Research Article
BibTex RIS Cite

COMPUTED TOMOGRAPHY FINDINGS OF INTRACRANIAL CALCIFICATIONS

Year 2022, , 575 - 583, 27.12.2022
https://doi.org/10.17343/sdutfd.1147364

Abstract

Objective
In this study, the anatomical localization and
distribution of intracranial calcifications detected on
brain computed tomography (CT) were determined
and their relationship with age and gender was
investigated.
Material and Method
Images of 887 patients who underwent brain CT
examinations for various reasons between March
2010 and May 2013 were analyzed. Images of 124
patients were excluded from the study because of
contrast-enhanced examination, bleeding, trauma,
hydrocephalus, and image distortion. Seven hundred
sixty three patients whose non-contrasted brain CT
images were analyzed were divided into age groups
according to decades. The pineal gland, choroid
plexus, habenula, basal ganglia, tentorium cerebelli,
falx cerebri, dural and arachnoid granulation,
petroclinoid ligament, arterial wall, orbital, dystrophic
and tumoral calcifications were evaluated. The
distribution of intracranial calcifications according to
age groups and gender were examined.
Results
Of the patients included in the study, 382 (50.1%)
were female and 381 (49.9%) were male. Intracranial
calcification was detected in 672 (88.1%) of the patients.
The choroid plexus (78.2%) calcifications were most
common, followed by habenula (62.4%), pineal gland
(55.3%), arterial wall (31.2%), petroclinoid ligament
(28.7%), and falx cerebri (20.7%). Calcifications of
dural and arachnoid granulation (7.5%), basal ganglia
(6.3%), tentorium cerebelli (2.9%), tumoral (1.2%)
and orbital (0.5%) were detected less frequently,
while dystrophic calcifications (0.4%) were the least
common. A statistically significant difference was
found in the distribution of calcifications according
to age groups, in calcifications located in the pineal
gland, choroid plexus, habenula, basal ganglia,
tentorium cerebelli, falx cerebri, dural and arachnoid
granulation, petroclinoid ligament and arterial wall. A
statistically significant difference was found in choroid
plexus, habenula, dural and arachnoid granulation
and petroclinoid ligament calcifications in distribution
according to gender.
Conclusion
Intracranial calcifications are most frequently detected
in the choroid plexus, habenula and pineal gland,
while dystrophic calcifications are seen the least.
The incidence of intracranial calcifications generally
increases from the age of 10. Tentorium cerebelli and
dural and arachnoid granulation calcifications are
more common in female.

