Derleme
BibTex RIS Kaynak Göster

Using Seawater for Agriculture: A Different Strategy in the Climate Crisis Era

Yıl 2025, Cilt: 20 Sayı: 2, 101 - 109, 30.12.2025
https://doi.org/10.54975/isubuzfd.1697571

Öz

Globally, the sustainability of agricultural production is being negatively impacted by decreasing precipitation, increasing temperatures, and erratic weather patterns brought on by climate change. Because of this circumstance, looking for alternate water sources has become necessary, especially in areas where water is scarce. This study weighs the benefits and drawbacks of using desalinated or diluted seawater in agricultural production. Seawater use has been successfully applied in hydroponic systems, greenhouse cultivation, and with salt-tolerant plant species, according to research published in the literature. Nonetheless, some technical and financial constraints still exist, such as the potential for soil salinization, the high energy needs, and the effects on the environment. The creation of solar-powered desalination systems and photothermal evaporators in recent years has offered long-term ways to get around these restrictions. Additionally, in the context of seawater-based agriculture, phytoremediation techniques and salt management techniques targeted at maintaining soil health have grown in significance. According to the study's findings, seawater can be regarded as a feasible substitute water source when designing water-efficient and climate-resilient agricultural systems. Last but not least, incorporating different renewable energy sources (such as wind, solar, and geothermal) into desalination systems lowers the cost of producing water and improves energy efficiency and enhances the systems’ suitability for agricultural use.

Etik Beyan

As the authors of this study, we confirm that we do not have any ethics committee approval.

