Review
BibTex RIS Cite

ANTİMİKROBİYAL PEPTİTLERİN PROİNFLAMATUAR YANITTAKİ POTANSİYELLERİ

Year 2020, , 145 - 153, 01.03.2020
https://doi.org/10.17343/sdutfd.641016

Abstract

Günümüzde yara iyileşmesi üzerine yapılan bir çok çalışma
bulunmaktadır. Yara iyileşmesinde etkili olduğu kanıtlanan birçok etkin madde
ve farmasötik dozaj şekli tanımlanmıştır. Antimikrobiyal peptitler (AMP)
insanların, hayvanların ve bitkilerin bir çok doku ve organları tarafından
üretilen peptitlerdir ve doğal immün sistemin yadsınamaz savaşçılarıdır. AMP’ler;
antibakteriyel, antiviral, antifungal, antiparazitik, insektisidal, kemotaktik,
yara iyileşmesi ve büyüme uyarıcı olarak pek çok etkiye sahip
olabilmektedirler. AMP’lerin, proinflamatuar yanıttaki potansiyelleri üzerine
yapılan pek çok çalışma bulunmaktadır. AMP’ler yara iyileşmesinde rol
almalarının yanı sıra bir çok insan dermal hastalığında da önemli bir
potansiyel taşımaktadırlar. Bu yazıda proinflamatuar yanıtın bir parçası olan yara
iyileşme sürecinde gerçekleşen birbiri ile bağlantılı basamaklar açıklanmış ve
bu basamaklarda AMP‘lerin aldıkları roller ve önemlerinden bahsedilmiştir;
ayrıca insan dermal hastalıklarındaki potansiyellerinin araştırıldığı
çalışmalara da değinilmiştir.