References

  • 1. Livingston JH, Stivaros S, Warren D, Crow YJ. Intracranial calcification in childhood: a review of aetiologies and recognizable phenotypes. Dev Med Child Neurol 2014;56(7):612-26.
  • 2. Alves G, Cordenonsi I, Magno P, Werle N, Haygert C. Pineal Gland And Choroid Plexus Calcifications On CT: A Retrospective Study In A Brazilian Subtropical City. The Internet Journal of Human Anatomy 2013;2(1):1-7.
  • 3. Chattopadhyay A, Coates J, Craven I, Currie S, Igra MS. Intracranial Calcifications - A Pictorial Review [Internet]. ECR 2018/C-3273. Available from: https://epos.myesr.org/poster/ esr/ecr2018/C-3273/background.
  • 4. Nieto Taborda KN, Wilches C, Manrique A. Diagnostic Algorithm for Patients with Intracranial Calcifications. Rev Colomb Radiol 2017;28(3):4732-9.
  • 5. Mısırlı Gülbeş M, Çerçi Öngün B, Akçay Nİ, Orhan K. Retrospective analysis of the incidence of intracranial physiological calcifications with cone beam computed tomography. Selcuk Dent J 2019;6(4):239-44.
  • 6. Koller WC, Klawans HL: Cerebellar calcification on computerized tomography. Ann Neurol 1980;7(2):193-4.
  • 7. Cohen CR, Duchesneau PM, Weinstein MA. Calcification of the basal ganglia as visualized by computed tomography. Radiology 1980;134(1):97-9.
  • 8. Kobari M, Nogava S, Sugimoto Y, Fukuuchi Y. Familial idiopathic brain calcification with autosomal dominant inheritance. Neurology 1997;48(3):645-9.
  • 9. Al-Zaghal A, Mehdizadeh Seraj S, Werner TJ, Gerke O, Høilund- Carlsen PF, Alavi A. Assessment of Physiological Intracranial Calcification in Healthy Adults Using 18F-NaF PET/CT. J Nucl Med 2019;60:267-71.
  • 10. Guedes MS, Queiroz IC, Castro CC. Classification and clinical significance of intracranial calcifications: a pictorial essay. Radiol Bras 2020;53(4):273-8.
  • 11. Kıroğlu Y, Çallı C, Karabulut N, Öncel Ç. Intracranial calcifications on CT. Diagn Interv Radiol 2010;16:263-9.
  • 12. Yalcin A, Ceylan M, Bayraktutan OF, Sonkaya AR, Yuce I. Age and gender related prevalence of intracranial calcifications in CT imaging; data from 12,000 healthy subjects. J Chem Neuroanat 2016;78:20-4.
  • 13. Daghighi MH, Rezaei V, Zarrintan S, Pourfathi H. Intracranial physiological calcifications in adults on computed tomography in Tabriz, Iran. Folia Morphol (Warsz) 2007;66(2):115-19.
  • 14. Kwak R, Takeuchi F, Ito S, Kadoya S. Intracranial physiological calcification on computed tomography (Part 1): Calcification of the pineal region. No To Shinkei 1988;40(6):569-74.
  • 15. Jassim MH, George NT, Jawad MM. Radiographic Anatomical Study of Intracranial Calcifications in Patients underwent Computerized Tomography Imaging. Int Journal of Pharmaceutical Sciences and Medicine 2019;4(2):1-13.
  • 16. Khurram R, Khamar R, Mandumula S. Computed Tomography Findings of Diffuse Intracranial Calcifications in A Patient with Primary Hypoparathyroidism. J Radiol Clin Imaging 2020;3(1):033-7.
  • 17. Harrington MG, Macpherson P, McIntosh WB, Allam BF, Bone I. The significance of the incidental finding of basal ganglia calcification on computed tomography. J Neurol Neurosurg Psychiatry 1981;44(12):1168-70.
  • 18. Gomille T, Meyer RA, Falkai P, Gaebel W, Konigshausen T, Christ F. Prevalence and clinical significance of computerized tomography verified idiopathic calcinosis of the basal ganglia. Radiology 2001;41(2):205-10.
  • 19. LeBedis CA, Sakai O. Nontraumatic Orbital Conditions: Diagnosis with CT and MR Imaging in the Emergent Setting. Radiographics 2008;28(6):1741-53.
  • 20. Murray JL, Hayman LA, Tang RA, Schiffman JS. Incidental asymptomatic orbital calcifications. J Neuroophthalmol 1995;15(4):203-8.
  • 21. Pan Y, Song GX, He YJ. The clinical significance of calcification in orbital computed tomography. Zhonghua Yan Ke Za Zhi 2004;40(3):197-8.
  • 22. Huang B. Dystrophic Calcifications. In Rumboldt Z, Castillo M, Huang B, Rossi A (Eds.). Brain Imaging with MRI and CT: An Image Pattern Approach Cambridge, Cambridge University Press, 2012;395-6.
  • 23. San Millán Ruíz D, Delavelle J, Yilmaz H, Gailloud P, Piovan E, Bertramello A, et al. Parenchymal abnormalities associated with developmental venous anomalies. Neuroradiology 2007;49(12):987-95.
  • 24. Gezercan Y, Acik V, Çavuş G, Ökten AI, Bilgin E, Millet H, et al. Six different extremely calcified lesions of the brain: brain stones. Springerplus 2016;5(1):1941.
  • 25. Rebella G, Romano N, Silvestri G, Ravetti JL, Gaggero G, Belgioia L, et al. Calcified brain metastases may be more frequent than normally considered. Eur Radiol 2021;31(2):650-7.