Destekleyen Kurum

Absent

Proje Numarası

Absent

Teşekkür

Absent

Kaynakça

  • Akalin, M. (2014). The Climate change impacts on agriculture: adaptation and mitigation strategies for these impacts. Hitit University Journal of Social Sciences Institute, 7(2), 351-377.
  • Al-Obaidi, M., Alsadaie, S., Alsarayreh, A., Sowgath, T., & Mujtaba, I. (2023). Integration of Renewable Energy Systems. Handbook of Smart Energy Systems, 12(770), 2401–2424. https://doi.org/10.1007/978-3-030-97940-9_93
  • Alshawaf, M., & Alhajeri (2024). Renewable energy-driven desalination for sustainable water production in the Middle East. International Journal of Sustainable Engineering, 17(1), 668-678.
  • Anonymous. (2025a). Salicornia Bigelovii. Access date: 01.04.2025. https://en.wikipedia.org/wiki/Salicornia_bigelovii
  • Anonymous. (2025b). Distichlis palmeri. Access date: 09.04.2025. https://en.wikipedia.org/wiki/Distichlis_palmeri
  • Antolinos, V., Sánchez-Martínez, M. J., Maestre-Valero, J. F., López-Gómez, A., & Martínez-Hernández, G. B. (2020). Effects of irrigation with desalinated seawater and hydroponic system on tomato quality. Water, 12(2), 1-15. https://doi.org/10.3390/w12020518
  • Apolinário, R., & Castro, R. (2024). Solar-Powered Desalination as a Sustainable Long-Term Solution for the Water Scarcity Problem: Case Studies in Portugal. Water, 16(15), 2140. https://doi.org/10.3390/w16152140
  • Ashraf, M., Ozturk, M., & Athar, H. R. (2008). Salinity and water stress: improving crop efficiency. Springer, Dordrecht. The Netherlands
  • Atzori, G., Guidi Nissim, W., Caparrotta, S., Masi, E., Azzarello, E., Pandolfi, C., Vignolini, P., Gonnelli, C., & Mancuso, S. (2016). Potential and constraints of different seawater and freshwater blends as growing media for three vegetable crops. Agricultural Water Management, 176, 255–262. https://doi.org/10.1016/j.agwat.2016.06.016
  • Cruz, M. S. D., & Almoguera, L. (2025). Response of Eggplant (Solanum melongena) to Diluted Seawater Irrigation. Journal of Biology, 17(1)
  • Dellal, I. (2021). Climate crisis and agriculture-food sector. 3rd International Congress on Agriculture and Food Ethics, November 2021
  • Demirbas, N. (2022). Climate smart agriculture for sustainability of the agricultural sector in the face of climate change : lessons from different country experiences. XVII. IBANESS Congress Series on Economics, Business and Management – Plovdiv / Bulgaria, 487–495
  • Elimelech, M., & Phillip, W. A. (2011). The Future of Seawater Desalination: Energy, Technology, and the Environment. Science, 333(6043). 712-717. https://doi.org/10.1126/science.1200488
  • Feria‐Díaz, J. J., Correa‐Mahecha, F., López‐Méndez, M. C., Rodríguez‐Miranda, J. P., & Barrera‐Rojas, J. (2021). Recent desalination technologies by hybridization and integration with reverse osmosis: A review. Water, 13(10). 1–40. https://doi.org/10.3390/w13101369
  • Glenn, E. P. & Brown, J. J. (1999). Salt tolerance and crop potential of halophytes. Critical Reviews in Plant Sciences, 18(2), 227-255. https://doi.org/10.1080/07352689991309207
  • Gorjian, S., Ahmed, M., Fakhraei, O., Eterafi, S., & Jathar, L. (2022). Solar desalination technology to supply water for agricultural applications, in Gorjian S, Campana PE (eds.), Solar energy advancements in agriculture and food production systems (pp. 271-311). Academic Press. https://doi.org/10.1016/B978-0-323-89866-9.00002-X
  • Javeed, H. M. R., Wang, X., Ali, M., Nawaz, F., Qamar, R., Rehman, A. U., Shehzad, M., Mubeen, M., Shabbir, R., Javed, T., Branca, F., Ahmar, S., & Ismail, I. A. (2021). Potential utilization of diluted seawater for the cultivation of some summer vegetable crops: Physiological and nutritional implications. Agronomy, 11(9), 1-14. https://doi.org/10.3390/agronomy11091826
  • Lu, K., Failler, P., Drakeford, B. M., & Forse, A. (2024). The development of seawater agriculture: Policy options for a changing climate. Environmental Development, 49, 100938. https://doi.org/10.1016/j.envdev.2023.100938
  • Martinez-Alvarez, V., Bar-Tal, A., Javier Diaz Peña, F., & Maestre Valero, J. F. (2020). Desalination of seawater for agricultural irrigation. Water, 12(6). 1–5. https://doi.org/10.3390/W12061712
