Araştırma Makalesi
BibTex RIS Kaynak Göster

Biochar Incorporation Zone Has an Effect on The Soil Carbon Dioxide Emission

Yıl 2023, , 110 - 115, 18.12.2023
https://doi.org/10.54975/isubuzfd.1356175

Öz

Several factors are effective on soil carbon dioxide emissions caused by agricultural practices; soil organic matter contents, soil moisture and temperature, climatic changes, and tillage techniques are predominant. In recent years, as a CO2 sequestration agent, biochar incorporation becomes a promising approach. Many studies show that biochar reduces soil CO2 emissions; however, incorporation depth is not widely studied. A pot experiment was carried out to determine the effects of the incorporation zone of rose pulp biochar produced at 400 C on carbon dioxide emission. Treatments were Z as without biochar incorporation (control), A, B, and C are the incorporation zone of 0-7, 0-14, and 0-21 cm soil layer. The measurements in the experiment last for about 2 months. Results revealed that mean CO2 emissions for Z, A, B, and C treatments were 0.048, 0.052, 0.064, and 0.076 g m-2h-1, respectively. According to these results, it was determined that the biochar admixed in the C layer caused more soil CO2 emissions, and there was no significant difference between the other treatments (p>0.05). The highest plant biomass development was obtained in the B treatment (p<0.05).

Etik Beyan

As the authors of this study, we declare that we do not have any ethics committee approval.