İNTRAKRANİYAL KALSİFİKASYONLARIN BİLGİSAYARLI TOMOGRAFİ BULGULARI

Year 2022, , 575 - 583, 27.12.2022
https://doi.org/10.17343/sdutfd.1147364

Abstract

Amaç
Bu çalışmada beyin bilgisayarlı tomografi (BT) tetkiklerinde
saptanan intrakraniyal kalsifikasyonların anatomik
lokalizasyonu ve dağılımları belirlenip yaş ve
cinsiyet ile ilişkisi araştırıldı.
Gereç ve Yöntem
Mart 2010-Mayıs 2013 tarihleri arasında çeşitli nedenlerle
beyin BT tetkikleri yapılan 887 hastanın görüntüleri
incelendi. Kontrastlı tetkik, kanama, travma,
hidrosefali ve görüntü distorsiyonu nedeniyle 124
hastanın görüntüleri çalışma dışı bırakıldı. Kontrastsız
beyin BT görüntüleri incelenen 763 hasta dekatlara
göre yaş gruplarına ayrıldı. Hastalardaki pineal gland,
koroid pleksus, habenula, bazal gangliyon, tentoryum
serebelli, falks serebri, dura ve araknoid granülasyon,
petroklinoid ligaman, arteriyel duvar, orbita kalsifikasyonları
ile distrofik ve tümöral kalsifikasyonlar değerlendirildi.
İntrakraniyal kalsifikasyonların yaş grupları
ve cinsiyete göre dağılımları incelendi.
Bulgular
Çalışmaya dahil edilen hastaların 382’si (%50,1) kadın
ve 381’i (%49,9) erkek idi. Hastaların 672'sinde
(%88,1) intrakraniyal kalsifikasyon saptandı. En sık
koroid pleksus (%78,2) kalsifikasyonları saptanırken,
bunu sırasıyla habenula (%62,4), pineal gland
(%55,3), arteriyel duvar (%31,2), petroklinoid ligaman
(%28,7) ve falks serebri (%20,7) kalsifikasyonları takip
etmekteydi. Daha az sıklıkta dura ve araknoid granülasyon
(%7,5), bazal gangliyon (%6,3), tentoryum
serebelli (%2,9) kalsifikasyonları, tümöral kalsifikasyon
(%1,2) ile orbita (%0,5) kalsifikasyonları saptanırken,
en az distrofik kalsifikasyonlar (%0,4) tespit
edildi. Yaş gruplarına göre kalsifikasyonların dağılımında
pineal gland, koroid pleksus, habenula, bazal
gangliyon, tentoryum serebelli, falks serebri, dura ve
araknoid granülasyon, petroklinoid ligaman ve arteriyel
duvarda yerleşen kalsifikasyonlarda istatistiki
olarak anlamlı farklılık saptandı. Cinsiyete göre dağılımda
koroid pleksus, habenula, dura ve araknoid granülasyon
ile petroklinoid ligaman kalsifikasyonlarında
istatistiki olarak anlamlı farklılık saptandı.
Sonuç
İntrakraniyal kalsifikasyonlar en sık koroid pleksus,
habenula ve pineal glandda saptanırken en az distrofik
kalsifikasyonlar görülmektedir. İntrakraniyal kalsifikasyonların
görülme sıklığı genellikle 10 yaşından itibaren
artmaktadır. Kadınlarda tentoryum serebelli ile
dura ve araknoid granülasyon kalsifikasyonları daha
sık görülmektedir.

