24, vol. 10, no. 1, p. 24, Jan. 2020, doi: 10.3390/DIAGNOSTICS10010024.

Nursing Strategies for Diabetic Patient Management: Predicting Parameter Values Post-Exenatide Treatment with Machine Learning Algorithm

Yıl 2024, Cilt: 15 Sayı: 1, 92 - 105, 22.04.2024
https://doi.org/10.22312/sdusbed.1449989

Öz

The global escalation of DM parallels the rise in obesity rates, with Turkey experiencing a prevalence of 13.7% for diabetes and 32% for obesity among adults. Managing diabetic patients necessitates a comprehensive approach due to the intertwined nature of diabetes and obesity, along with the heightened risk of additional chronic illnesses. Diabet nurses play a pivotal role in diabetic care, encompassing regular assessments, blood glucose monitoring, medication management, patient education. Incretin-mimetic glucagon-like peptide-1 receptor-agonists (GLP-1A) have demonstrated superiority in diabetes, weight control, positioning them as second-line treatments. Weight management remains fundamental in diabetes care, with Diabet nurses providing vital support through dietary guidance, physical activity promotion, and weight loss assistance for diabetic patients. Predicting patient responses to GLP-1A therapy is crucial for optimizing treatment outcomes, streamlining decisions, averting potential complications.

Artificial intelligence (AI) and machine learning (ML) offer promising avenues for enhancing healthcare delivery. Our study aimed to forecast fasting blood sugar levels, HbA1C values, and weight loss outcomes in diabetic patients using exenatide, utilizing the random forest algorithm. Analyzing real patient data from the Western-Mediterranean, this study achieved substantial success rates of %99.9, %99.9 and %97.3 in predicting weight loss, fasting blood sugar levels, and HbA1C values, respectively.

Our findings underscore the potential of AI-driven approaches in nursing, particularly in prognostic modeling for diabetic patient management. By leveraging ML, nurses can anticipate treatment responses, streamline decision-making, and elevate patient care quality. As AI applications evolve, integrating these technologies into nursing roles promises to advance patient-centered care and optimize health outcomes.