Kaynakça

  • Akbolat, D., & Coşkan, A. (2021). Farklı Toprak Sıcaklıklarının Tarla Kapasitesindeki Toprağın CO2 Üretimine Etkisi. Ziraat Fakültesi Dergisi, 16(2), 200-206.
  • Akbolat, D., Evrendilek, F., Coskan, A., & Ekinci, K. (2009). Quantifying soil respiration in response to short-term tillage practices: a case study in southern Turkey. Acta Agriculturae Scandinavica Section B–Soil and Plant Science, 59(1), 50-56. https://doi.org/10.1080/09064710701833202
  • Alaboz, P., & Işıldar, A. A. (2018). Elma ve gül posası biyoçarlarının kumlu toprağın bazı fiziksel özellikleri üzerine etkileri. Toprak Bilimi ve Bitki Besleme Dergisi, 6(2), 67-72.
  • Eastman, C. M. (2011). Soil physical characteristics of an Aeric Ochraqualf amended with Biochar Doctoral dissertation, Ohio State University.
  • Günal, E., & Erdem, H. (2021). Sürdürülebilir çevre yönetiminde biyoçar. Sürdürülebilir Çevre Dergisi, 1(1), 7-17.
  • Jeffery, S., Verheijen, F. G. A., van der Velde, M., & Bastos, A. C. (2011). A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems & Environment, 144(1), 175-187. https://doi.org/10.1016/j.agee.2011.08.015
  • Joseph, U. E., Toluwase, A. O., Kehinde, E. O., Omasan, E. E., Tolulope, A. Y., George, O. O., Zhao, C., & Hongyan, W. (2020). Effect of biochar on soil structure and storage of soil organic carbon and nitrogen in the aggregate fractions of an Albic soil. Archives of Agronomy and Soil Science, 66(1), 1-12.
  • Laird, D. A., Fleming, P., Davis, D. D., Horton, R., & Wang, B. (2010). Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma, 158(3-4), 443-449. https://doi.org/10.1016/j.geoderma.2010.05.013
  • Lehmann, J., & Joseph, S. (2009). Biochar for environmental management: An introduction. Lehmann, J., & S. Joseph, S., (Eds.), Biochar for Environmental Management: Science, Technology and Implementation (pp. 1-12). Earthscan. https://doi.org/10.4324/9780203762264
  • Ma, R., Wu, X., Liu, Z., Yi, Q., Xu, M., Zheng, J., Bian, R., Zhang, X., & Pan, G. (2023). Biochar improves soil organic carbon stability by shaping the microbial community structures at different soil depths four years after an incorporation in a farmland soil. Current Research in Environmental Sustainability, 5, 100214. https://doi.org/10.1016/ j.crsust.2023.100214
  • Memici, M., & Ekinci, K. (2020). Pyrolysis of tomato harvest waste as a function of temperature and duration: Characteristics, production energy, and carbon dioxide emission in field conditions. Soil and Tillage Research, 202, 104652. https://doi.org/10.1016/j.still.2020.104652
  • Sayğan, E. P. (2017). Biyokömürün (biochar) toprak düzenleyicisi olarak kullanım potansiyellerinin belirlenmesi. Harran Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi. Toprak Bilimi ve Bitki Besleme Anabilim Dalı, Şanlıurfa.
  • Schnell, R. W., Vietor, D. M., Provin, T. L., Munster, C. L., & Capareda, S. (2012). Capacity of biochar application to maintain energy crop productivity: soil chemistry, sorghum growth, and runoff water quality effects. Journal of Environmental Quality, 41(4), 1044-1051. https://doi.org/ 10.2134/jeq2011.0077
  • Smith, P., Cotrufo, M. F., Rumpel, C., Paustian, K., Kuikman, P. J., Elliott, J. A., McDowell, R., Griffiths, R. I., Asakawa, S., Bustamante, M., House, J. I., Sobocká, J., Harper, R., Pan, G., West, P. C., Gerber, J. S., Clark, J. M., Adhya, T., Scholes, R. J., & Scholes, M. C (2016). Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. Soil, 2(4), 665-685. https://doi.org/10.5194/soil-2-665-2016
  • Spokas, K. A, & Reicosky, D. C. (2009). Impacts of sixteen different biochars on soil greenhouse gas production. Annals of environmental science, 3, 179-193.
  • Van Zwieten, L., Singh, B. P., Kimber, S. W. L., Murphy, D. V., Macdonald, L. M., Rust, J., & Morris, S. (2014). An incubation study investigating the mechanisms that impact N2O flux from soil following biochar application. Agriculture, Ecosystems & Environment, 191, 53-62. https://doi.org/ 10.1016/j.agee.2014.02.030
  • Wang, H., Ren, T., Yang, H., Feng, Y., Feng, H., Liu, G., Yin, Q., & Shi, H. (2020). Research and application of biochar in soil CO2 emission, fertility, and microorganisms: A sustainable solution to solve China’s agricultural straw burning problem. Sustainability, 12(5), 1922. https://doi.org/10.3390/su12051922
  • Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., & Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature Communications, 1(5), 1-9. https://doi.org/ 10.1038/ncomms1053
  • Yang, Y., Sun, K., Liu, J., Chen, Y., & Han, L. (2022). Changes in soil properties and CO2 emissions after biochar addition: Role of pyrolysis temperature and aging. Science of the Total Environment, 839, 156333. https://doi.org/10.1016/ j.scitotenv.2022.156333
  • Zhang, X., Zhong, R., He, X., Zhao, S., Wei, Y., Yang, F., & He, L. (2018). Effect of biochar on enteric methane production, rumen fermentation, and microbial populations in vitro. Journal of Dairy Science, 101(3), 2184-2196. https://doi.org/10.3168/ jds.2017-13219

