Konferans Bildirisi
BibTex RIS Kaynak Göster

Kültür Bitkilerinde Zararlı Olan Böceklerle Biyoteknolojik Mücadelede Son Yöntemler

Yıl 2018, 1. Uluslararası Tarımsal Yapılar ve Sulama Kongresi Özel Sayısı, 10 - 18, 31.12.2018

Öz

Ekonomik anlamda zarar yapan böceklerle mücadelede, kimyasal mücadele üretici
tarafından en fazla tercih edilen yöntemidir. Ancak insektisit uygulamalarının
insan, hayvan, çevre sağlığı üzerinde bir çok olumsuz etkilerinin olduğunu ve
zararlılarda direnç gelişimine yol açarak gelecek için mücadele gücümüzü
zayıflattığını da unutmamak gerekir
. Bu nedenle, kültür bitkilerinde zararlı olan
böcekler için yeni, çevreye duyarlı ve daha etkili mücadele stratejileri
gereklidir. RNA İnterferans (RNAi) teknolojisi ile zararlıda spesifik hedef gen
bölgeleri susturularak, başarılı bir şekilde gerek böcek zararının gerekse
böcek popülasyonlarının azaltılması hedeflenmektedir. CRISPR/Cas9 sistemi ise;
yabancı genetik materyalleri yok etmek için RNA güdümlü nükleazları kullanan
bir mikrobiyal immün sistemdir. Gen ekspresyonunu bozan RNAi'nin aksine,
CRISPR-Cas9, yalnızca gen ifadesini bozmakla kalmayıp, aynı zamanda kodlama
dizilerini değiştiren, birden fazla geni hedef alabilen ve iş gücünü oldukça
azaltan güçlü bir DNA düzenleme teknolojisidir. Epigenetik mekanizmalar
sayesinde hedeflenen genlerin ekspresyonları artırılabilir ya da azaltılabilir.
Epigenetik etkileşimler, RNAi ve CRISPR teknolojileri kullanılarak böcekler
için hayati öneme sahip feromonal veya reseptör genler hedef alınabilir.
Böylece zararlı böceklerin eş bulma ve besine ulaşabilme davranışları
değiştirilerek üreme ve beslenmeleri engellenip popülasyonları baskılanabilir
ya da kontrol altına alınabilir. Ayrıca bağışıklık sisteminde rol alan genler
hedef alınarak, zararlı böcekler enfeksiyona karşı duyarlı hale getirilebilir.