Kaynakça

  • [1] TEMD: Türkiye Endokrinoloji ve Metabolizma Dernegi, “, Diabetes Mellitus ve Komplikasyonlarının Tanı, Tedavi ve Izlem Kılavuzu-2019,” Miki Matbaacılık San. ve Tic. Ltd, vol. 12, no. 1, 2019.
  • [2] T. H. S. K. T.C. Sağlık Bakanlığı, “TC. Sağlık Bakanlığı: Türkiye Diyabet Programı 2015-20,” Ankara, 2014.
  • [3] IDF: Internatıonal Dıabetes Federation., “ Diabetes Atlas 2013,” 2013.
  • [4] A. H. Mokdad et al., “Prevalence of Obesity, Diabetes, and Obesity-Related Health Risk Factors, 2001,” JAMA, vol. 289, no. 1, pp. 76–79, Jan. 2003, doi: 10.1001/JAMA.289.1.76.
  • [5] H. E. Bays, R. H. Chapman, and S. Grandy, “The relationship of body mass index to diabetes mellitus, hypertension and dyslipidaemia: comparison of data from two national surveys,” Int J Clin Pract, vol. 61, no. 5, pp. 737–747, May 2007, doi: 10.1111/J.1742-1241.2007.01336.X.
  • [6] I. Satman et al., “Twelve-year trends in the prevalence and risk factors of diabetes and prediabetes in Turkish adults,” Eur J Epidemiol, vol. 28, no. 2, pp. 169–180, Feb. 2013, doi: 10.1007/S10654-013-9771-5/TABLES/2.
  • [7] A. B. Evert et al., “Nutrition therapy for adults with diabetes or prediabetes: A consensus report,” Diabetes Care, vol. 42, no. 5, pp. 731–754, 2019, doi: 10.2337/DCI19-0014/-/DC1.
  • [8] M. A. Powers et al., “Diabetes Self-management Education and Support in Type 2 Diabetes: A Joint Position Statement of the American Diabetes Association, the American Association of Diabetes Educators, and the Academy of Nutrition and Dietetics,” Diabetes Educator, vol. 43, no. 1, pp. 40–53, Feb. 2017, doi: 10.1177/0145721716689694/ASSET/IMAGES/LARGE/ 10.1177_0145721716689694-FIG2.JPEG.
  • [9] E. L. Johnson et al., “Standards of Medical Care in Diabetes—2019 Abridged for Primary Care Providers,” Clin Diabetes, vol. 37, no. 1, p. 11, Jan. 2019, doi: 10.2337/CD18-0105.
  • [10] A. D. Association, “6. Glycemic Targets: Standards of Medical Care in Diabetes—2018,” Diabetes Care, vol. 41, no. Supplement_1, pp. S55–S64, Jan. 2018, doi: 10.2337/DC18-S006.
  • [11] M. Lambert, “ADA Releases Revisions to Recommendations for Standards of Medical Care in Diabetes,” Am Fam Physician, vol. 85, no. 5, pp. 514–515, Mar. 2012, Accessed: Mar. 01, 2024. [Online]. Available: https://www.aafp.org/pubs/afp/issues/2012/0301/p514.html
  • [12] H. Elrıck, L. Stımmler, C. J. Hlad, and Y. Araı, “Plasma Insulin Response to Oral and Intravenous Glucose Administration,” J Clin Endocrinol Metab, vol. 24, no. 10, pp. 1076–1082, Oct. 1964, doi: 10.1210/JCEM-24-10-1076.
  • [13] R. Çolak, “Tip 2 diabetes mellitus tedavisinde inkretinler,” J Exp Clin Med, vol. 29, no. 1s, pp. 30–38, Jun. 2012, doi: 10.5835/JECM.OMU.29.S1.007.
  • [14] R. S. Poyatos, P. R. Servan, and C. V. Martínez, “[Effects of exenatide lar in type 2 diabetes mellitus and obesity],” Nutr Hosp, vol. 31, no. 1, pp. 292–298, 2014, doi: 10.3305/NH.2015.31.1.8283.
  • [15] J. L. Faillie, O. H. Yu, H. Yin, D. Hillaire-Buys, A. Barkun, and L. Azoulay, “Association of Bile Duct and Gallbladder Diseases With the Use of Incretin-Based Drugs in Patients With Type 2 Diabetes Mellitus,” JAMA Intern Med, vol. 176, no. 10, pp. 1474–1481, Oct. 2016, doi: 10.1001/ JAMAINTERNMED.2016.1531.
  • [16] A. J. Garber et al., “Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the Comprehensive Type 2 Diabetes Management Algorithm – 2020 Executive Summary,” Endocrine Practice, vol. 26, no. 1, pp. 107–139, Jan. 2020, doi: 10.4158/CS-2019-0472.
  • [17] S. E. Inzucchi et al., “Management of Hyperglycemia in Type 2 Diabetes, 2015: A Patient-Centered Approach: Update to a Position Statement of the American Diabetes Association and the European Association for the Study of Diabetes,” Diabetes Care, vol. 38, no. 1, pp. 140–149, Jan. 2015, doi: 10.2337/DC14-2441.