Biyokömür Karıştırma Zonu Toprak Karbondioksit Emisyonu Üzerinde Etkilidir

Yıl 2023, , 110 - 115, 18.12.2023
https://doi.org/10.54975/isubuzfd.1356175

Öz

Tarımsal uygulamalardan kaynaklanan toprak karbondioksit emisyonları üzerinde çeşitli faktörler etkilidir; toprağın organik madde içeriği, toprağın nemi ve sıcaklığı, iklim değişiklikleri ve toprak işleme teknikleri baskındır. Son yıllarda, CO2 tutma ajanı olarak biyokömürün dahil edilmesi umut verici bir yaklaşım haline gelmiştir. Pek çok araştırma biyokömürün topraktaki CO2 emisyonlarını azalttığını göstermektedir; ancak uygulama derinliği geniş çapta araştırılmamıştır. 400 °C sıcaklıkta üretilen gül posası biyokömürünün uygulama bölgesinin karbondioksit emisyonu üzerindeki etkilerini belirlemek amacıyla saksı deneyi yapılmıştır. Denemeler, biyokömür katılmayan Z (kontrol); A, B ve C, 0-7, 0-14 ve 0-21 cm toprak derinliklerinde gerçekleştirilmiştir. Deneme ölçümleri 2 ay sürmüştür. Sonuçlar Z, A, B ve C denemeleri için ortalama CO2 emisyonlarının sırasıyla 0,048, 0,052, 0,064 ve 0,076 g m-2h-1 olduğunu ortaya çıkarmıştır. Bu sonuçlara göre C katmanına karıştırılan biyokömürün daha fazla toprak CO2 emisyonuna neden olduğu, diğer uygulamalar arasında ise önemli bir fark olmadığı belirlemiştir (p>0,05). En yüksek bitki biyokütle gelişimi B uygulamasında elde edilmiştir (p<0.05).

Etik Beyan

As the authors of this study, we declare that we do not have any ethics committee approval.

