Araştırma Makalesi
BibTex RIS Kaynak Göster

Phytofabrication of Selenium-Silver Bimetallic Nanoparticles Using Echinacea purpurea Extract: Characterization and Antioxidant Activity

Yıl 2024, Cilt: 15 Sayı: 2, 198 - 208, 28.08.2024
https://doi.org/10.22312/sdusbed.1491658

Öz

The phytofabrication of selenium-silver bimetallic nanoparticles (Se-Ag BNPs) utilizing Echinacea purpurea aqueous extract is investigated in this study. The synthesis process is characterized by a visible color change to dark reddish brown, a sign indicating successful nanoparticle formation. UV-visible spectrum analysis confirms the presence of SeNPs and AgNPs with absorption maxima at 268 nm and 325 nm, respectively. X-ray diffraction (XRD) patterns reveal the crystalline structure of the synthesized Se-Ag BNPs, exhibiting characteristic peaks consistent with metallic silver and selenium nanoparticles. Transmission electron microscopy (TEM) analysis showcases the diverse morphological structures of the Se-Ag BNPs, predominantly spherical but also featuring hexagonal and oval shapes. The average particle size is determined to be 33.38 nm, indicating uniformity and stability. Furthermore, the antioxidant properties of Se-Ag BNPs are evaluated through DPPH and ABTS radical scavenging assays, demonstrating dose-dependent scavenging capabilities with IC50 values of 264.78 µg/mL and 344.19 µg/mL, respectively. These findings underscore the potential of Se-Ag BNPs as effective antioxidants, offering promising applications in various fields such as biomedicine and environmental remediation. Comparisons with previous studies highlight the efficacy of the biosynthesis method using Echinacea purpurea extract in producing Se-Ag BNPs with superior antioxidant activity.