Kaynakça

  • Arakane, Y., Muthukrishnan, S., Kramer, K.J., Specht, C.A., Tomoyasu, Y., Lorenzen, M.D., Kanost, M., Beeman, R.W., The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix, respectively. Insect Molecular Biology. 2005;14:453–463.
  • Arakane, Y., Specht, C.A., Kramer, K.J., Muthukrishnan, S., Beeman, R.W., Chitin synthases are required for survival, fecundity and egg hatch in the red flour beetle, Tribolium castaneum. Insect Biochemistry and Molecular Biology. 2008;38:959–962.
  • Aras, S., Aydın, S.S., Fazlıoğlu, A., Duman, D.C., Büyük, İ., Derici, K., 2015. Bitkilerde RNA interferans. TÜrk Hijyen ve Deneysel Biyoloji Dergisi, 72(3): 255-262s.
  • Aronstein, K., Oppert, B., Lorenzen, M.D., 2011. RNAi in Agriculturally-Important Arthropods. Biochemistry, Genetics and Molecular Biology, August 29, 2011 DOI: 10.5772/832.
  • Awata, H., Watanabe, T., Hamanaka, Y., Mito, T., Noji, S., ve Mizunami, M., 2015. Knockout crickets for the study of learning and memory: Dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets. ScIentIfIc Reports 5:15885.Cermak, T., Doyle, E.L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., Baller, J.A., Somia, N.V., Bogdanove, A.J., Voytas, D.F., 2011. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011 Jul;39(12):e82. doi: 10.1093/nar/gkr218. Epub 2011 Apr 14.
  • Chang, H., Liu, Y., Ai, D., Jiang, X., Dong, S., ve Wang, G., 2017. A pheromone antagonist regulates optimal mating time in the moth Helicoverpa armigera. Current Biology 27, 1610–1615.Cho,S.W., Kim, S., Kim, Y., Kweon, J.,Kim,H.S.,Bae,S.,Kim, J.S., 2014. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Article published online before print. Article, supplemental material, and publication date are at http://www.genome.org/cgi/doi/10.1101/gr.162339.113.
  • Collins, L.J.; Schönfeld, B.; and Chen, X.S. The epigenetics of non-coding RNA. In: Tollefsbol, T., Ed. Handbook of Epigenetics: The New Molecular and Medical Genetics. New York: Elsevier, pp. 49–61, 2010.
  • Çetintaş, V.B., Kotmakçı, M., Kaymaz, B.T., 2017. Bağışıklık Yanıtından Genom Tasarımına; CRISPR-Cas9 Sistemi. Derleme. Ege Üniversitesi Tıp Fakültesi. Türkiye Klinikleri J Med Sci 37(1):27-42İzmir, Türkiye.
  • Dağeri, A., Güz, N., Gürkan, M.O., 2012. Böceklerle Mücadelede Yeni Bir Strateji: RNA İnterferans. Ankara Üniversitesi Ziraat Fakültesi Bitki Koruma Bölümü, Türkiye Entomoloji Bülteni, 2(3):223-230s. Ankara.
  • Dönitz, J., Engel, C.S., Grossmann, D., Gerischer, L., Tech, M., 2015. iBeetle-Base: a Database for RNAi Phenotypes in the Red Flour Beetle Tribolium castaneum. Published by Oxford University Press on behalf of Nucleic Acids Research, Nucleic Acids Res. 2015 Jan;43(Database issue):D720-5.
  • Emekçi, M., Ferizli, A.G., 2010. Depolanmış Ürün Zararlılarıyla Savaşım, Sorunlar ve Çözüm Yolları. TMMOB Ziraat Mühendisleri Odası Ziraat Mühendislisi VII. Teknik Kongesi 11-15 Ocak 2010 Ankara, Bildiriler Kitabı 2, 579-587.
  • Fabrick, J.A., Kanost, M.R., Baker, J.E., 2005. RNAi-İnduced Silencing of Embryonic Tryptophan Oxygenase in the Pyralid moth, Plodia interpunctella 9pp. Journal of Insect Science, 4:15.
  • Feliciello, I., Parazajder, J., Akrap, I., Ugarkovic, D., 2013. First evidence of DNAmethylation in insect Tribolium castaneum: environmental regulation of DNAmethylation within heterochromatin. Epigenetics 8, 534–541.
  • Gaj, T., Gersbach, C.A., Barbas, C.F., 2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, Volume 31, Issue 7, July 2013, Pages 397-405.
  • Gilles, A.F., Schinko, J.B., Averof, M., 2015. Efficient CRISPR-Mediated Gene Targeting and Transgene Replacement in the Beetle Tribolium castaneum. Development 2015. 142: 2832-2839.