  • Martínez-Alvarez, V., González-Ortega, M. J., Martin-Gorriz, B., Soto-García, M., & Maestre-Valero, J. F. (2017). The use of desalinated seawater for crop irrigation in the Segura River Basin (south-eastern Spain). Desalination, 422(5), 153–164. https://doi.org/10.1016/j.desal.2017.08.022
  • Martínez‐Granados, D., Marín‐membrive, P., & Calatrava, J. (2022). Economic assessment of irrigation with desalinated seawater in greenhouse tomato production in SE Spain. Agronomy, 12(6). 1–15. https://doi.org/10.3390/agronomy12061471
  • Mekonnen, M. M., & Hoekstra, A. (2016). Four billion people facing severe water scarcity, Sciences Advances, 2(2). https://doi.org/10.1126/sciadv.1500323
  • Nargi, L. (2024). Can desalination quench agriculture’s thirst?. Knowable Magazine. Access date:25.04.2025. https://yaleclimateconnections.org/2024/11/can-desalination-quench-agricultures-thirst/
  • Nicks, M. (2014). Consider the salt-tolerant potato. Modern Farmer. Access date: 05.04.2025. https://modernfarmer.com/2014/12/salt-tolerant-potato/
  • Paton, C. (2018). The decades-long quest to end drought (and feed millions) by taking the salt out of seawater. Access date: 08.02.2025. https://www.wired.com/story/charlie-paton-seawater-greenhouse-desalination-abu-dhabi-oman-australia-somaliland/
  • Piñeiro, V., Arias, J., Dürr, J., Elverdin, P., Ibáñez, A. M., Kinengyere, A., Opazo, C. M., Owoo, N., Page, J. R., Prager, S. D., & Torero, M. (2020). A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nature Sustainability, 3(10), 809–820. https://doi.org/10.1038/s41893-020-00617-y
  • Rhoades, J. D., Kandiah, A., & Mashali, A. M. (1992). The use of saline waters for crop production. FAO irrigation and drainage paper 48.
  • Rockström, J., Williams, J., Daily, G., Noble, A., Matthews, N., Gordon, L., Wetterstrand, H., DeClerck, F., Shah, M., Steduto, P., de Fraiture, C., Hatibu, N., Unver, O., Bird, J., Sibanda, L., & Smith, J. (2017). Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio, 46(1). 4–17. https://doi.org/10.1007/s13280-016-0793-6
  • Rossiter, A. (1977). Scientists grow barley with seawater irrigation. Access date: 09.05.2025. https://www.washingtonpost.com/archive/local/1977/09/19/scientists-grow-barley-with-seawater-irrigation/461773db-e929-4916-b2ad-022c8b81acdb/
  • Saylan, L. (2021). Climate crisis: climate change and agriculture interaction. 3rd International Congress on Agriculture and Food Ethics, November 2021.
  • Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Marĩas, B. J., & Mayes, A. M. (2008). Science and technology for water purification in the coming decades. Nature, 452(7185), 301–310. https://doi.org/10.1038/nature06599
  • Tashtoush, B., Alyahya, W., Al Ghadi, M., Al-Omari, J., & Morosuk, T. (2023). Renewable energy integration in water desalination: State-of-the-art review and comparative analysis. Applied Energy, 352, 121950. https://doi.org/10.1016/j.apenergy.2023.121950
  • UN (2025). Global assesssment report on disaster risk reduction. Access date: 01.03.2025. https://www.undrr.org/gar/gar2025
  • UNESCO (1981). Background papers and supporting data on the practical salinity scale 1978. Unesco/ICES/SCOR/IAPSO Joint Panel on Oceanographic Tables and Standards. UNESCO Technical Papers in Marine Science.
  • USDA (2025). Salt Tolerance. Agricultural water productivity and salinity research unit. Access date: 03.03.2025. https://www.ars.usda.gov/pacific-west-area/riverside-ca/agricultural-water-efficiency-and-salinity-research-unit/docs/databases/fgs-crops/
  • Wezel, A., Casagrande, M., Celette, F., Vian, J. F., Ferrer, A., & Peigné, J. (2014). Agroecological practices for sustainable agriculture. A review. Agronomy for Sustainable Development, 34(1), 1–20. https://doi.org/10.1007/s13593-013-0180-7
  • Wu, P., Zhou, D., Li, Y., Yang, X., Shi, Y., Shi, X., Owens, G., & Pi, K. (2025). A bioinspired photothermal evaporator for enhanced salt separation during saline soil remediation. Desalination, 602, 118647. https://doi.org/10.1016/j.desal.2025.118647