Kaynakça

  • [1] Najahi-Missaoui, W., Arnold, R. D., Cummings, B. S. 2020. Safe Nanoparticles: Are We There Yet? International Journal of Molecular Sciences, 22(1), 385.
  • [2] Arora, N., Thangavelu, K., Karanikolos, G. N. 2020. Bimetallic Nanoparticles for Antimicrobial Applications. Frontiers in Chemistry, 8, 412.
  • [3] Abaszadeh, F., Ashoub, M. H., Khajouie, G., Amiri, M. 2023. Nanotechnology development in surgical applications: recent trends and developments. European Journal of Medical Research, 28(1), 537.
  • [4] Salunke, B. K., Sawant, S. S., Lee, S. I., Kim, B. S. 2016. Microorganisms as efficient biosystem for the synthesis of metal nanoparticles: current scenario and future possibilities. World Journal of Microbiology and Biotechnology, 32(5), 88.
  • [5] Gwinn, M. R., Vallyathan, V. 2006. Nanoparticles: health effects--pros and cons. Environmental Health Perspectives, 114(12), 1818-1825.
  • [6] Missaoui, W. N., Arnold, R. D., & Cummings, B. S. 2018. Toxicological status of nanoparticles: What we know and what we don't know. Chemical Biology & Interactions, 295, 1-12.
  • [7] Szczyglewska, P., Feliczak-Guzik, A., Nowak, I. 2023. Nanotechnology-General Aspects: A Chemical Reduction Approach to the Synthesis of Nanoparticles. Molecules, 28(13),4932.
  • [8] Song, J.Y., Kim, B.S. 2009. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng, 32, 79–84.
  • [9] El-Sayed, E.R., Mousa, S.A., Abdou, D.A.M., Abo El-Seoud, M.A., Elmehlawy, A.A., Mohamed, S.S. 2022. Exploiting the exceptional biosynthetic potency of the endophytic Aspergillus terreus in enhancing production of Co3O4, CuO, Fe3O4, NiO, and ZnO nanoparticles using bioprocess optimization and gamma irradiation. Saudi J Biol Sci, 29(4),2463-2474.
  • [10] Miu, B.A., Dinischiotu, A. 2022. New Green Approaches in Nanoparticles Synthesis: An Overview. Molecules, 27(19), 6472.
  • [11] Jain, A.S., Pawar, P.S., Sarkar, A., Junnuthula, V., Dyawanapelly, S. 2021. Bionanofactories for Green Synthesis of Silver Nanoparticles: Toward Antimicrobial Applications. Int J Mol Sci, 22(21),11993.
  • [12] Mikhailova, E.O. 2023. Selenium Nanoparticles: Green Synthesis and Biomedical Application. Molecules, 28(24),8125.
  • [13] Mishra, S., Panigrahi, B., Singh, R.K., Mandal, D. 2023. Catechol Mediated Synthesis of Monometallic and Bimetallic Nanoparticles and Catalytic Efficiency of Monometallic Nanoparticles. Catal Lett 153,1602–1614.
  • [14] Hano, C., Abbasi, B.H. 2021. Plant-Based Green Synthesis of Nanoparticles: Production, Characterization and Applications. Biomolecules,12(1),31.
  • [15] El-Behery, R.R., El-Sayed, E.R., El-Sayyad, G.S. 2023. Gamma rays-assisted bacterial synthesis of bimetallic silver-selenium nanoparticles: powerful antimicrobial, antibiofilm, antioxidant, and photocatalytic activities. BMC Microbiol, 23(1),224.
  • [16] Elakraa, A.A., Salem, S.S., El-Sayyad, G.S., Attia, M.S. 2022. Cefotaxime incorporated bimetallic silver-selenium nanoparticles: promising antimicrobial synergism, antibiofilm activity, and bacterial membrane leakage reaction mechanism. RSC Adv, 12(41),26603-26619.
  • [17] Azmat, A., Zafar, S. 2023. Trigonella foenum-graecum-based facile one-pot green synthesis, characterization, and biological activities of silver/copper bimetallic nanoparticles. Nanotechnol Environ Eng, 8,733–744.
  • [18] Liu, X., Wang, D., Li, Y. 2012. Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today, 7(5), 448-466.
  • [19] Ehsan, M., Waheed, A., Ullah, A., Kazmi, A., Ali, A., Raja, N.I., Mashwani, Z.U., Sultana, T., Mustafa, N., Ikram, M., Li, H. 2022. Plant-Based Bimetallic Silver-Zinc Oxide Nanoparticles: A Comprehensive Perspective of Synthesis, Biomedical Applications, and Future Trends. Biomed Res Int, 2022,1215183.
  • [20] Scala, A., Neri, G., Micale, N., Cordaro, M., Piperno, A. 2022. State of the Art on Green Route Synthesis of Gold/Silver Bimetallic Nanoparticles. Molecules, 27(3),1134.