  • Gök, Z.G., Tunalı, B.Ç., 2016. CRISPR-Cas İmmün Sisteminin Biyolojisi, Mekanizması ve Kullanım Alanları. Kırıkkale Üniversitesi Mühendislik Fakültesi Biyomühendislik Bölümü, Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, International Journal of Research and Development, Vol.8, No.2.
  • Gündoğdu, R., Çelik, V., 2009. RNA İnterferans(RNAi). Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(1-2):34-47s. Kayseri.
  • Hatipoğlu, R., 2016. Transgenik Bitkilerin Dünü Bugünü ve Geleceği. Çukurova Üniversitesi Ziraat Fakültesi Tarla Bitkileri Bölümü. Tarla Bitkileri Merkezi Araştırma Enstitüsü Dergisi, Özel sayı:2, 346-356s. Adana, Türkiye.
  • Huang, Y., Chen, Y., Zeng, B., Wang, Y., James, A. A., Gurr, G. M., vd., 2016. CRISPR/Cas9 mediated knockout of the abdominal-A homeotic gene in the global pest, diamondback moth (Plutella xylostella. Insect Biochemistry and Molecular Biology 75, 98–106.Jasrapuria, S., Specht, C.A., Kramer, K.J., 2013. Gene Families of Cuticular Proteins Analogous to Peritrophins (CPAPs) in Tribolium castaneum Have Diverse Functions. PLoS ONE 7(11): e49844. doi:10.1371/journal.pone.0049844.
  • Joga, M.R., Zotti, M.J., Smagghe, G.S., Christiaens, O., 2016. RNAi Efficiency, Systemic Properties, and Novel Delivery Methods for Pest Insect Control: What We Know So Far. Front. Physiol. 7:553. doi: 10.3389/fphys.2016.00553.
  • Karagüzel, A., Kalay, E., Celep, F., 2007. RNAi Gen Sessizleştirilmesi ve Tedavi Edici Uygulamaları. Uludağ Üniversitesi Tıp Fakültesi Dergisi, 33(1):41-44s. Bursa.
  • Knorr, E., Schmidberg, H., Vilcinskas, A., Altıncicek, B., 2009. MMPs Regulate both Development and Immunity in the Tribolium Model Insect. PLoS ONE 4(3): e4751. doi:10.1371/journal.pone.0004751.
  • Kocagöz, T., 2014. Genleri Değiştirmek Hiç Bu Kadar Kolay Olmamıştı. 8. Ulusal Moleküler ve Tanısal Mikrobiyoloji Kongresi. Konferans:1.
  • Konopova, B., Jindra, M., 2008. Broad-Complex acts downstream of Met in juvenile hormone signaling to coordinate primitive holometabolan metamorphosis. Development 2008 135: 559-568; doi: 10.1242/dev.016097.
  • Koutroumpa, F. A., Monsempes, C., François, M. C., De Cian, A., Royer, C., Concordet, J. P., vd., 2016. Heritable genome editing with CRISPR/Cas9 induces anosmia in a crop pest moth. ScIentIfIc Reports 6:29620.Li, F., Scott, M. J., 2016. CRISPR/Cas9-mediated mutagenesis of the White and Sex lethal loci in the invasive pest, Drosophila suzukii. Biochemistry Biophysics Research Communications. 469, 911–916.Li, Y., Zhang, J., Chen, D., Yang, P., Jiang, F.,Wang, X., vd., 2016. CRISPR/Cas9 in locusts: successful establishment of an olfactory deficiency line by targeting the mutagenesis of an odorant receptor co-receptor (Orco). Insect Biochemistry and Molecular Biology 79, 27–35.Luby J.L., 2015. Poverty's Most Insidious Damage: The Developing Brain. JAMA Pediatr. Sep;169(9):810-1. doi: 10.1001/jamapediatrics.2015.1682.
  • Meccariello, A., Monti, S. M., vd., 2017. Highly efficient DNA-free gene disruption in the agricultural pest Ceratitis capitata by CRISPR-Cas9 ribonucleoprotein complexes. ScIentIfIc Reports 7: 10061.Miller, S.C., Miyata, K., Brown, S.J., Tomoyasu, Y., 2012. Dissecting Systemic RNA Interference in the Red Flour Beetle Tribolium castaneum: Parameters Affecting the Efficiency of RNAi. PLoS ONE 7(10): e47431. doi:10.1371/journal.pone.0047431.
  • Noh, M.Y., Kramer, K.J., Muthukrishnan, S., 2015. Loss of function of the yellow-e gene causes dehydration-induced mortality of adult Tribolium castaneum. Developmental Biology. Volume 399, Issue 2, 15 March 2015, Pages 315–324.