References

  • Aşkar Ş, Aşkar TK. Anti̇mi̇krobi̇yel protei̇nler ve bağışıklıktaki önemi̇. Balıkesir Sağlık Bilim Derg. 2017;6(2):82-86. doi:10.5505/bsbd.2017.13002.
  • Dubois RJ. Studies on a bactericidal agent extracted from a soil Bacillus. J Exp Med. 1939;70(1):1-10. doi:10.1084/jem.70.3.249.
  • Galton F. Letters to the editors - Pangenesis. Nature. 1871;4(79):5-6.
  • Van Epps HL. René Dubos: Unearthing antibiotics. J Exp Med. 2006;203(2):259. doi:10.1084/jem.2032fta.
  • Dubos RJ, Hotchkiss RD. The Production Of Bactericidal Substances By Aerobic Sporulating Bacilli. 1941:629-640.
  • Rammelkamp CH, Weinstein L. Toxic effects of tyrothricin, gramicidin and tyrocidine. J Infect Dis. 1942. doi:10.1093/infdis/71.2.166.
  • Balls AK., Hale WS, Harris TH. A crystalline protein obtained from a lipoprotein of wheat flour. Cereal Chem. 1942;19:279-288.
  • Ohtani K, Okada T, Yoshizumi H, Kagamiyama H. Complete primary structures of two subunits of purothionin A, a lethal protein for brewer’s yeast from wheat flour. J Biochem. 1977. doi:10.1093/oxfordjournals.jbchem.a131752.
  • Hirsch JG. Phagocytin: A bactericidal substance from polymorphonuclear leucocytes. J Exp Med. 2004. doi:10.1084/jem.103.5.589.
  • Groves ML, Peterson RF, Kiddy CA. Polymorphism in the red protein isolated from milk of individual cows. Nature. 1965. doi:10.1038/2071007a0.
  • Zeya HI, Spitznagel JK. Antibacterial and enzymic basic proteins from leukocyte lysosomes: Separation and identification. Science (80- ). 1963;142(3595):1085-1087. doi:10.1126/science.142.3595.1085.
  • Schauber J, Gallo RL. Antimicrobial peptides and the skin immune defense system. J Allergy Clin Immunol. 2008. doi:10.1016/j.jaci.2008.03.027.
  • Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415(6870):389-395. doi:10.1038/415389a.
  • Radek K, Gallo R. Antimicrobial peptides: natural effectors of the innate immune system. Semin Immunopathol. 2007;29(1):27-43.
  • Conlon JM, Sonnevend A. Antimicrobial peptides in frog skin secretions. Methods Mol Biol. 2010;618:3-14. doi:10.1007/978-1-60761-594-1_1.
  • Ma Y, Liu C, Liu X, et al. Peptidomics and genomics analysis of novel antimicrobial peptides from the frog, Rana nigrovittata. Genomics. 2010;95(1):66-71. doi:10.1016/j.ygeno.2009.09.004.
  • Akkaya A. Antimikrobiyal Peptitlerin Yapıları ve Etki Mekanizmaları. İzmir; 2017.
  • Hancock REW, Chapple DS. Minireview Peptide antibiotics. Antimicrob Agents Chemother. 1999;43(6):1317-1323.
  • Lai Y, Gallo RL. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009;30(3):131-141. doi:10.1016/j.it.2008.12.003.
  • Westerhoff H V., Juretic D, Hendler RW, Zasloff M. Magainins and the disruption of membrane-linked free-energy transduction. Proc Natl Acad Sci. 1989;86(17):6597-6601. doi:10.1073/pnas.86.17.6597.
  • Bahar AA, Ren D. Antimicrobial Peptides. Pharmaceuticals. 2013;28(6):1543-1575. doi:10.3390/ph6121543.
  • Dong GL, Hee NK, Park Y, et al. Design of novel analogue peptides with potent antibiotic activity based on the antimicrobial peptide, HP (2-20), derived from N-terminus of Helicobacter pylori ribosomal protein L1. Biochim Biophys Acta - Protein Struct Mol Enzymol. 2002;1598(1-2):185-194. doi:10.1016/S0167-4838(02)00373-4.
  • Fernández-Vidal M, Jayasinghe S, Ladokhin AS, White SH. Folding Amphipathic Helices Into Membranes: Amphiphilicity Trumps Hydrophobicity. J Mol Biol. 2007;370(3):459-470. doi:10.1016/j.jmb.2007.05.016.
  • Mor A, Nicolas P. Isolation and structure of novel defensive peptides from frog skin. Eur J Biochem. 1994;219(1-2):145-154. doi:10.1111/j.1432-1033.1994.tb19924.x
  • Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front Cell Infect Microbiol. 2016;6(194). doi:10.3389/fcimb.2016.00194
  • Shai Y, Oren Z. From “carpet” mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides. 2001;22(10):1629-1641. doi:10.1016/S0196-9781(01)00498-3
  • Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev. 2003;55(1):27-55. doi:10.1124/pr.55.1.2
  • Hara T, Mitani Y, Tanaka K, et al. Heterodimer formation between the antimicrobial peptides magainin 2 and PGLa in lipid bilayers: A cross-linking study. Biochemistry. 2001;40(41):12395-12399. doi:10.1021/bi011413v
  • Kamysz W, Okrój M, Łukasiak J. Novel properties of antimicrobial peptides. Acta Biochim Pol. 2003;50(2):461-469. doi:10.1016/j.ijheatmasstransfer.2017.04.069
  • Patton Jr. JH, Fabian TC. Complex pancreatic injuries. Surg Clin North Am. 1996.
  • Robson MC, Steed DL, Franz MG. Wound healing: Biologic features and approaches to maximize healing trajectories. Curr Probl Surg. 2001;38(2):72-140. doi:10.1067/msg.2001.111167
  • Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci Transl Med. 2014;6. doi:10.1126/scitranslmed.3009337
  • Larouche J, Sheoran S, Maruyama K, Martino MM. Immune regulation of skin wound healing: Mechanisms and novel therapeutic targets. Adv Wound Care. 2018;7(7):209-231. doi:10.1089/wound.2017.0761
  • Diegelmann RF, Evans MC. Wound healing: An overview of acute, fibrotic and delayed healing. Front Biosci. 2004;9:283-289. doi:10.2741/1184
  • Julier Z, Park AJ, Briquez PS, Martino MM. Promoting tissue regeneration by modulating the immune system. Acta Biomater. 2017;53:13-28. doi:10.1016/j.actbio.2017.01.056
  • Delavary BM, van der Veer WM, van Egmond M, Niessen FB, Beelen RHJ. Macrophages in skin injury and repair. Immunobiology. 2011;216(7):753-762. doi:10.1016/j.imbio.2011.01.001
  • Szpaderska AM, Egozi EI, Gamelli RL, DiPietro LA. The effect of thrombocytopenia on dermal wound healing. J Invest Dermatol. 2003;120(6):1130-1137. doi:10.1046/j.1523-1747.2003.12253.x
  • Martin P, Leibovich SJ. Inflammatory cells during wound repair: The good, the bad and the ugly. Trends Cell Biol. 2005;15(11):599-607. doi:10.1016/j.tcb.2005.09.002
  • Deppermann C, Cherpokova D, Nurden P, et al. Gray platelet syndrome and defective thrombo-inflammation in Nbeal2-deficient mice. J Clin Invest. 2013;123(8):3331-3342. doi:10.1172/JCI69210
  • Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13(3):159-175. doi:10.1038/nri3399
  • Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil Extracellular Traps Kill Bacteria. Science. 2004;303(5663):1532-1535. doi:10.1126/science.1092385
  • Wilgus TA, Roy S, McDaniel JC. Neutrophils and Wound Repair: Positive Actions and Negative Reactions. Adv Wound Care. 2013;2(7):379-388. doi:10.1089/wound.2012.0383
  • Willenborg S, Eming SA. Macrophages - sensors and effectors coordinating skin damage and repair. JDDG J der Dtsch Dermatologischen Gesellschaft. 2014;12(3):214-221. doi:10.1111/ddg.12290
  • MacDonald KPA, Palmer JS, Cronau S, et al. An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation. Blood. 2010;116(19):3955-3963. doi:10.1182/blood-2010-02-266296
  • Murray PJ, Allen JE, Biswas SK, et al. Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity. 2014;41(1):14-20. doi:10.1016/j.immuni.2014.06.008
  • DiPietro LA, Polverini PJ. Role of the macrophage in the positive and negative regulation of wound neovascularization. Behring Inst Mitt. 1993;Aug(92):238-247.
  • Jetten N, Verbruggen S, Gijbels MJ, Post MJ, De Winther MPJ, Donners MMPC. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis. 2014;17(1):109-118. doi:10.1007/s10456-013-9381-6
  • Boman HG. Innate immunity and the normal microflora. Immunol Rev. 2000;Feb(173):5-16. doi:10.1034/j.1600-065X.2000.917301.x
  • Harder J, Bartels J, Christophers E, Schroder JM. A peptide antibiotic from human skin. Nature. 1997;387(6636):861. doi:10.1038/43088
  • Frohm M, Agerberth B, Ahangari G, et al. The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem. 1997;272(24):15258-15263. doi:10.1074/jbc.272.24.15258