  • [21] Allam, B.K., Musa, N., Debnath, A., Usman, U.L., Banerjee, S. 2021. Recent developments and application of bimetallic based materials in water purification. Environmental Challenges, 5,100405.
  • [22] Hao, Z., Wang, M., Cheng, L., Si, M., Feng, Z., Feng, Z. 2024. Synergistic antibacterial mechanism of silver-copper bimetallic nanoparticles. Front Bioeng Biotechnol, 11,1337543.
  • [23] Saravanakumar, K., Sathiyaseelan, A., Zhang, X., Wang, M. H. 2024. Synthesis and Characterization of Bimetallic Platinum/Selenium (Pt/Se) Nanoparticles for Synergistic Antibacterial Activity. BioNanoSci, 1-13.
  • [24] Duan, S., Wang, R. 2013. Bimetallic nanostructures with magnetic and noble metals and their physicochemical applications. Progress in Natural Science: Materials International, 23(2),113-126.
  • [25] Hashem, A.H., El-Sayyad, G.S., Al-Askar, A.A., Marey, S.A., AbdElgawad, H., Abd-Elsalam, K.A., Saied, E. 2023. Watermelon Rind Mediated Biosynthesis of Bimetallic Selenium-Silver Nanoparticles: Characterization, Antimicrobial and Anticancer Activities. Plants (Basel), 12(18), 3288.
  • [26] Lee, S. H., Jun, B.H. 2019. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int J Mol Sci, 20(4), 865.
  • [27] Bruna, T., Maldonado-Bravo, F., Jara, P., Caro, N. 2021. Silver Nanoparticles and Their Antibacterial Applications. Int J Mol Sci, 22(13), 7202.
  • [28] Essghaier, B., Dridi, R., Mottola, F., Rocco, L., Zid, M.F., Hannachi, H. 2022. Biosynthesis and Characterization of Silver Nanoparticles from the Extremophile Plant Aeonium haworthii and Their Antioxidant, Antimicrobial and Anti-Diabetic Capacities. Nanomaterials (Basel),13(1),100.
  • [29] Das, G., Patra, J. K., Debnath, T., Ansari, A., Shin, H.S. 2019. Investigation of antioxidant, antibacterial, antidiabetic, and cytotoxicity potential of silver nanoparticles synthesized using the outer peel extract of Ananas comosus (L.). PLoS One, 14(8), e0220950.
  • [30] Ahamad Tarmizi, A.A., Nik Ramli, N.N., Adam, S.H., Abdul Mutalib, M., Mokhtar, M.H., Tang, S.G.H. 2023. Phytofabrication of Selenium Nanoparticles with Moringa oleifera (MO-SeNPs) and Exploring Its Antioxidant and Antidiabetic Potential. Molecules, 28(14),5322.
  • [31] Ikram, M., Javed, B., Raja, N.I., Mashwani, Z.U. 2021. Biomedical Potential of Plant-Based Selenium Nanoparticles: A Comprehensive Review on Therapeutic and Mechanistic Aspects. Int J Nanomedicine,16, 249-268.
  • [32] Gutiérrez, R.M.P., Gómez, J.T., Urby, R.B., Soto, J.G.C., Parra, H.R. 2022. Evaluation of Diabetes Effects of Selenium Nanoparticles Synthesized from a Mixture of Luteolin and Diosmin on Streptozotocin-Induced Type 2 Diabetes in Mice. Molecules, 27(17),5642.
  • [33] Saratale, G.D., Saratale, R.G., Kim, D.S., Kim, D.Y., Shin, H.S. 2020. Exploiting Fruit Waste Grape Pomace for Silver Nanoparticles Synthesis, Assessing Their Antioxidant, Antidiabetic Potential and Antibacterial Activity Against Human Pathogens: A Novel Approach. Nanomaterials (Basel) 10(8),1457.
  • [34] Khodeer, D.M., Nasr, A.M., Swidan, S.A., Shabayek, S., Khinkar, R.M., Aldurdunji, M.M., Ramadan, M.A., Badr, J.M. 2023. Characterization, antibacterial, antioxidant, antidiabetic, and anti-inflammatory activities of green synthesized silver nanoparticles using Phragmanthera austroarabica A. G. Mill and J. A. Nyberg extract. Front Microbiol,13,1078061.
  • [35] Geremew, A., Gonzalles, J. 3rd., Peace, E., Woldesenbet, S., Reeves, S., Brooks, N. Jr., Carson, L. 2024. Green Synthesis of Novel Silver Nanoparticles Using Salvia blepharophylla and Salvia greggii: Antioxidant and Antidiabetic Potential and Effect on Foodborne Bacterial Pathogens. Int J Mol Sci, 25(2),904.
  • [36] Hassan, R.M., Elsayed, M., Kholief, T.E., Hassanen, N.H.M., Gafer, J.A., Attia, Y.A. 2021. Mitigating effect of single or combined administration of nanoparticles of zinc oxide, chromium oxide, and selenium on genotoxicity and metabolic insult in fructose/streptozotocin diabetic rat model. Environ Sci Pollut Res Int, 28(35), 48517-48534.