Kaynakça

  • Akbolat, D., & Coşkan, A. (2021). Farklı Toprak Sıcaklıklarının Tarla Kapasitesindeki Toprağın CO2 Üretimine Etkisi. Ziraat Fakültesi Dergisi, 16(2), 200-206.
  • Akbolat, D., Evrendilek, F., Coskan, A., & Ekinci, K. (2009). Quantifying soil respiration in response to short-term tillage practices: a case study in southern Turkey. Acta Agriculturae Scandinavica Section B–Soil and Plant Science, 59(1), 50-56. https://doi.org/10.1080/09064710701833202
  • Alaboz, P., & Işıldar, A. A. (2018). Elma ve gül posası biyoçarlarının kumlu toprağın bazı fiziksel özellikleri üzerine etkileri. Toprak Bilimi ve Bitki Besleme Dergisi, 6(2), 67-72.
  • Eastman, C. M. (2011). Soil physical characteristics of an Aeric Ochraqualf amended with Biochar Doctoral dissertation, Ohio State University.
  • Günal, E., & Erdem, H. (2021). Sürdürülebilir çevre yönetiminde biyoçar. Sürdürülebilir Çevre Dergisi, 1(1), 7-17.
  • Jeffery, S., Verheijen, F. G. A., van der Velde, M., & Bastos, A. C. (2011). A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems & Environment, 144(1), 175-187. https://doi.org/10.1016/j.agee.2011.08.015
  • Joseph, U. E., Toluwase, A. O., Kehinde, E. O., Omasan, E. E., Tolulope, A. Y., George, O. O., Zhao, C., & Hongyan, W. (2020). Effect of biochar on soil structure and storage of soil organic carbon and nitrogen in the aggregate fractions of an Albic soil. Archives of Agronomy and Soil Science, 66(1), 1-12.
  • Laird, D. A., Fleming, P., Davis, D. D., Horton, R., & Wang, B. (2010). Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma, 158(3-4), 443-449. https://doi.org/10.1016/j.geoderma.2010.05.013
  • Lehmann, J., & Joseph, S. (2009). Biochar for environmental management: An introduction. Lehmann, J., & S. Joseph, S., (Eds.), Biochar for Environmental Management: Science, Technology and Implementation (pp. 1-12). Earthscan. https://doi.org/10.4324/9780203762264
  • Ma, R., Wu, X., Liu, Z., Yi, Q., Xu, M., Zheng, J., Bian, R., Zhang, X., & Pan, G. (2023). Biochar improves soil organic carbon stability by shaping the microbial community structures at different soil depths four years after an incorporation in a farmland soil. Current Research in Environmental Sustainability, 5, 100214. https://doi.org/10.1016/ j.crsust.2023.100214
  • Memici, M., & Ekinci, K. (2020). Pyrolysis of tomato harvest waste as a function of temperature and duration: Characteristics, production energy, and carbon dioxide emission in field conditions. Soil and Tillage Research, 202, 104652. https://doi.org/10.1016/j.still.2020.104652
  • Sayğan, E. P. (2017). Biyokömürün (biochar) toprak düzenleyicisi olarak kullanım potansiyellerinin belirlenmesi. Harran Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi. Toprak Bilimi ve Bitki Besleme Anabilim Dalı, Şanlıurfa.
  • Schnell, R. W., Vietor, D. M., Provin, T. L., Munster, C. L., & Capareda, S. (2012). Capacity of biochar application to maintain energy crop productivity: soil chemistry, sorghum growth, and runoff water quality effects. Journal of Environmental Quality, 41(4), 1044-1051. https://doi.org/ 10.2134/jeq2011.0077
  • Smith, P., Cotrufo, M. F., Rumpel, C., Paustian, K., Kuikman, P. J., Elliott, J. A., McDowell, R., Griffiths, R. I., Asakawa, S., Bustamante, M., House, J. I., Sobocká, J., Harper, R., Pan, G., West, P. C., Gerber, J. S., Clark, J. M., Adhya, T., Scholes, R. J., & Scholes, M. C (2016). Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. Soil, 2(4), 665-685. https://doi.org/10.5194/soil-2-665-2016
  • Spokas, K. A, & Reicosky, D. C. (2009). Impacts of sixteen different biochars on soil greenhouse gas production. Annals of environmental science, 3, 179-193.
  • Van Zwieten, L., Singh, B. P., Kimber, S. W. L., Murphy, D. V., Macdonald, L. M., Rust, J., & Morris, S. (2014). An incubation study investigating the mechanisms that impact N2O flux from soil following biochar application. Agriculture, Ecosystems & Environment, 191, 53-62. https://doi.org/ 10.1016/j.agee.2014.02.030
  • Wang, H., Ren, T., Yang, H., Feng, Y., Feng, H., Liu, G., Yin, Q., & Shi, H. (2020). Research and application of biochar in soil CO2 emission, fertility, and microorganisms: A sustainable solution to solve China’s agricultural straw burning problem. Sustainability, 12(5), 1922. https://doi.org/10.3390/su12051922
  • Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., & Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature Communications, 1(5), 1-9. https://doi.org/ 10.1038/ncomms1053
  • Yang, Y., Sun, K., Liu, J., Chen, Y., & Han, L. (2022). Changes in soil properties and CO2 emissions after biochar addition: Role of pyrolysis temperature and aging. Science of the Total Environment, 839, 156333. https://doi.org/10.1016/ j.scitotenv.2022.156333
  • Zhang, X., Zhong, R., He, X., Zhao, S., Wei, Y., Yang, F., & He, L. (2018). Effect of biochar on enteric methane production, rumen fermentation, and microbial populations in vitro. Journal of Dairy Science, 101(3), 2184-2196. https://doi.org/10.3168/ jds.2017-13219
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tarım Makineleri, Toprak Biyolojisi
Bölüm Araştıma
Yazarlar

Davut Akbolat 0000-0002-4999-0901

Ali Coşkan 0000-0001-5473-3515

Hürkan Tayfun Varol 0000-0001-7782-6554

Muvahhid Kılıçarslan 0000-0002-4883-9054

Erken Görünüm Tarihi 13 Aralık 2023
Yayımlanma Tarihi 18 Aralık 2023
Gönderilme Tarihi 6 Eylül 2023
Kabul Tarihi 29 Kasım 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Akbolat, D., Coşkan, A., Varol, H. T., Kılıçarslan, M. (2023). Biochar Incorporation Zone Has an Effect on The Soil Carbon Dioxide Emission. Ziraat Fakültesi Dergisi, 18(2), 110-115. https://doi.org/10.54975/isubuzfd.1356175