  • Duplantier AJ, van Hoek ML. The human cathelicidin antimicrobial peptide LL-37 as a potential treatment for polymicrobial infected wounds. Front Immunol. 2013;4(143). doi:10.3389/fimmu.2013.00143
  • Sorensen OE, Cowland JB, Theilgaard-Monch K, Liu L, Ganz T, Borregaard N. Wound Healing and Expression of Antimicrobial Peptides/Polypeptides in Human Keratinocytes, a Consequence of Common Growth Factors. J Immunol. 2014;170(11):5583-5589. doi:10.4049/jimmunol.170.11.5583
  • Nijnik A, Pistolic J, Filewod NCJ, Hancock REW. Signaling pathways mediating chemokine induction in keratinocytes by cathelicidin LL-37 and flagellin. J Innate Immun. 2012;4(4):377-386. doi:10.1159/000335901
  • Chamorro CI, Weber G, Grönberg A, Pivarcsi A, Ståhle M. The human antimicrobial peptide LL-37 suppresses apoptosis in keratinocytes. J Invest Dermatol. 2009;129(4):937-944. doi:10.1038/jid.2008.321
  • Carretero M, Escámez MJ, García M, et al. In vitro and in vivo wound healing-promoting activities of human cathelicidin LL-37. J Invest Dermatol. 2008;128(1):223-236. doi:10.1038/sj.jid.5701043
  • Braff MH, Hawkins MA, Nardo A Di, et al. Structure-Function Relationships among Human Cathelicidin Peptides: Dissociation of Antimicrobial Properties from Host Immunostimulatory Activities. J Immunol. 2005;174(7):4271-4278. doi:10.4049/jimmunol.174.7.4271
  • Tomasinsig L, Pizzirani C, Skerlavaj B, et al. The human cathelicidin LL-37 modulates the activities of the P2X 7 receptor in a structure-dependent manner. J Biol Chem. 2008;283(45):30471-30481. doi:10.1074/jbc.M802185200
  • Shaykhiev R, Beißwenger C, Kändler K, et al. Human endogenous antibiotic LL-37 stimulates airway epithelial cell proliferation and wound closure. Am J Physiol - Lung Cell Mol Physiol. 2005;289(5):842-848. doi:10.1152/ajplung.00286.2004
  • Girnita A, Zheng H, Grönberg A, Girnita L, Sthle M. Identification of the cathelicidin peptide LL-37 as agonist for the type i insulin-like growth factor receptor. Oncogene. 2012;31(3):352-365. doi:10.1038/onc.2011.239
  • Jung Kim D, Lee YW, Park MK, et al. Efficacy of the designer antimicrobial peptide SHAP1 in wound healing and wound infection. Amino Acids. 2014;46(10):2333-2343. doi:10.1007/s00726-014-1780-5
  • Steinstraesser L, Hirsch T, Schulte M, et al. Innate defense regulator peptide 1018 in wound healing and wound infection. PLoS One. 2012. doi:10.1371/journal.pone.0039373
  • Pfalzgraff A, Brandenburg K, Weindl G. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front Pharmacol. 2018;9(281). doi:10.3389/fphar.2018.00281
  • Ramos R, Silva JP, Rodrigues AC, et al. Wound healing activity of the human antimicrobial peptide LL37. Peptides. 2011;32(7):1469-1476. doi:10.1016/j.peptides.2011.06.005
  • Rivas-Santiago B, Trujillo V, Montoya A, et al. Expression of antimicrobial peptides in diabetic foot ulcer. J Dermatol Sci. 2012;65(1):19-26. doi:10.1016/j.jdermsci.2011.09.013
  • Takahashi T, Gallo RL. The Critical and Multifunctional Roles of Antimicrobial Peptides in Dermatology. Dermatol Clin. 2017;35(1):39-50. doi:10.1016/j.det.2016.07.006
  • Lande R, Chamilos G, Ganguly D, et al. Cationic antimicrobial peptides in psoriatic skin cooperate to break innate tolerance to self-DNA. Eur J Immunol. 2015;45(1):2013-2213. doi:10.1002/eji.201344277
  • Niyonsaba F, Kiatsurayanon C, Chieosilapatham P, Ogawa H. Friends or Foes? Host defense (antimicrobial) peptides and proteins in human skin diseases. Exp Dermatol. 2017;26(11):989-998. doi:10.1111/exd.13314
  • Kiatsurayanon C, Niyonsaba F, Smithrithee R, et al. Host defense (antimicrobial) peptide, human β-defensin-3, improves the function of the epithelial tight-junction barrier in human keratinocytes. J Invest Dermatol. 2014;134(8):2163-2173. doi:10.1038/jid.2014.143
Year 2020, , 145 - 153, 01.03.2020
https://doi.org/10.17343/sdutfd.641016