  • [37] Balčiūnaitė-Murzienė, G., Miknienė, Z., Ragažinskienė, O., Juodžiukynienė, N., Savickas, A., Savickienė, N., Pangonytė, D. 2021. Echinacea purpurea L. (Moench) Hemagglutinin Effect on Immune Response In Vivo. Plants (Basel), 10(5),936.
  • [38] Vieira, S.F., Gonçalves, S.M., Gonçalves, V.M.F., Llaguno, C.P., Macías, F., Tiritan, M.E., Cunha, C., Carvalho, A., Reis, R.L., Ferreira, H., Neves, N.M. 2023. Echinacea purpurea Fractions Represent Promising Plant-Based Anti-Inflammatory Formulations. Antioxidants (Basel), 12(2),425.
  • [39] Ren, W., Ban, J., Xia, Y., Zhou, F., Yuan, C., Jia, H., Huang, H., Jiang, M., Liang, M., Li, Z., Yuan, Y., Yin, Y., Wu, H. 2023. Echinacea purpurea-derived homogeneous polysaccharide exerts anti-tumor efficacy via facilitating M1 macrophage polarization. Innovation (Camb), 4(2),100391.
  • [40] Burlou-Nagy, C., Bănică, F., Jurca, T., Vicaș, L.G., Marian, E., Muresan, M.E., Bácskay, I., Kiss, R., Fehér, P., Pallag, A. 2022. Echinacea purpurea (L.) Moench: Biological and Pharmacological Properties. A Review. Plants (Basel), 11(9), 1244.
  • [41] Sharifi-Rad, M., Mnayer, D., Morais-Braga, M.F.B., Carneiro, J.N.P., Bezerra, C.F., Coutinho, H.D.M., Salehi, B., Martorell, M., Del Mar Contreras, M., Soltani-Nejad, A., Uribe, Y.A.H., Yousaf, Z., Iriti, M., Sharifi-Rad, J. 2018. Echinacea plants as antioxidant and antibacterial agents: From traditional medicine to biotechnological applications. Phytother Res, 32(9),1653-1663.
  • [42] Lin, X.J., Lai, Z.S., Luo, Q., Kong, M., Liang, M.J., Wu, H., Bai, M. 2023. Correlation between Polyphenol Contents and Antioxidant Activities in Different Echinacea Purpurea Varieties. Curr Med Sci, 43(4), 831-837.
  • [43] Ceylan, H., Acar, C.A., Pehlivanoglu, S., Yesilot, S. 2023. Yerba Mate Attenuates Oxidative Stress Induced Renal Cell Damage. Journal of Herbal Medicine, 42, 100793.
  • [44] Aydin Acar, C., Pehlivanoglu, S., Yesilot, S., Tasdemir, H.I. 2024. The Effect of Breast Milk from Different Lactation Stages on in Vitro Wound Healing. Breastfeed Med, 2024. doi:10.1089/bfm.2024.0099.
  • [45] Lakkim, V., Reddy, M.C., Lekkala, V.V.V., Lebaka, V.R., Korivi, M., Lomada, D. 2023. Antioxidant Efficacy of Green-Synthesized Silver Nanoparticles Promotes Wound Healing in Mice. Pharmaceutics, 17,15(5),1517.
  • [46] Awad, M.A., Al Olayan, E.M., Siddiqui, M.I., Merghani, N.M., Alsaif, S.S.A., Aloufi, A.S. 2021. Antileishmanial effect of silver nanoparticles: Green synthesis, characterization, in vivo and in vitro assessment. Biomed Pharmacother, 137,111294.
  • [47] Ramachandran, T., Manoharan, D., Natesan, S., Rajaram, S.K., Karuppiah, P., Shaik, M.R., Khan, M., Shaik, B. 2023. Synthesis and Structural Characterization of Selenium Nanoparticles-Bacillus sp. MKUST-01 Exopolysaccharide (SeNPs-EPS) Conjugate for Biomedical Applications. Biomedicines, 11(9), 2520.
  • [48] Tabibi, M., Aghaei, S., Amoozegar, M.A., Nazari, R., Zolfaghari, M.R. 2023. Characterization of green synthesized selenium nanoparticles (SeNPs) in two different indigenous halophilic bacteria. BMC Chem,17(1),115.
  • [49] Hassanin, H.A., Taha, A., Ibrahim, H.M., Ahmed, E.A., Mohamed, H., Ahmed, H. 2024. Cytotoxic activity of bimetallic Ag@Se green synthesized nanoparticles using Jerusalem Thorn (Parkinsonia aculeata). Front Chem,12,1343506.
  • [50] Ozdal, O. 2024. Green synthesis of Ag, Se, and Ag2Se nanoparticles by Pseudomonas aeruginosa: characterization and their biological and photocatalytic applications. Folia Microbiol, 69, 625-638.
  • [51] Olawale, F., Ariatti, M., Singh, M. 2021. Biogenic Synthesis of Silver-Core Selenium-Shell Nanoparticles Using Ocimum tenuiflorum L.: Response Surface Methodology-Based Optimization and Biological Activity. Nanomaterials (Basel),11(10), 2516.
  • [52] Kharat, S.N., Mendhulkar, V.D. 2016. Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract. Mater Sci Eng C Mater Biol Appl, 62, 719-724.
  • [53] Das, D., Nath, B.C., Phukon, P., Dolui, S.K. 2013. Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity. Colloids Surf B, 111, 556-60.