Tarım İçin Deniz Suyu Kullanımı: İklim Krizi Döneminde Farklı Bir Strateji

Yıl 2025, Cilt: 20 Sayı: 2, 101 - 109, 30.12.2025
https://doi.org/10.54975/isubuzfd.1697571

Öz

İklim değişikliğinin neden olduğu azalan yağışlar, artan sıcaklıklar ve düzensiz hava koşulları, küresel ölçekte tarımsal üretimin sürdürülebilirliğini olumsuz etkilemektedir. Bu durum özellikle su kaynaklarının kısıtlı olduğu bölgelerde alternatif su kaynakları arayışını zorunlu kılmıştır. Bu çalışma, tarımsal üretimde arıtılmış veya seyreltilmiş deniz suyunun kullanımının avantaj ve dezavantajlarını değerlendirmektedir. Literatürde yayımlanan araştırmalara göre, deniz suyunun kullanımı; hidroponik sistemlerde, sera tarımında ve tuza dayanıklı bitki türleriyle birlikte başarıyla uygulanabilmiştir. Ancak, toprak tuzluluğu riski, yüksek enerji gereksinimi ve çevresel etkiler gibi bazı teknik ve ekonomik kısıtlar hâlâ mevcuttur. Son yıllarda geliştirilen güneş enerjisiyle çalışan tuzdan arındırma sistemleri ve fototermal buharlaştırıcılar, bu kısıtların uzun vadeli olarak aşılmasına yönelik çözümler sunmuştur. Ayrıca, deniz suyuna dayalı tarım bağlamında toprak sağlığının korunmasına yönelik fitoremedyasyon teknikleri ve tuz yönetim yaklaşımlarının önemi giderek artmaktadır. Çalışmanın bulgularına göre, su kullanım etkinliği yüksek ve iklim değişikliğine dayanıklı tarımsal sistemlerin tasarlanmasında deniz suyu uygulanabilir bir alternatif su kaynağı olarak değerlendirilebilir. Son olarak, rüzgar, güneş ve jeotermal gibi farklı yenilenebilir enerji kaynaklarının tuzdan arındırma sistemlerine entegre edilmesi; su üretim maliyetini düşürmekte ve enerji verimliliğini artırmaktadır. Bu durum ise sistemlerin tarımda kullanım uygunluğunu güçlendirmektedir.