  • [18] M. E. Lean et al., “Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial,” The Lancet, vol. 391, no. 10120, pp. 541–551, Feb. 2018, doi: 10.1016/S0140-6736(17)33102-1.
  • [19] T. L. A. R. Group, “Cardiovascular Effects of Intensive Lifestyle Intervention in Type 2 Diabetes,” https://doi.org/10.1056/NEJMoa1212914, vol. 369, no. 2, pp. 145–154, Jul. 2013, doi: 10.1056/NEJMOA1212914.
  • [20] M. Espeland, “Look AHEAD (Action for Health in Diabetes): design and methods for a clinical trial of weight loss for the prevention of cardiovascular disease in type 2 diabetes,” Control Clin Trials, vol. 24, no. 5, pp. 610–628, Oct. 2003, doi: 10.1016/S0197-2456(03)00064-3.
  • [21] C. M. Bishop, Prml. 2006. Accessed: Mar. 07, 2024. [Online]. Available:https://link.springer.com /book/ 9780387310732
  • [22] Z. Obermeyer and E. J. Emanuel, “Predicting the Future — Big Data, Machine Learning, and Clinical Medicine,” N Engl J Med, vol. 375, no. 13, p. 1216, Sep. 2016, doi: 10.1056/NEJMP1606181.
  • [23] R. C. Deo, “Machine Learning in Medicine,” Circulation, vol. 132, no. 20, pp. 1920–1930, Nov. 2015, doi: 10.1161/CIRCULATIONAHA.115.001593.
  • [24] M. Long, Y. Cao, Z. Cao, J. Wang, and M. I. Jordan, “Transferable Representation Learning with Deep Adaptation Networks,” IEEE Trans Pattern Anal Mach Intell, vol. 41, no. 12, pp. 3071–3085, Dec. 2019, doi: 10.1109/TPAMI.2018.2868685.
  • [25] S. Spanig, A. Emberger-Klein, J. P. Sowa, A. Canbay, K. Menrad, and D. Heider, “The virtual doctor: An interactive clinical-decision-support system based on deep learning for non-invasive prediction of diabetes,” Artif Intell Med, vol. 100, p. 101706, Sep. 2019, doi: 10.1016/J.ARTMED.2019.101706.
  • [26] J. Baumbach and H. H. H. W. Schmidt, “The End of Medicine as We Know It: Introduction to the New Journal, Systems Medicine,” https://home.liebertpub.com/sysm, vol. 1, no. 1, pp. 1–2, Feb. 2018, doi: 10.1089/SYSM.2017.28999.JBA.
  • [27] A. Talaei-Khoei and J. M. Wilson, “Identifying people at risk of developing type 2 diabetes: A comparison of predictive analytics techniques and predictor variables,” Int J Med Inform, vol. 119, pp. 22–38, Nov. 2018, doi: 10.1016/J.IJMEDINF.2018.08.008.
  • [28] E. Rosten and T. Drummond, “Machine Learning for High-Speed Corner Detection,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3951 LNCS, pp. 430–443, 2006, doi: 10.1007/11744023_34.
  • [29] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, “Quantum machine learning,” Nature 2017 549:7671, vol. 549, no. 7671, pp. 195–202, Sep. 2017, doi: 10.1038/nature23474.
  • [30] J. Peters, “Machine Learning for Robotics: Learning Methods for Robot Motor Skills,” 2008, Accessed: Mar. 07, 2024. [Online]. Available: https://www.ias.informatik.tu-darmstadt.de/uploads/Research/Thesis/thesis_1.pdf
  • [31] A. T. Hammid, M. H. Bin Sulaiman, and A. N. Abdalla, “Prediction of small hydropower plant power production in Himreen Lake dam (HLD) using artificial neural network,” Alexandria Engineering Journal, vol. 57, no. 1, pp. 211–221, Mar. 2018, doi: 10.1016/J.AEJ.2016.12.011.
  • [32] G. Mishra, D. Sehgal, and J. K. Valadi, “Quantitative Structure Activity Relationship study of the Anti-Hepatitis Peptides employing Random Forests and Extra-trees regressors,” Bioinformation, vol. 13, no. 3, p. 60, Mar. 2017, doi: 10.6026/97320630013060.
  • [33] M. K. AlOmar, M. M. Hameed, and M. A. AlSaadi, “Multi hours ahead prediction of surface ozone gas concentration: Robust artificial intelligence approach,” Atmos Pollut Res, vol. 11, no. 9, pp. 1572–1587, Sep. 2020, doi: 10.1016/J.APR.2020.06.024.
  • [34] C. J. Willmott and K. Matsuura, “Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance,” Clim Res, vol. 30, no. 1, pp. 79–82, Dec. 2005, doi: 10.3354/CR030079.
  • [35] S. Ersoy, İ. H. Ersoy, and Ş. Özkahraman-Koç, “Examination of Quality of life in Patients Using Exenatide with Different Dimensions,” Journal Of Pakistan Medical Association, vol. 72, no. 5, pp. 817–821, 2022.