Echinacea purpurea Ekstraktı Kullanılarak Selenyum-Gümüş Bimetalik Nanopartiküllerin Fitofabrikasyonu: Karakterizasyon ve Antioksidan Aktivite

Yıl 2024, Cilt: 15 Sayı: 2, 198 - 208, 28.08.2024
https://doi.org/10.22312/sdusbed.1491658

Öz

Bu çalışmada Echinacea purpurea sulu ekstraktı kullanılarak selenyum-gümüş bimetalik nanopartiküllerin (Se-Ag BNP'ler) fitofabrikasyonu araştırılmaktadır. Sentez süreci, başarılı nanoparçacık oluşumunu gösteren bir işaret olan koyu kırmızımsı kahverengiye gözle görülür bir renk değişimi ile karakterize edildi. UV-görünür spektrum analizi, sırasıyla 268 nm ve 325 nm'de maksimum absorpsiyonla SeNP'lerin ve AgNP'lerin varlığını doğruladı. X-ışını kırınımı (XRD) desenleri, sentezlenen Se-Ag BNP'lerin kristal yapısını ortaya çıkardı ve metalik gümüş-selenyum nanopartikülleri ile tutarlı karakteristik tepe noktaları sergiledi. Transmisyon elektron mikroskobu (TEM) analizi, Se-Ag BNP'lerin ağırlıklı olarak küresel olan ancak aynı zamanda altıgen ve oval şekillere sahip olan çeşitli morfolojik yapılarını sergilemektedir. Ortalama parçacık boyutunun 33.38 nm olduğu belirlendi, bu da tekdüzelik ve stabiliteyi göstermektedir. Ayrıca Se-Ag BNP'lerin antioksidan özellikleri, sırasıyla 264.78 µg/mL ve 344.19 µg/mL IC50 değerleriyle doza bağlı temizleme yeteneklerini gösteren DPPH ve ABTS radikal temizleme analizleri yoluyla değerlendirildi. Bu bulgular, biyotıp ve çevresel iyileştirme gibi çeşitli alanlarda umut verici uygulamalar sunan Se-Ag BNP'lerin etkili antioksidanlar olarak potansiyelini vurgulamaktadır. Önceki çalışmalarla yapılan karşılaştırmalar, üstün antioksidan aktiviteye sahip Se-Ag BNP'lerin üretiminde Echinacea purpurea ekstraktının kullanıldığı biyosentez yönteminin etkinliğini vurgulamaktadır.