  • Oppert, B., Guades, R.N.C., Aikins, M.J., Philips, T.W., Perkin, L., Chen, Z., 2015. Genes Related to Mitochondrial Functions are Differentially Expressed in Phosphine-Resistant and Susceptible Tribolium castaneum. BMC Genomics. 2015 Nov 18; 16:968.
  • Ozawa, T., Mizuhara, T., Arata, M., Shimada, M., Niimi, T., 2016. Histone Deacetylases Control Module-Specific Phenotypic Plasticity in Beetle Weapons. Proceedings of the National Academy of Sciences, 113: 15042-15047. Patnaik, B.B., Patnaik, H.H., Seo, G.W., Jo, Y.H., Lee, Y.S., Lee, B.L., Han, Y.S., 2014. Gene Structure, cDNA Characterization and RNAi-based Functional Analysis of a Myeloid Differentiation Factor 88 Homolog in Tenebrio molitor Larvae Exposed to Staphylococcus aureus Infection. Dev Comp Immunol. 2014 Oct; 46(2): 208-21.
  • Perkin, L.C., Adrianos, S.L., Oppert, B., 2016. Gene Disruption Technologies Have the Potential to Transform Stored Product Insect Pest Control. Insects, 7, 46.
  • Seo, G.W., Jo, Y.H., Seong, J.H., Park, K.B., Patnaik, B.B., Tindwa, H., Kim, S., Lee, Y.S., Kim, Y.J., Han, Y.S., 2016. The Silencing of a 14-3-3ɛ Homolog in Tenebrio molitor Leads to Increased Antimicrobial Activity in Hemocyte and Reduces Larval Survivability. Genes 2016, 7, 53; doi:10.3390/genes7080053.
  • Shah, M.V., Namigai, E.K.O., Suzuki, Y., 2011. The role of canonical Wnt signaling in leg regeneration and metamorphosis in the red flour beetle Tribolium castaneum. Elsevier Ireland Ltd. All rights reserved.doi:10.1016/j.mod.2011.07.001.
  • Tang, W., 2015. A unique gene regulatory network resets the human germline epigenome for development. Cell 161, 1453–1467.
  • Tereshchenkova, V.F., Goptar, I.A., Kulemzina, I.A., Zhuzhikov, D.P., Serebryakova, M.V., Belozersky, M.A., Dunaevsky, Y.E., Oppert, B., Filippova, I.Y., Elpidina, E.N., 2016. Dipeptidyl Peptidase 4 – An İmportant Digestive Peptidase in Tenebrio molitor Larvae. Insect Biochemistry and Molecular Biology (76) 38-48s.
  • Ulrich, J., Dao, V.A., Majumdar, U., Engel, C.S., 2015. Large Scale RNAi Screen in Tribolium Reveals Novel Target Genes for Pest Control and the Proteasome as Prime Target. BMC Genomics 16:674.
  • Vallier, A., Monegat, C.V., Laurençon, A., Heddi, A., 2009. RNAi in the Cereal Weevil Sitophilus spp: Systemic Gene Knockdown in the Bacteriome Tissue. BMC Biotechnology, 9, pp.44.
  • Vilcinskas A., The role of epigenetics in host–parasite coevolution: lessons from the model host insects Galleria mellonella and Tribolium castaneum Zoology, 119 (2016), pp. 273–280.
  • Walski, T., Damme, E.J.M.V., Smargiasso, N., Christiaens, O., 2016. Protein N-glycosylation and N-glycan trimming are required for postembryonic development of the pest beetle Tribolium castaneum. Scientific Reports 6, Article number: 35151.
  • Watanabe, T., Ochiai, H., Sakuma, T., Horch, H.W., Hamaguchi, N., Nakamura, T., Bando, T., Ohuchi, H., Yamamoto, T., Noji, S., Mito, T., 2012. Non-transgenic genome modifications in a hemimetabolous insect using zinc-finger and TAL effector nucleases. Nature Communications, (3:1017) DOI: 10.1038/ncomms2020.
  • Yan, H., Bonasio, R., Simola, D.R., Liebig, J., Berger, S.L., Reinberg D., DNA methylation in social insects: how epigenetics can control behavior and longevity Annu. Rev. Entomol., 60 (2015), pp. 435–452.
  • Yılmaz, S.Z., 2010. Gen Susturulmasında Plazmit-siRNA ile Lentivirüs-siRNA Temelli Sistemlerin Etkinliklerinin Karşılaştırılması. Ankara Üniversitesi Biyoteknoloji Enstitüsü, Yüksek Lisans Tezi, Ankara.
  • Yorulmaz, S., Ay, R., 2006. Genetigi Degistirilmis Organizmaların (GDO) Entomoloji Alanındaki Uygulama Olanakları. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi 1(2):53-59.