Proje Numarası

Absent

Kaynakça

  • Akalin, M. (2014). The Climate change impacts on agriculture: adaptation and mitigation strategies for these impacts. Hitit University Journal of Social Sciences Institute, 7(2), 351-377.
  • Al-Obaidi, M., Alsadaie, S., Alsarayreh, A., Sowgath, T., & Mujtaba, I. (2023). Integration of Renewable Energy Systems. Handbook of Smart Energy Systems, 12(770), 2401–2424. https://doi.org/10.1007/978-3-030-97940-9_93
  • Alshawaf, M., & Alhajeri (2024). Renewable energy-driven desalination for sustainable water production in the Middle East. International Journal of Sustainable Engineering, 17(1), 668-678.
  • Anonymous. (2025a). Salicornia Bigelovii. Access date: 01.04.2025. https://en.wikipedia.org/wiki/Salicornia_bigelovii
  • Anonymous. (2025b). Distichlis palmeri. Access date: 09.04.2025. https://en.wikipedia.org/wiki/Distichlis_palmeri
  • Antolinos, V., Sánchez-Martínez, M. J., Maestre-Valero, J. F., López-Gómez, A., & Martínez-Hernández, G. B. (2020). Effects of irrigation with desalinated seawater and hydroponic system on tomato quality. Water, 12(2), 1-15. https://doi.org/10.3390/w12020518
  • Apolinário, R., & Castro, R. (2024). Solar-Powered Desalination as a Sustainable Long-Term Solution for the Water Scarcity Problem: Case Studies in Portugal. Water, 16(15), 2140. https://doi.org/10.3390/w16152140
  • Ashraf, M., Ozturk, M., & Athar, H. R. (2008). Salinity and water stress: improving crop efficiency. Springer, Dordrecht. The Netherlands
  • Atzori, G., Guidi Nissim, W., Caparrotta, S., Masi, E., Azzarello, E., Pandolfi, C., Vignolini, P., Gonnelli, C., & Mancuso, S. (2016). Potential and constraints of different seawater and freshwater blends as growing media for three vegetable crops. Agricultural Water Management, 176, 255–262. https://doi.org/10.1016/j.agwat.2016.06.016
  • Cruz, M. S. D., & Almoguera, L. (2025). Response of Eggplant (Solanum melongena) to Diluted Seawater Irrigation. Journal of Biology, 17(1)
  • Dellal, I. (2021). Climate crisis and agriculture-food sector. 3rd International Congress on Agriculture and Food Ethics, November 2021
  • Demirbas, N. (2022). Climate smart agriculture for sustainability of the agricultural sector in the face of climate change : lessons from different country experiences. XVII. IBANESS Congress Series on Economics, Business and Management – Plovdiv / Bulgaria, 487–495
  • Elimelech, M., & Phillip, W. A. (2011). The Future of Seawater Desalination: Energy, Technology, and the Environment. Science, 333(6043). 712-717. https://doi.org/10.1126/science.1200488
  • Feria‐Díaz, J. J., Correa‐Mahecha, F., López‐Méndez, M. C., Rodríguez‐Miranda, J. P., & Barrera‐Rojas, J. (2021). Recent desalination technologies by hybridization and integration with reverse osmosis: A review. Water, 13(10). 1–40. https://doi.org/10.3390/w13101369
  • Glenn, E. P. & Brown, J. J. (1999). Salt tolerance and crop potential of halophytes. Critical Reviews in Plant Sciences, 18(2), 227-255. https://doi.org/10.1080/07352689991309207
  • Gorjian, S., Ahmed, M., Fakhraei, O., Eterafi, S., & Jathar, L. (2022). Solar desalination technology to supply water for agricultural applications, in Gorjian S, Campana PE (eds.), Solar energy advancements in agriculture and food production systems (pp. 271-311). Academic Press. https://doi.org/10.1016/B978-0-323-89866-9.00002-X
  • Javeed, H. M. R., Wang, X., Ali, M., Nawaz, F., Qamar, R., Rehman, A. U., Shehzad, M., Mubeen, M., Shabbir, R., Javed, T., Branca, F., Ahmar, S., & Ismail, I. A. (2021). Potential utilization of diluted seawater for the cultivation of some summer vegetable crops: Physiological and nutritional implications. Agronomy, 11(9), 1-14. https://doi.org/10.3390/agronomy11091826
  • Lu, K., Failler, P., Drakeford, B. M., & Forse, A. (2024). The development of seawater agriculture: Policy options for a changing climate. Environmental Development, 49, 100938. https://doi.org/10.1016/j.envdev.2023.100938
  • Martinez-Alvarez, V., Bar-Tal, A., Javier Diaz Peña, F., & Maestre Valero, J. F. (2020). Desalination of seawater for agricultural irrigation. Water, 12(6). 1–5. https://doi.org/10.3390/W12061712
  • Martínez-Alvarez, V., González-Ortega, M. J., Martin-Gorriz, B., Soto-García, M., & Maestre-Valero, J. F. (2017). The use of desalinated seawater for crop irrigation in the Segura River Basin (south-eastern Spain). Desalination, 422(5), 153–164. https://doi.org/10.1016/j.desal.2017.08.022