Kaynakça

  • [1] Najahi-Missaoui, W., Arnold, R. D., Cummings, B. S. 2020. Safe Nanoparticles: Are We There Yet? International Journal of Molecular Sciences, 22(1), 385.
  • [2] Arora, N., Thangavelu, K., Karanikolos, G. N. 2020. Bimetallic Nanoparticles for Antimicrobial Applications. Frontiers in Chemistry, 8, 412.
  • [3] Abaszadeh, F., Ashoub, M. H., Khajouie, G., Amiri, M. 2023. Nanotechnology development in surgical applications: recent trends and developments. European Journal of Medical Research, 28(1), 537.
  • [4] Salunke, B. K., Sawant, S. S., Lee, S. I., Kim, B. S. 2016. Microorganisms as efficient biosystem for the synthesis of metal nanoparticles: current scenario and future possibilities. World Journal of Microbiology and Biotechnology, 32(5), 88.
  • [5] Gwinn, M. R., Vallyathan, V. 2006. Nanoparticles: health effects--pros and cons. Environmental Health Perspectives, 114(12), 1818-1825.
  • [6] Missaoui, W. N., Arnold, R. D., & Cummings, B. S. 2018. Toxicological status of nanoparticles: What we know and what we don't know. Chemical Biology & Interactions, 295, 1-12.
  • [7] Szczyglewska, P., Feliczak-Guzik, A., Nowak, I. 2023. Nanotechnology-General Aspects: A Chemical Reduction Approach to the Synthesis of Nanoparticles. Molecules, 28(13),4932.
  • [8] Song, J.Y., Kim, B.S. 2009. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng, 32, 79–84.
  • [9] El-Sayed, E.R., Mousa, S.A., Abdou, D.A.M., Abo El-Seoud, M.A., Elmehlawy, A.A., Mohamed, S.S. 2022. Exploiting the exceptional biosynthetic potency of the endophytic Aspergillus terreus in enhancing production of Co3O4, CuO, Fe3O4, NiO, and ZnO nanoparticles using bioprocess optimization and gamma irradiation. Saudi J Biol Sci, 29(4),2463-2474.
  • [10] Miu, B.A., Dinischiotu, A. 2022. New Green Approaches in Nanoparticles Synthesis: An Overview. Molecules, 27(19), 6472.
  • [11] Jain, A.S., Pawar, P.S., Sarkar, A., Junnuthula, V., Dyawanapelly, S. 2021. Bionanofactories for Green Synthesis of Silver Nanoparticles: Toward Antimicrobial Applications. Int J Mol Sci, 22(21),11993.
  • [12] Mikhailova, E.O. 2023. Selenium Nanoparticles: Green Synthesis and Biomedical Application. Molecules, 28(24),8125.
  • [13] Mishra, S., Panigrahi, B., Singh, R.K., Mandal, D. 2023. Catechol Mediated Synthesis of Monometallic and Bimetallic Nanoparticles and Catalytic Efficiency of Monometallic Nanoparticles. Catal Lett 153,1602–1614.
  • [14] Hano, C., Abbasi, B.H. 2021. Plant-Based Green Synthesis of Nanoparticles: Production, Characterization and Applications. Biomolecules,12(1),31.
  • [15] El-Behery, R.R., El-Sayed, E.R., El-Sayyad, G.S. 2023. Gamma rays-assisted bacterial synthesis of bimetallic silver-selenium nanoparticles: powerful antimicrobial, antibiofilm, antioxidant, and photocatalytic activities. BMC Microbiol, 23(1),224.
  • [16] Elakraa, A.A., Salem, S.S., El-Sayyad, G.S., Attia, M.S. 2022. Cefotaxime incorporated bimetallic silver-selenium nanoparticles: promising antimicrobial synergism, antibiofilm activity, and bacterial membrane leakage reaction mechanism. RSC Adv, 12(41),26603-26619.
  • [17] Azmat, A., Zafar, S. 2023. Trigonella foenum-graecum-based facile one-pot green synthesis, characterization, and biological activities of silver/copper bimetallic nanoparticles. Nanotechnol Environ Eng, 8,733–744.
  • [18] Liu, X., Wang, D., Li, Y. 2012. Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today, 7(5), 448-466.
  • [19] Ehsan, M., Waheed, A., Ullah, A., Kazmi, A., Ali, A., Raja, N.I., Mashwani, Z.U., Sultana, T., Mustafa, N., Ikram, M., Li, H. 2022. Plant-Based Bimetallic Silver-Zinc Oxide Nanoparticles: A Comprehensive Perspective of Synthesis, Biomedical Applications, and Future Trends. Biomed Res Int, 2022,1215183.
  • [20] Scala, A., Neri, G., Micale, N., Cordaro, M., Piperno, A. 2022. State of the Art on Green Route Synthesis of Gold/Silver Bimetallic Nanoparticles. Molecules, 27(3),1134.
  • [21] Allam, B.K., Musa, N., Debnath, A., Usman, U.L., Banerjee, S. 2021. Recent developments and application of bimetallic based materials in water purification. Environmental Challenges, 5,100405.
  • [22] Hao, Z., Wang, M., Cheng, L., Si, M., Feng, Z., Feng, Z. 2024. Synergistic antibacterial mechanism of silver-copper bimetallic nanoparticles. Front Bioeng Biotechnol, 11,1337543.