Abstract

References

  • Aşkar Ş, Aşkar TK. Anti̇mi̇krobi̇yel protei̇nler ve bağışıklıktaki önemi̇. Balıkesir Sağlık Bilim Derg. 2017;6(2):82-86. doi:10.5505/bsbd.2017.13002.
  • Dubois RJ. Studies on a bactericidal agent extracted from a soil Bacillus. J Exp Med. 1939;70(1):1-10. doi:10.1084/jem.70.3.249.
  • Galton F. Letters to the editors - Pangenesis. Nature. 1871;4(79):5-6.
  • Van Epps HL. René Dubos: Unearthing antibiotics. J Exp Med. 2006;203(2):259. doi:10.1084/jem.2032fta.
  • Dubos RJ, Hotchkiss RD. The Production Of Bactericidal Substances By Aerobic Sporulating Bacilli. 1941:629-640.
  • Rammelkamp CH, Weinstein L. Toxic effects of tyrothricin, gramicidin and tyrocidine. J Infect Dis. 1942. doi:10.1093/infdis/71.2.166.
  • Balls AK., Hale WS, Harris TH. A crystalline protein obtained from a lipoprotein of wheat flour. Cereal Chem. 1942;19:279-288.
  • Ohtani K, Okada T, Yoshizumi H, Kagamiyama H. Complete primary structures of two subunits of purothionin A, a lethal protein for brewer’s yeast from wheat flour. J Biochem. 1977. doi:10.1093/oxfordjournals.jbchem.a131752.
  • Hirsch JG. Phagocytin: A bactericidal substance from polymorphonuclear leucocytes. J Exp Med. 2004. doi:10.1084/jem.103.5.589.
  • Groves ML, Peterson RF, Kiddy CA. Polymorphism in the red protein isolated from milk of individual cows. Nature. 1965. doi:10.1038/2071007a0.
  • Zeya HI, Spitznagel JK. Antibacterial and enzymic basic proteins from leukocyte lysosomes: Separation and identification. Science (80- ). 1963;142(3595):1085-1087. doi:10.1126/science.142.3595.1085.
  • Schauber J, Gallo RL. Antimicrobial peptides and the skin immune defense system. J Allergy Clin Immunol. 2008. doi:10.1016/j.jaci.2008.03.027.
  • Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415(6870):389-395. doi:10.1038/415389a.
  • Radek K, Gallo R. Antimicrobial peptides: natural effectors of the innate immune system. Semin Immunopathol. 2007;29(1):27-43.
  • Conlon JM, Sonnevend A. Antimicrobial peptides in frog skin secretions. Methods Mol Biol. 2010;618:3-14. doi:10.1007/978-1-60761-594-1_1.
  • Ma Y, Liu C, Liu X, et al. Peptidomics and genomics analysis of novel antimicrobial peptides from the frog, Rana nigrovittata. Genomics. 2010;95(1):66-71. doi:10.1016/j.ygeno.2009.09.004.
  • Akkaya A. Antimikrobiyal Peptitlerin Yapıları ve Etki Mekanizmaları. İzmir; 2017.
  • Hancock REW, Chapple DS. Minireview Peptide antibiotics. Antimicrob Agents Chemother. 1999;43(6):1317-1323.
  • Lai Y, Gallo RL. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009;30(3):131-141. doi:10.1016/j.it.2008.12.003.
  • Westerhoff H V., Juretic D, Hendler RW, Zasloff M. Magainins and the disruption of membrane-linked free-energy transduction. Proc Natl Acad Sci. 1989;86(17):6597-6601. doi:10.1073/pnas.86.17.6597.
  • Bahar AA, Ren D. Antimicrobial Peptides. Pharmaceuticals. 2013;28(6):1543-1575. doi:10.3390/ph6121543.
  • Dong GL, Hee NK, Park Y, et al. Design of novel analogue peptides with potent antibiotic activity based on the antimicrobial peptide, HP (2-20), derived from N-terminus of Helicobacter pylori ribosomal protein L1. Biochim Biophys Acta - Protein Struct Mol Enzymol. 2002;1598(1-2):185-194. doi:10.1016/S0167-4838(02)00373-4.
  • Fernández-Vidal M, Jayasinghe S, Ladokhin AS, White SH. Folding Amphipathic Helices Into Membranes: Amphiphilicity Trumps Hydrophobicity. J Mol Biol. 2007;370(3):459-470. doi:10.1016/j.jmb.2007.05.016.
  • Mor A, Nicolas P. Isolation and structure of novel defensive peptides from frog skin. Eur J Biochem. 1994;219(1-2):145-154. doi:10.1111/j.1432-1033.1994.tb19924.x
  • Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front Cell Infect Microbiol. 2016;6(194). doi:10.3389/fcimb.2016.00194
  • Shai Y, Oren Z. From “carpet” mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides. 2001;22(10):1629-1641. doi:10.1016/S0196-9781(01)00498-3
  • Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev. 2003;55(1):27-55. doi:10.1124/pr.55.1.2