Recent Methods For Biotechnologic Control on Pest Insects in Cultural Plants

Yıl 2018, 1. Uluslararası Tarımsal Yapılar ve Sulama Kongresi Özel Sayısı, 10 - 18, 31.12.2018

Öz

In the struggle against pests that cause economic damage, chemical control is the most preferred method by the producer. However, it should not be forgotten that insecticide applications have many negative effects on human, animal and environmental health and weaken our fighting power for the future by causing resistance development in pests. For this reason, new, environmentally sensitive and more effective strategies are needed to control the insects that are pest to cultivated plants. With RNA Interference (RNAi) technology, the specific gene regions of the pests can be targeted and silenced, so that insect damage or insect populations can be successfully reduced. The CRISPR / Cas9 system is; is a microbial immune system that uses RNA-driven nucleases to destroy foreign genetic material. Unlike RNAi, which disrupts gene expression, CRISPR-Cas9 is a powerful DNA regulatory technology that not only disrupts the expression of genes, but also alters coding sequences, can target multiple genes and significantly reduces workload. Expression of genes targeted by the epigenetic mechanisms can be increased or decreased. Using epigenetic interactions, RNAi and CRISPR technologies, pheromonal or receptor genes with vital precursors for insects can be targeted. Thus, by changing the behavior of pest insects to match and reach to nutrients, reproduction and feeding can be prevented and their populations can be suppressed or controlled. In addition, by targeting genes involved in the immune system, pest insects can be susceptible to infection.