  • [23] Saravanakumar, K., Sathiyaseelan, A., Zhang, X., Wang, M. H. 2024. Synthesis and Characterization of Bimetallic Platinum/Selenium (Pt/Se) Nanoparticles for Synergistic Antibacterial Activity. BioNanoSci, 1-13.
  • [24] Duan, S., Wang, R. 2013. Bimetallic nanostructures with magnetic and noble metals and their physicochemical applications. Progress in Natural Science: Materials International, 23(2),113-126.
  • [25] Hashem, A.H., El-Sayyad, G.S., Al-Askar, A.A., Marey, S.A., AbdElgawad, H., Abd-Elsalam, K.A., Saied, E. 2023. Watermelon Rind Mediated Biosynthesis of Bimetallic Selenium-Silver Nanoparticles: Characterization, Antimicrobial and Anticancer Activities. Plants (Basel), 12(18), 3288.
  • [26] Lee, S. H., Jun, B.H. 2019. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int J Mol Sci, 20(4), 865.
  • [27] Bruna, T., Maldonado-Bravo, F., Jara, P., Caro, N. 2021. Silver Nanoparticles and Their Antibacterial Applications. Int J Mol Sci, 22(13), 7202.
  • [28] Essghaier, B., Dridi, R., Mottola, F., Rocco, L., Zid, M.F., Hannachi, H. 2022. Biosynthesis and Characterization of Silver Nanoparticles from the Extremophile Plant Aeonium haworthii and Their Antioxidant, Antimicrobial and Anti-Diabetic Capacities. Nanomaterials (Basel),13(1),100.
  • [29] Das, G., Patra, J. K., Debnath, T., Ansari, A., Shin, H.S. 2019. Investigation of antioxidant, antibacterial, antidiabetic, and cytotoxicity potential of silver nanoparticles synthesized using the outer peel extract of Ananas comosus (L.). PLoS One, 14(8), e0220950.
  • [30] Ahamad Tarmizi, A.A., Nik Ramli, N.N., Adam, S.H., Abdul Mutalib, M., Mokhtar, M.H., Tang, S.G.H. 2023. Phytofabrication of Selenium Nanoparticles with Moringa oleifera (MO-SeNPs) and Exploring Its Antioxidant and Antidiabetic Potential. Molecules, 28(14),5322.
  • [31] Ikram, M., Javed, B., Raja, N.I., Mashwani, Z.U. 2021. Biomedical Potential of Plant-Based Selenium Nanoparticles: A Comprehensive Review on Therapeutic and Mechanistic Aspects. Int J Nanomedicine,16, 249-268.
  • [32] Gutiérrez, R.M.P., Gómez, J.T., Urby, R.B., Soto, J.G.C., Parra, H.R. 2022. Evaluation of Diabetes Effects of Selenium Nanoparticles Synthesized from a Mixture of Luteolin and Diosmin on Streptozotocin-Induced Type 2 Diabetes in Mice. Molecules, 27(17),5642.
  • [33] Saratale, G.D., Saratale, R.G., Kim, D.S., Kim, D.Y., Shin, H.S. 2020. Exploiting Fruit Waste Grape Pomace for Silver Nanoparticles Synthesis, Assessing Their Antioxidant, Antidiabetic Potential and Antibacterial Activity Against Human Pathogens: A Novel Approach. Nanomaterials (Basel) 10(8),1457.
  • [34] Khodeer, D.M., Nasr, A.M., Swidan, S.A., Shabayek, S., Khinkar, R.M., Aldurdunji, M.M., Ramadan, M.A., Badr, J.M. 2023. Characterization, antibacterial, antioxidant, antidiabetic, and anti-inflammatory activities of green synthesized silver nanoparticles using Phragmanthera austroarabica A. G. Mill and J. A. Nyberg extract. Front Microbiol,13,1078061.
  • [35] Geremew, A., Gonzalles, J. 3rd., Peace, E., Woldesenbet, S., Reeves, S., Brooks, N. Jr., Carson, L. 2024. Green Synthesis of Novel Silver Nanoparticles Using Salvia blepharophylla and Salvia greggii: Antioxidant and Antidiabetic Potential and Effect on Foodborne Bacterial Pathogens. Int J Mol Sci, 25(2),904.
  • [36] Hassan, R.M., Elsayed, M., Kholief, T.E., Hassanen, N.H.M., Gafer, J.A., Attia, Y.A. 2021. Mitigating effect of single or combined administration of nanoparticles of zinc oxide, chromium oxide, and selenium on genotoxicity and metabolic insult in fructose/streptozotocin diabetic rat model. Environ Sci Pollut Res Int, 28(35), 48517-48534.
  • [37] Balčiūnaitė-Murzienė, G., Miknienė, Z., Ragažinskienė, O., Juodžiukynienė, N., Savickas, A., Savickienė, N., Pangonytė, D. 2021. Echinacea purpurea L. (Moench) Hemagglutinin Effect on Immune Response In Vivo. Plants (Basel), 10(5),936.
  • [38] Vieira, S.F., Gonçalves, S.M., Gonçalves, V.M.F., Llaguno, C.P., Macías, F., Tiritan, M.E., Cunha, C., Carvalho, A., Reis, R.L., Ferreira, H., Neves, N.M. 2023. Echinacea purpurea Fractions Represent Promising Plant-Based Anti-Inflammatory Formulations. Antioxidants (Basel), 12(2),425.