References

  • 1. Livingston JH, Stivaros S, Warren D, Crow YJ. Intracranial calcification in childhood: a review of aetiologies and recognizable phenotypes. Dev Med Child Neurol 2014;56(7):612-26.
  • 2. Alves G, Cordenonsi I, Magno P, Werle N, Haygert C. Pineal Gland And Choroid Plexus Calcifications On CT: A Retrospective Study In A Brazilian Subtropical City. The Internet Journal of Human Anatomy 2013;2(1):1-7.
  • 3. Chattopadhyay A, Coates J, Craven I, Currie S, Igra MS. Intracranial Calcifications - A Pictorial Review [Internet]. ECR 2018/C-3273. Available from: https://epos.myesr.org/poster/ esr/ecr2018/C-3273/background.
  • 4. Nieto Taborda KN, Wilches C, Manrique A. Diagnostic Algorithm for Patients with Intracranial Calcifications. Rev Colomb Radiol 2017;28(3):4732-9.
  • 5. Mısırlı Gülbeş M, Çerçi Öngün B, Akçay Nİ, Orhan K. Retrospective analysis of the incidence of intracranial physiological calcifications with cone beam computed tomography. Selcuk Dent J 2019;6(4):239-44.
  • 6. Koller WC, Klawans HL: Cerebellar calcification on computerized tomography. Ann Neurol 1980;7(2):193-4.
  • 7. Cohen CR, Duchesneau PM, Weinstein MA. Calcification of the basal ganglia as visualized by computed tomography. Radiology 1980;134(1):97-9.
  • 8. Kobari M, Nogava S, Sugimoto Y, Fukuuchi Y. Familial idiopathic brain calcification with autosomal dominant inheritance. Neurology 1997;48(3):645-9.
  • 9. Al-Zaghal A, Mehdizadeh Seraj S, Werner TJ, Gerke O, Høilund- Carlsen PF, Alavi A. Assessment of Physiological Intracranial Calcification in Healthy Adults Using 18F-NaF PET/CT. J Nucl Med 2019;60:267-71.
  • 10. Guedes MS, Queiroz IC, Castro CC. Classification and clinical significance of intracranial calcifications: a pictorial essay. Radiol Bras 2020;53(4):273-8.
  • 11. Kıroğlu Y, Çallı C, Karabulut N, Öncel Ç. Intracranial calcifications on CT. Diagn Interv Radiol 2010;16:263-9.
  • 12. Yalcin A, Ceylan M, Bayraktutan OF, Sonkaya AR, Yuce I. Age and gender related prevalence of intracranial calcifications in CT imaging; data from 12,000 healthy subjects. J Chem Neuroanat 2016;78:20-4.
  • 13. Daghighi MH, Rezaei V, Zarrintan S, Pourfathi H. Intracranial physiological calcifications in adults on computed tomography in Tabriz, Iran. Folia Morphol (Warsz) 2007;66(2):115-19.
  • 14. Kwak R, Takeuchi F, Ito S, Kadoya S. Intracranial physiological calcification on computed tomography (Part 1): Calcification of the pineal region. No To Shinkei 1988;40(6):569-74.
  • 15. Jassim MH, George NT, Jawad MM. Radiographic Anatomical Study of Intracranial Calcifications in Patients underwent Computerized Tomography Imaging. Int Journal of Pharmaceutical Sciences and Medicine 2019;4(2):1-13.
  • 16. Khurram R, Khamar R, Mandumula S. Computed Tomography Findings of Diffuse Intracranial Calcifications in A Patient with Primary Hypoparathyroidism. J Radiol Clin Imaging 2020;3(1):033-7.
  • 17. Harrington MG, Macpherson P, McIntosh WB, Allam BF, Bone I. The significance of the incidental finding of basal ganglia calcification on computed tomography. J Neurol Neurosurg Psychiatry 1981;44(12):1168-70.
  • 18. Gomille T, Meyer RA, Falkai P, Gaebel W, Konigshausen T, Christ F. Prevalence and clinical significance of computerized tomography verified idiopathic calcinosis of the basal ganglia. Radiology 2001;41(2):205-10.
  • 19. LeBedis CA, Sakai O. Nontraumatic Orbital Conditions: Diagnosis with CT and MR Imaging in the Emergent Setting. Radiographics 2008;28(6):1741-53.
  • 20. Murray JL, Hayman LA, Tang RA, Schiffman JS. Incidental asymptomatic orbital calcifications. J Neuroophthalmol 1995;15(4):203-8.
  • 21. Pan Y, Song GX, He YJ. The clinical significance of calcification in orbital computed tomography. Zhonghua Yan Ke Za Zhi 2004;40(3):197-8.
  • 22. Huang B. Dystrophic Calcifications. In Rumboldt Z, Castillo M, Huang B, Rossi A (Eds.). Brain Imaging with MRI and CT: An Image Pattern Approach Cambridge, Cambridge University Press, 2012;395-6.
  • 23. San Millán Ruíz D, Delavelle J, Yilmaz H, Gailloud P, Piovan E, Bertramello A, et al. Parenchymal abnormalities associated with developmental venous anomalies. Neuroradiology 2007;49(12):987-95.
  • 24. Gezercan Y, Acik V, Çavuş G, Ökten AI, Bilgin E, Millet H, et al. Six different extremely calcified lesions of the brain: brain stones. Springerplus 2016;5(1):1941.
  • 25. Rebella G, Romano N, Silvestri G, Ravetti JL, Gaggero G, Belgioia L, et al. Calcified brain metastases may be more frequent than normally considered. Eur Radiol 2021;31(2):650-7.
There are 25 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research Articles
Authors

Murat Beyhan 0000-0002-8630-4632

Sevgi Yılmaz 0000-0001-9440-4484

Muhammed Erkam Çeker 0000-0001-8173-8004

Erkan Gökçe 0000-0003-3947-2972

Osman Demir 0000-0002-1322-2716

Publication Date December 27, 2022
Submission Date July 22, 2022
Acceptance Date October 14, 2022
Published in Issue Year 2022

Cite

Vancouver Beyhan M, Yılmaz S, Çeker ME, Gökçe E, Demir O. COMPUTED TOMOGRAPHY FINDINGS OF INTRACRANIAL CALCIFICATIONS. Med J SDU. 2022;29(4):575-83.

                                                                                               14791 


Süleyman Demirel Üniversitesi Tıp Fakültesi Dergisi/Medical Journal of Süleyman Demirel University is licensed under Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International.