  • Hara T, Mitani Y, Tanaka K, et al. Heterodimer formation between the antimicrobial peptides magainin 2 and PGLa in lipid bilayers: A cross-linking study. Biochemistry. 2001;40(41):12395-12399. doi:10.1021/bi011413v
  • Kamysz W, Okrój M, Łukasiak J. Novel properties of antimicrobial peptides. Acta Biochim Pol. 2003;50(2):461-469. doi:10.1016/j.ijheatmasstransfer.2017.04.069
  • Patton Jr. JH, Fabian TC. Complex pancreatic injuries. Surg Clin North Am. 1996.
  • Robson MC, Steed DL, Franz MG. Wound healing: Biologic features and approaches to maximize healing trajectories. Curr Probl Surg. 2001;38(2):72-140. doi:10.1067/msg.2001.111167
  • Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci Transl Med. 2014;6. doi:10.1126/scitranslmed.3009337
  • Larouche J, Sheoran S, Maruyama K, Martino MM. Immune regulation of skin wound healing: Mechanisms and novel therapeutic targets. Adv Wound Care. 2018;7(7):209-231. doi:10.1089/wound.2017.0761
  • Diegelmann RF, Evans MC. Wound healing: An overview of acute, fibrotic and delayed healing. Front Biosci. 2004;9:283-289. doi:10.2741/1184
  • Julier Z, Park AJ, Briquez PS, Martino MM. Promoting tissue regeneration by modulating the immune system. Acta Biomater. 2017;53:13-28. doi:10.1016/j.actbio.2017.01.056
  • Delavary BM, van der Veer WM, van Egmond M, Niessen FB, Beelen RHJ. Macrophages in skin injury and repair. Immunobiology. 2011;216(7):753-762. doi:10.1016/j.imbio.2011.01.001
  • Szpaderska AM, Egozi EI, Gamelli RL, DiPietro LA. The effect of thrombocytopenia on dermal wound healing. J Invest Dermatol. 2003;120(6):1130-1137. doi:10.1046/j.1523-1747.2003.12253.x
  • Martin P, Leibovich SJ. Inflammatory cells during wound repair: The good, the bad and the ugly. Trends Cell Biol. 2005;15(11):599-607. doi:10.1016/j.tcb.2005.09.002
  • Deppermann C, Cherpokova D, Nurden P, et al. Gray platelet syndrome and defective thrombo-inflammation in Nbeal2-deficient mice. J Clin Invest. 2013;123(8):3331-3342. doi:10.1172/JCI69210
  • Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13(3):159-175. doi:10.1038/nri3399
  • Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil Extracellular Traps Kill Bacteria. Science. 2004;303(5663):1532-1535. doi:10.1126/science.1092385
  • Wilgus TA, Roy S, McDaniel JC. Neutrophils and Wound Repair: Positive Actions and Negative Reactions. Adv Wound Care. 2013;2(7):379-388. doi:10.1089/wound.2012.0383
  • Willenborg S, Eming SA. Macrophages - sensors and effectors coordinating skin damage and repair. JDDG J der Dtsch Dermatologischen Gesellschaft. 2014;12(3):214-221. doi:10.1111/ddg.12290
  • MacDonald KPA, Palmer JS, Cronau S, et al. An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation. Blood. 2010;116(19):3955-3963. doi:10.1182/blood-2010-02-266296
  • Murray PJ, Allen JE, Biswas SK, et al. Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity. 2014;41(1):14-20. doi:10.1016/j.immuni.2014.06.008
  • DiPietro LA, Polverini PJ. Role of the macrophage in the positive and negative regulation of wound neovascularization. Behring Inst Mitt. 1993;Aug(92):238-247.
  • Jetten N, Verbruggen S, Gijbels MJ, Post MJ, De Winther MPJ, Donners MMPC. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis. 2014;17(1):109-118. doi:10.1007/s10456-013-9381-6
  • Boman HG. Innate immunity and the normal microflora. Immunol Rev. 2000;Feb(173):5-16. doi:10.1034/j.1600-065X.2000.917301.x
  • Harder J, Bartels J, Christophers E, Schroder JM. A peptide antibiotic from human skin. Nature. 1997;387(6636):861. doi:10.1038/43088
  • Frohm M, Agerberth B, Ahangari G, et al. The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem. 1997;272(24):15258-15263. doi:10.1074/jbc.272.24.15258
  • Duplantier AJ, van Hoek ML. The human cathelicidin antimicrobial peptide LL-37 as a potential treatment for polymicrobial infected wounds. Front Immunol. 2013;4(143). doi:10.3389/fimmu.2013.00143
  • Sorensen OE, Cowland JB, Theilgaard-Monch K, Liu L, Ganz T, Borregaard N. Wound Healing and Expression of Antimicrobial Peptides/Polypeptides in Human Keratinocytes, a Consequence of Common Growth Factors. J Immunol. 2014;170(11):5583-5589. doi:10.4049/jimmunol.170.11.5583