  • [39] Ren, W., Ban, J., Xia, Y., Zhou, F., Yuan, C., Jia, H., Huang, H., Jiang, M., Liang, M., Li, Z., Yuan, Y., Yin, Y., Wu, H. 2023. Echinacea purpurea-derived homogeneous polysaccharide exerts anti-tumor efficacy via facilitating M1 macrophage polarization. Innovation (Camb), 4(2),100391.
  • [40] Burlou-Nagy, C., Bănică, F., Jurca, T., Vicaș, L.G., Marian, E., Muresan, M.E., Bácskay, I., Kiss, R., Fehér, P., Pallag, A. 2022. Echinacea purpurea (L.) Moench: Biological and Pharmacological Properties. A Review. Plants (Basel), 11(9), 1244.
  • [41] Sharifi-Rad, M., Mnayer, D., Morais-Braga, M.F.B., Carneiro, J.N.P., Bezerra, C.F., Coutinho, H.D.M., Salehi, B., Martorell, M., Del Mar Contreras, M., Soltani-Nejad, A., Uribe, Y.A.H., Yousaf, Z., Iriti, M., Sharifi-Rad, J. 2018. Echinacea plants as antioxidant and antibacterial agents: From traditional medicine to biotechnological applications. Phytother Res, 32(9),1653-1663.
  • [42] Lin, X.J., Lai, Z.S., Luo, Q., Kong, M., Liang, M.J., Wu, H., Bai, M. 2023. Correlation between Polyphenol Contents and Antioxidant Activities in Different Echinacea Purpurea Varieties. Curr Med Sci, 43(4), 831-837.
  • [43] Ceylan, H., Acar, C.A., Pehlivanoglu, S., Yesilot, S. 2023. Yerba Mate Attenuates Oxidative Stress Induced Renal Cell Damage. Journal of Herbal Medicine, 42, 100793.
  • [44] Aydin Acar, C., Pehlivanoglu, S., Yesilot, S., Tasdemir, H.I. 2024. The Effect of Breast Milk from Different Lactation Stages on in Vitro Wound Healing. Breastfeed Med, 2024. doi:10.1089/bfm.2024.0099.
  • [45] Lakkim, V., Reddy, M.C., Lekkala, V.V.V., Lebaka, V.R., Korivi, M., Lomada, D. 2023. Antioxidant Efficacy of Green-Synthesized Silver Nanoparticles Promotes Wound Healing in Mice. Pharmaceutics, 17,15(5),1517.
  • [46] Awad, M.A., Al Olayan, E.M., Siddiqui, M.I., Merghani, N.M., Alsaif, S.S.A., Aloufi, A.S. 2021. Antileishmanial effect of silver nanoparticles: Green synthesis, characterization, in vivo and in vitro assessment. Biomed Pharmacother, 137,111294.
  • [47] Ramachandran, T., Manoharan, D., Natesan, S., Rajaram, S.K., Karuppiah, P., Shaik, M.R., Khan, M., Shaik, B. 2023. Synthesis and Structural Characterization of Selenium Nanoparticles-Bacillus sp. MKUST-01 Exopolysaccharide (SeNPs-EPS) Conjugate for Biomedical Applications. Biomedicines, 11(9), 2520.
  • [48] Tabibi, M., Aghaei, S., Amoozegar, M.A., Nazari, R., Zolfaghari, M.R. 2023. Characterization of green synthesized selenium nanoparticles (SeNPs) in two different indigenous halophilic bacteria. BMC Chem,17(1),115.
  • [49] Hassanin, H.A., Taha, A., Ibrahim, H.M., Ahmed, E.A., Mohamed, H., Ahmed, H. 2024. Cytotoxic activity of bimetallic Ag@Se green synthesized nanoparticles using Jerusalem Thorn (Parkinsonia aculeata). Front Chem,12,1343506.
  • [50] Ozdal, O. 2024. Green synthesis of Ag, Se, and Ag2Se nanoparticles by Pseudomonas aeruginosa: characterization and their biological and photocatalytic applications. Folia Microbiol, 69, 625-638.
  • [51] Olawale, F., Ariatti, M., Singh, M. 2021. Biogenic Synthesis of Silver-Core Selenium-Shell Nanoparticles Using Ocimum tenuiflorum L.: Response Surface Methodology-Based Optimization and Biological Activity. Nanomaterials (Basel),11(10), 2516.
  • [52] Kharat, S.N., Mendhulkar, V.D. 2016. Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract. Mater Sci Eng C Mater Biol Appl, 62, 719-724.
  • [53] Das, D., Nath, B.C., Phukon, P., Dolui, S.K. 2013. Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity. Colloids Surf B, 111, 556-60.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tıbbi Biyoteknoloji (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Berfin Rumeysa Sarı 0000-0002-1747-4785

Çiğdem Aydın Acar 0000-0002-1311-2314

Yayımlanma Tarihi 28 Ağustos 2024
Gönderilme Tarihi 29 Mayıs 2024
Kabul Tarihi 2 Ağustos 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 15 Sayı: 2

Kaynak Göster

Vancouver Sarı BR, Aydın Acar Ç. Phytofabrication of Selenium-Silver Bimetallic Nanoparticles Using Echinacea purpurea Extract: Characterization and Antioxidant Activity. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi. 2024;15(2):198-20.

Cc-by-nc-nd-icon-svg

Creative Commons Attribution 4.0 International License 

Atıf gereklidir, ticari olmayan amaçlarla kullanılabilir ve değişiklik yapılarak türev eser üretilemez.