  • [36] F. A. Spanhol, L. S. Oliveira, C. Petitjean, and L. Heutte, “Breast cancer histopathological image classification using Convolutional Neural Networks,” Proceedings of the International Joint Conference on Neural Networks, vol. 2016-October, pp. 2560–2567, Oct. 2016, doi: 10.1109/IJCNN.2016.7727519.
  • [37] J. Shan, S. K. Alam, B. Garra, Y. Zhang, and T. Ahmed, “Computer-Aided Diagnosis for Breast Ultrasound Using Computerized BI-RADS Features and Machine Learning Methods,” Ultrasound Med Biol, vol. 42, no. 4, pp. 980–988, Apr. 2016, doi: 10.1016/J.ULTRASMEDBIO.2015.11.016.
  • [38] X. Yang and B. Fei, “3D prostate segmentation of ultrasound images combining longitudinal image registration and machine learning,” https://doi.org/10.1117/12.912188, vol. 8316, pp. 803–811, Feb. 2012, doi: 10.1117/12.912188.
  • [39] X. G. Zhang, J. J. Xu, and G. Y. Ge, “Defects recognition on X-ray images for weld inspection using SVM,” Proceedings of 2004 International Conference on Machine Learning and Cybernetics, vol. 6, pp. 3721–3725, 2004, doi: 10.1109/ICMLC.2004.1380463.
  • [40] E. I. Zacharaki et al., “Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme,” Magn Reson Med, vol. 62, no. 6, p. 1609–1618, Dec. 2009, doi: 10.1002/MRM.22147.
  • [41] A. A. Süzen, “LSTM Derin Sinir Ağları ile Üniversite Giriş Sınavındaki Matematik Soru Sayılarının Konulara Göre Tahmini”, Engineering Sciences (NWSAENS), 2019, vol. 14, no. 3, p. 112-118.doi: 10.12739/NWSA.2019.14.3.1A0436.
  • [42] A. A. Süzen and K. Kayaalp, “Classification of Induction Motors by Fault Type with bidirectional Long-Short Term Memory Method”, 4. Uluslararası Mühendislik ve Doğa Bilimlerinde Yenilikçi Yaklaşımlar Sempozyumu, Samsun, Türkiye, 22 Kasım 2019. doi: 10.36287/setsci.4.6.074.
  • [43] Qeethara Kadhim Al-Shayea, “Artificial Neural Networks in Medical Diagnosis,” IJCSI International Journal of Computer Science Issues, vol. 8, no. 2, p. 150–154, 2011.
  • [44] C. Zhao, G. Z. Li, C. Wang, and J. Niu, “Advances in patient classification for traditional Chinese medicine: a machine learning perspective,” Evid Based Complement Alternat Med, vol. 2015, pp. 1–18, 2015.
  • [45] M. Barrios, M. Jimeno, P. Villalba, and E. Navarro, “Novel Data Mining Methodology for Healthcare Applied to a New Model to Diagnose Metabolic Syndrome without a Blood Test,” Diagnostics 2019, Vol. 9, Page 192, vol. 9, no. 4, p. 192, Nov. 2019, doi: 10.3390/ DIAGNOSTICS9040192.
  • [46] H. Lotfi et al., “Machine learning as new promising technique for selection of significant features in obese women with type 2 diabetes,” Horm Mol Biol Clin Investig, vol. 41, no. 1, Mar. 2020, doi: 10.1515/HMBCI-2019-0019/MACHINEREADABLECITATION/RIS.
  • [47] H. Riaz, J. Park, H. Choi, H. Kim, and J. Kim, “Deep and Densely Connected Networks for Classification of Diabetic Retinopathy,” Diagnostics 2020, Vol. 10, Page 24, vol. 10, no. 1, p. 24, Jan. 2020, doi: 10.3390/DIAGNOSTICS10010024.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Dahili Hastalıklar Hemşireliği
Bölüm Araştırma Makaleleri
Yazarlar

Sıddıka Ersoy 0000-0001-8094-8042

Remzi Gürfidan 0000-0002-4899-2219

Yayımlanma Tarihi 22 Nisan 2024
Gönderilme Tarihi 9 Mart 2024
Kabul Tarihi 15 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 15 Sayı: 1

Kaynak Göster

Vancouver Ersoy S, Gürfidan R. Nursing Strategies for Diabetic Patient Management: Predicting Parameter Values Post-Exenatide Treatment with Machine Learning Algorithm. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi. 2024;15(1):92-105.

SDÜ Sağlık Bilimleri Dergisi, makalenin gönderilmesi ve yayınlanması dahil olmak üzere hiçbir aşamada herhangi bir ücret talep etmemektedir. Dergimiz, bilimsel araştırmaları okuyucuya ücretsiz sunmanın bilginin küresel paylaşımını artıracağı ilkesini benimseyerek, içeriğine anında açık erişim sağlamaktadır.