Kaynakça

  • Arakane, Y., Muthukrishnan, S., Kramer, K.J., Specht, C.A., Tomoyasu, Y., Lorenzen, M.D., Kanost, M., Beeman, R.W., The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix, respectively. Insect Molecular Biology. 2005;14:453–463.
  • Arakane, Y., Specht, C.A., Kramer, K.J., Muthukrishnan, S., Beeman, R.W., Chitin synthases are required for survival, fecundity and egg hatch in the red flour beetle, Tribolium castaneum. Insect Biochemistry and Molecular Biology. 2008;38:959–962.
  • Aras, S., Aydın, S.S., Fazlıoğlu, A., Duman, D.C., Büyük, İ., Derici, K., 2015. Bitkilerde RNA interferans. TÜrk Hijyen ve Deneysel Biyoloji Dergisi, 72(3): 255-262s.
  • Aronstein, K., Oppert, B., Lorenzen, M.D., 2011. RNAi in Agriculturally-Important Arthropods. Biochemistry, Genetics and Molecular Biology, August 29, 2011 DOI: 10.5772/832.
  • Awata, H., Watanabe, T., Hamanaka, Y., Mito, T., Noji, S., ve Mizunami, M., 2015. Knockout crickets for the study of learning and memory: Dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets. ScIentIfIc Reports 5:15885.Cermak, T., Doyle, E.L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., Baller, J.A., Somia, N.V., Bogdanove, A.J., Voytas, D.F., 2011. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011 Jul;39(12):e82. doi: 10.1093/nar/gkr218. Epub 2011 Apr 14.
  • Chang, H., Liu, Y., Ai, D., Jiang, X., Dong, S., ve Wang, G., 2017. A pheromone antagonist regulates optimal mating time in the moth Helicoverpa armigera. Current Biology 27, 1610–1615.Cho,S.W., Kim, S., Kim, Y., Kweon, J.,Kim,H.S.,Bae,S.,Kim, J.S., 2014. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Article published online before print. Article, supplemental material, and publication date are at http://www.genome.org/cgi/doi/10.1101/gr.162339.113.
  • Collins, L.J.; Schönfeld, B.; and Chen, X.S. The epigenetics of non-coding RNA. In: Tollefsbol, T., Ed. Handbook of Epigenetics: The New Molecular and Medical Genetics. New York: Elsevier, pp. 49–61, 2010.
  • Çetintaş, V.B., Kotmakçı, M., Kaymaz, B.T., 2017. Bağışıklık Yanıtından Genom Tasarımına; CRISPR-Cas9 Sistemi. Derleme. Ege Üniversitesi Tıp Fakültesi. Türkiye Klinikleri J Med Sci 37(1):27-42İzmir, Türkiye.
  • Dağeri, A., Güz, N., Gürkan, M.O., 2012. Böceklerle Mücadelede Yeni Bir Strateji: RNA İnterferans. Ankara Üniversitesi Ziraat Fakültesi Bitki Koruma Bölümü, Türkiye Entomoloji Bülteni, 2(3):223-230s. Ankara.
  • Dönitz, J., Engel, C.S., Grossmann, D., Gerischer, L., Tech, M., 2015. iBeetle-Base: a Database for RNAi Phenotypes in the Red Flour Beetle Tribolium castaneum. Published by Oxford University Press on behalf of Nucleic Acids Research, Nucleic Acids Res. 2015 Jan;43(Database issue):D720-5.
  • Emekçi, M., Ferizli, A.G., 2010. Depolanmış Ürün Zararlılarıyla Savaşım, Sorunlar ve Çözüm Yolları. TMMOB Ziraat Mühendisleri Odası Ziraat Mühendislisi VII. Teknik Kongesi 11-15 Ocak 2010 Ankara, Bildiriler Kitabı 2, 579-587.
  • Fabrick, J.A., Kanost, M.R., Baker, J.E., 2005. RNAi-İnduced Silencing of Embryonic Tryptophan Oxygenase in the Pyralid moth, Plodia interpunctella 9pp. Journal of Insect Science, 4:15.
  • Feliciello, I., Parazajder, J., Akrap, I., Ugarkovic, D., 2013. First evidence of DNAmethylation in insect Tribolium castaneum: environmental regulation of DNAmethylation within heterochromatin. Epigenetics 8, 534–541.
  • Gaj, T., Gersbach, C.A., Barbas, C.F., 2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, Volume 31, Issue 7, July 2013, Pages 397-405.
  • Gilles, A.F., Schinko, J.B., Averof, M., 2015. Efficient CRISPR-Mediated Gene Targeting and Transgene Replacement in the Beetle Tribolium castaneum. Development 2015. 142: 2832-2839.
  • Gök, Z.G., Tunalı, B.Ç., 2016. CRISPR-Cas İmmün Sisteminin Biyolojisi, Mekanizması ve Kullanım Alanları. Kırıkkale Üniversitesi Mühendislik Fakültesi Biyomühendislik Bölümü, Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, International Journal of Research and Development, Vol.8, No.2.