  • Martínez‐Granados, D., Marín‐membrive, P., & Calatrava, J. (2022). Economic assessment of irrigation with desalinated seawater in greenhouse tomato production in SE Spain. Agronomy, 12(6). 1–15. https://doi.org/10.3390/agronomy12061471
  • Mekonnen, M. M., & Hoekstra, A. (2016). Four billion people facing severe water scarcity, Sciences Advances, 2(2). https://doi.org/10.1126/sciadv.1500323
  • Nargi, L. (2024). Can desalination quench agriculture’s thirst?. Knowable Magazine. Access date:25.04.2025. https://yaleclimateconnections.org/2024/11/can-desalination-quench-agricultures-thirst/
  • Nicks, M. (2014). Consider the salt-tolerant potato. Modern Farmer. Access date: 05.04.2025. https://modernfarmer.com/2014/12/salt-tolerant-potato/
  • Paton, C. (2018). The decades-long quest to end drought (and feed millions) by taking the salt out of seawater. Access date: 08.02.2025. https://www.wired.com/story/charlie-paton-seawater-greenhouse-desalination-abu-dhabi-oman-australia-somaliland/
  • Piñeiro, V., Arias, J., Dürr, J., Elverdin, P., Ibáñez, A. M., Kinengyere, A., Opazo, C. M., Owoo, N., Page, J. R., Prager, S. D., & Torero, M. (2020). A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nature Sustainability, 3(10), 809–820. https://doi.org/10.1038/s41893-020-00617-y
  • Rhoades, J. D., Kandiah, A., & Mashali, A. M. (1992). The use of saline waters for crop production. FAO irrigation and drainage paper 48.
  • Rockström, J., Williams, J., Daily, G., Noble, A., Matthews, N., Gordon, L., Wetterstrand, H., DeClerck, F., Shah, M., Steduto, P., de Fraiture, C., Hatibu, N., Unver, O., Bird, J., Sibanda, L., & Smith, J. (2017). Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio, 46(1). 4–17. https://doi.org/10.1007/s13280-016-0793-6
  • Rossiter, A. (1977). Scientists grow barley with seawater irrigation. Access date: 09.05.2025. https://www.washingtonpost.com/archive/local/1977/09/19/scientists-grow-barley-with-seawater-irrigation/461773db-e929-4916-b2ad-022c8b81acdb/
  • Saylan, L. (2021). Climate crisis: climate change and agriculture interaction. 3rd International Congress on Agriculture and Food Ethics, November 2021.
  • Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Marĩas, B. J., & Mayes, A. M. (2008). Science and technology for water purification in the coming decades. Nature, 452(7185), 301–310. https://doi.org/10.1038/nature06599
  • Tashtoush, B., Alyahya, W., Al Ghadi, M., Al-Omari, J., & Morosuk, T. (2023). Renewable energy integration in water desalination: State-of-the-art review and comparative analysis. Applied Energy, 352, 121950. https://doi.org/10.1016/j.apenergy.2023.121950
  • UN (2025). Global assesssment report on disaster risk reduction. Access date: 01.03.2025. https://www.undrr.org/gar/gar2025
  • UNESCO (1981). Background papers and supporting data on the practical salinity scale 1978. Unesco/ICES/SCOR/IAPSO Joint Panel on Oceanographic Tables and Standards. UNESCO Technical Papers in Marine Science.
  • USDA (2025). Salt Tolerance. Agricultural water productivity and salinity research unit. Access date: 03.03.2025. https://www.ars.usda.gov/pacific-west-area/riverside-ca/agricultural-water-efficiency-and-salinity-research-unit/docs/databases/fgs-crops/
  • Wezel, A., Casagrande, M., Celette, F., Vian, J. F., Ferrer, A., & Peigné, J. (2014). Agroecological practices for sustainable agriculture. A review. Agronomy for Sustainable Development, 34(1), 1–20. https://doi.org/10.1007/s13593-013-0180-7
  • Wu, P., Zhou, D., Li, Y., Yang, X., Shi, Y., Shi, X., Owens, G., & Pi, K. (2025). A bioinspired photothermal evaporator for enhanced salt separation during saline soil remediation. Desalination, 602, 118647. https://doi.org/10.1016/j.desal.2025.118647
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sulama Sistemleri
Bölüm Derleme
Yazarlar

Umut Suzan 0000-0003-1590-6000

Hatice Gürgülü 0000-0001-5637-7083

Proje Numarası Absent
Gönderilme Tarihi 12 Mayıs 2025
Kabul Tarihi 11 Temmuz 2025
Yayımlanma Tarihi 30 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 20 Sayı: 2

Kaynak Göster

APA Suzan, U., & Gürgülü, H. (2025). Using Seawater for Agriculture: A Different Strategy in the Climate Crisis Era. Ziraat Fakültesi Dergisi, 20(2), 101-109. https://doi.org/10.54975/isubuzfd.1697571

24611

Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.                                                                                                                           32607