  • Nijnik A, Pistolic J, Filewod NCJ, Hancock REW. Signaling pathways mediating chemokine induction in keratinocytes by cathelicidin LL-37 and flagellin. J Innate Immun. 2012;4(4):377-386. doi:10.1159/000335901
  • Chamorro CI, Weber G, Grönberg A, Pivarcsi A, Ståhle M. The human antimicrobial peptide LL-37 suppresses apoptosis in keratinocytes. J Invest Dermatol. 2009;129(4):937-944. doi:10.1038/jid.2008.321
  • Carretero M, Escámez MJ, García M, et al. In vitro and in vivo wound healing-promoting activities of human cathelicidin LL-37. J Invest Dermatol. 2008;128(1):223-236. doi:10.1038/sj.jid.5701043
  • Braff MH, Hawkins MA, Nardo A Di, et al. Structure-Function Relationships among Human Cathelicidin Peptides: Dissociation of Antimicrobial Properties from Host Immunostimulatory Activities. J Immunol. 2005;174(7):4271-4278. doi:10.4049/jimmunol.174.7.4271
  • Tomasinsig L, Pizzirani C, Skerlavaj B, et al. The human cathelicidin LL-37 modulates the activities of the P2X 7 receptor in a structure-dependent manner. J Biol Chem. 2008;283(45):30471-30481. doi:10.1074/jbc.M802185200
  • Shaykhiev R, Beißwenger C, Kändler K, et al. Human endogenous antibiotic LL-37 stimulates airway epithelial cell proliferation and wound closure. Am J Physiol - Lung Cell Mol Physiol. 2005;289(5):842-848. doi:10.1152/ajplung.00286.2004
  • Girnita A, Zheng H, Grönberg A, Girnita L, Sthle M. Identification of the cathelicidin peptide LL-37 as agonist for the type i insulin-like growth factor receptor. Oncogene. 2012;31(3):352-365. doi:10.1038/onc.2011.239
  • Jung Kim D, Lee YW, Park MK, et al. Efficacy of the designer antimicrobial peptide SHAP1 in wound healing and wound infection. Amino Acids. 2014;46(10):2333-2343. doi:10.1007/s00726-014-1780-5
  • Steinstraesser L, Hirsch T, Schulte M, et al. Innate defense regulator peptide 1018 in wound healing and wound infection. PLoS One. 2012. doi:10.1371/journal.pone.0039373
  • Pfalzgraff A, Brandenburg K, Weindl G. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front Pharmacol. 2018;9(281). doi:10.3389/fphar.2018.00281
  • Ramos R, Silva JP, Rodrigues AC, et al. Wound healing activity of the human antimicrobial peptide LL37. Peptides. 2011;32(7):1469-1476. doi:10.1016/j.peptides.2011.06.005
  • Rivas-Santiago B, Trujillo V, Montoya A, et al. Expression of antimicrobial peptides in diabetic foot ulcer. J Dermatol Sci. 2012;65(1):19-26. doi:10.1016/j.jdermsci.2011.09.013
  • Takahashi T, Gallo RL. The Critical and Multifunctional Roles of Antimicrobial Peptides in Dermatology. Dermatol Clin. 2017;35(1):39-50. doi:10.1016/j.det.2016.07.006
  • Lande R, Chamilos G, Ganguly D, et al. Cationic antimicrobial peptides in psoriatic skin cooperate to break innate tolerance to self-DNA. Eur J Immunol. 2015;45(1):2013-2213. doi:10.1002/eji.201344277
  • Niyonsaba F, Kiatsurayanon C, Chieosilapatham P, Ogawa H. Friends or Foes? Host defense (antimicrobial) peptides and proteins in human skin diseases. Exp Dermatol. 2017;26(11):989-998. doi:10.1111/exd.13314
  • Kiatsurayanon C, Niyonsaba F, Smithrithee R, et al. Host defense (antimicrobial) peptide, human β-defensin-3, improves the function of the epithelial tight-junction barrier in human keratinocytes. J Invest Dermatol. 2014;134(8):2163-2173. doi:10.1038/jid.2014.143
There are 68 citations in total.

Details

Primary Language Turkish
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Reviews
Authors

Sibel Akar This is me

Emel Öykü Çetin Uyanıkgil 0000-0001-8822-9130

Publication Date March 1, 2020
Submission Date October 31, 2019
Acceptance Date December 20, 2019
Published in Issue Year 2020

Cite

Vancouver Akar S, Çetin Uyanıkgil EÖ. ANTİMİKROBİYAL PEPTİTLERİN PROİNFLAMATUAR YANITTAKİ POTANSİYELLERİ. Med J SDU. 2020;27(1):145-53.

                                                                                               14791 


Süleyman Demirel Üniversitesi Tıp Fakültesi Dergisi/Medical Journal of Süleyman Demirel University is licensed under Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International.