  • Gündoğdu, R., Çelik, V., 2009. RNA İnterferans(RNAi). Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(1-2):34-47s. Kayseri.
  • Hatipoğlu, R., 2016. Transgenik Bitkilerin Dünü Bugünü ve Geleceği. Çukurova Üniversitesi Ziraat Fakültesi Tarla Bitkileri Bölümü. Tarla Bitkileri Merkezi Araştırma Enstitüsü Dergisi, Özel sayı:2, 346-356s. Adana, Türkiye.
  • Huang, Y., Chen, Y., Zeng, B., Wang, Y., James, A. A., Gurr, G. M., vd., 2016. CRISPR/Cas9 mediated knockout of the abdominal-A homeotic gene in the global pest, diamondback moth (Plutella xylostella. Insect Biochemistry and Molecular Biology 75, 98–106.Jasrapuria, S., Specht, C.A., Kramer, K.J., 2013. Gene Families of Cuticular Proteins Analogous to Peritrophins (CPAPs) in Tribolium castaneum Have Diverse Functions. PLoS ONE 7(11): e49844. doi:10.1371/journal.pone.0049844.
  • Joga, M.R., Zotti, M.J., Smagghe, G.S., Christiaens, O., 2016. RNAi Efficiency, Systemic Properties, and Novel Delivery Methods for Pest Insect Control: What We Know So Far. Front. Physiol. 7:553. doi: 10.3389/fphys.2016.00553.
  • Karagüzel, A., Kalay, E., Celep, F., 2007. RNAi Gen Sessizleştirilmesi ve Tedavi Edici Uygulamaları. Uludağ Üniversitesi Tıp Fakültesi Dergisi, 33(1):41-44s. Bursa.
  • Knorr, E., Schmidberg, H., Vilcinskas, A., Altıncicek, B., 2009. MMPs Regulate both Development and Immunity in the Tribolium Model Insect. PLoS ONE 4(3): e4751. doi:10.1371/journal.pone.0004751.
  • Kocagöz, T., 2014. Genleri Değiştirmek Hiç Bu Kadar Kolay Olmamıştı. 8. Ulusal Moleküler ve Tanısal Mikrobiyoloji Kongresi. Konferans:1.
  • Konopova, B., Jindra, M., 2008. Broad-Complex acts downstream of Met in juvenile hormone signaling to coordinate primitive holometabolan metamorphosis. Development 2008 135: 559-568; doi: 10.1242/dev.016097.
  • Koutroumpa, F. A., Monsempes, C., François, M. C., De Cian, A., Royer, C., Concordet, J. P., vd., 2016. Heritable genome editing with CRISPR/Cas9 induces anosmia in a crop pest moth. ScIentIfIc Reports 6:29620.Li, F., Scott, M. J., 2016. CRISPR/Cas9-mediated mutagenesis of the White and Sex lethal loci in the invasive pest, Drosophila suzukii. Biochemistry Biophysics Research Communications. 469, 911–916.Li, Y., Zhang, J., Chen, D., Yang, P., Jiang, F.,Wang, X., vd., 2016. CRISPR/Cas9 in locusts: successful establishment of an olfactory deficiency line by targeting the mutagenesis of an odorant receptor co-receptor (Orco). Insect Biochemistry and Molecular Biology 79, 27–35.Luby J.L., 2015. Poverty's Most Insidious Damage: The Developing Brain. JAMA Pediatr. Sep;169(9):810-1. doi: 10.1001/jamapediatrics.2015.1682.
  • Meccariello, A., Monti, S. M., vd., 2017. Highly efficient DNA-free gene disruption in the agricultural pest Ceratitis capitata by CRISPR-Cas9 ribonucleoprotein complexes. ScIentIfIc Reports 7: 10061.Miller, S.C., Miyata, K., Brown, S.J., Tomoyasu, Y., 2012. Dissecting Systemic RNA Interference in the Red Flour Beetle Tribolium castaneum: Parameters Affecting the Efficiency of RNAi. PLoS ONE 7(10): e47431. doi:10.1371/journal.pone.0047431.
  • Noh, M.Y., Kramer, K.J., Muthukrishnan, S., 2015. Loss of function of the yellow-e gene causes dehydration-induced mortality of adult Tribolium castaneum. Developmental Biology. Volume 399, Issue 2, 15 March 2015, Pages 315–324.
  • Oppert, B., Guades, R.N.C., Aikins, M.J., Philips, T.W., Perkin, L., Chen, Z., 2015. Genes Related to Mitochondrial Functions are Differentially Expressed in Phosphine-Resistant and Susceptible Tribolium castaneum. BMC Genomics. 2015 Nov 18; 16:968.
  • Ozawa, T., Mizuhara, T., Arata, M., Shimada, M., Niimi, T., 2016. Histone Deacetylases Control Module-Specific Phenotypic Plasticity in Beetle Weapons. Proceedings of the National Academy of Sciences, 113: 15042-15047. Patnaik, B.B., Patnaik, H.H., Seo, G.W., Jo, Y.H., Lee, Y.S., Lee, B.L., Han, Y.S., 2014. Gene Structure, cDNA Characterization and RNAi-based Functional Analysis of a Myeloid Differentiation Factor 88 Homolog in Tenebrio molitor Larvae Exposed to Staphylococcus aureus Infection. Dev Comp Immunol. 2014 Oct; 46(2): 208-21.
  • Perkin, L.C., Adrianos, S.L., Oppert, B., 2016. Gene Disruption Technologies Have the Potential to Transform Stored Product Insect Pest Control. Insects, 7, 46.
  • Seo, G.W., Jo, Y.H., Seong, J.H., Park, K.B., Patnaik, B.B., Tindwa, H., Kim, S., Lee, Y.S., Kim, Y.J., Han, Y.S., 2016. The Silencing of a 14-3-3ɛ Homolog in Tenebrio molitor Leads to Increased Antimicrobial Activity in Hemocyte and Reduces Larval Survivability. Genes 2016, 7, 53; doi:10.3390/genes7080053.
  • Shah, M.V., Namigai, E.K.O., Suzuki, Y., 2011. The role of canonical Wnt signaling in leg regeneration and metamorphosis in the red flour beetle Tribolium castaneum. Elsevier Ireland Ltd. All rights reserved.doi:10.1016/j.mod.2011.07.001.
  • Tang, W., 2015. A unique gene regulatory network resets the human germline epigenome for development. Cell 161, 1453–1467.
  • Tereshchenkova, V.F., Goptar, I.A., Kulemzina, I.A., Zhuzhikov, D.P., Serebryakova, M.V., Belozersky, M.A., Dunaevsky, Y.E., Oppert, B., Filippova, I.Y., Elpidina, E.N., 2016. Dipeptidyl Peptidase 4 – An İmportant Digestive Peptidase in Tenebrio molitor Larvae. Insect Biochemistry and Molecular Biology (76) 38-48s.
  • Ulrich, J., Dao, V.A., Majumdar, U., Engel, C.S., 2015. Large Scale RNAi Screen in Tribolium Reveals Novel Target Genes for Pest Control and the Proteasome as Prime Target. BMC Genomics 16:674.
  • Vallier, A., Monegat, C.V., Laurençon, A., Heddi, A., 2009. RNAi in the Cereal Weevil Sitophilus spp: Systemic Gene Knockdown in the Bacteriome Tissue. BMC Biotechnology, 9, pp.44.
  • Vilcinskas A., The role of epigenetics in host–parasite coevolution: lessons from the model host insects Galleria mellonella and Tribolium castaneum Zoology, 119 (2016), pp. 273–280.
  • Walski, T., Damme, E.J.M.V., Smargiasso, N., Christiaens, O., 2016. Protein N-glycosylation and N-glycan trimming are required for postembryonic development of the pest beetle Tribolium castaneum. Scientific Reports 6, Article number: 35151.
  • Watanabe, T., Ochiai, H., Sakuma, T., Horch, H.W., Hamaguchi, N., Nakamura, T., Bando, T., Ohuchi, H., Yamamoto, T., Noji, S., Mito, T., 2012. Non-transgenic genome modifications in a hemimetabolous insect using zinc-finger and TAL effector nucleases. Nature Communications, (3:1017) DOI: 10.1038/ncomms2020.
  • Yan, H., Bonasio, R., Simola, D.R., Liebig, J., Berger, S.L., Reinberg D., DNA methylation in social insects: how epigenetics can control behavior and longevity Annu. Rev. Entomol., 60 (2015), pp. 435–452.
  • Yılmaz, S.Z., 2010. Gen Susturulmasında Plazmit-siRNA ile Lentivirüs-siRNA Temelli Sistemlerin Etkinliklerinin Karşılaştırılması. Ankara Üniversitesi Biyoteknoloji Enstitüsü, Yüksek Lisans Tezi, Ankara.
  • Yorulmaz, S., Ay, R., 2006. Genetigi Degistirilmis Organizmaların (GDO) Entomoloji Alanındaki Uygulama Olanakları. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi 1(2):53-59.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği
Bölüm Araştıma
Yazarlar

Erhan Koçak

Şevki Ertürk

Mehmet Oğuz Yaman Bu kişi benim

Yayımlanma Tarihi 31 Aralık 2018
Gönderilme Tarihi 18 Temmuz 2018
Kabul Tarihi 2 Kasım 2018
Yayımlandığı Sayı Yıl 2018 1. Uluslararası Tarımsal Yapılar ve Sulama Kongresi Özel Sayısı

Kaynak Göster

APA Koçak, E., Ertürk, Ş., & Yaman, M. O. (2018). Kültür Bitkilerinde Zararlı Olan Böceklerle Biyoteknolojik Mücadelede Son Yöntemler. Ziraat Fakültesi Dergisi10-18.

24611

Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.                                                                                                                           32607