Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı CAD/CAM Blokların Sitotoksisite Değerlendirmesi

Yıl 2023, , 462 - 467, 21.08.2023
https://doi.org/10.15311/selcukdentj.1199010

Öz

Amaç: Bu çalışmanın amacı, farklı firmalar tarafından üretilen Computer Aided Design (CAD) ve Computer Aided Manufacturing (CAM) bloklarının insan periferik kan lenfositleri üzerindeki sitotoksik etkilerini MTT testi ile belirlemektir.
Yöntem: Altı farklı CAD/CAM materyali araştırıldı: feldspat seramik VM (Vitablocks Mark II), rezin esaslı nano-seramik LU (Lava Ultimate), hibrit seramik C (Cerasmart), lösitle güçlendirilmiş cam seramik LRF (GC LRF), zirkonya ile güçlendirilmiş lityum silikat seramik VS (Vita Suprinity), polimer infiltrasyonu ile güçlendirilmiş cam seramik VE (Vita Enamic). CAD/CAM bloklardan toplam 36 disk şeklinde numune (Ø: 5 mm; h: 2 mm) hazırlandı. Hücre proliferasyonu ve sitotoksisite, MTT testi kullanılarak 24. ve 48. saatlerde değerlendirildi. Veriler İki Yönlü ANOVA testi ile istatistiksel olarak değerlendirildi (p < 0.05).
Bulgular: 24 saatteki MTT canlılık verileri, grup VM ve LU bloklarının hafif sitotoksik olduğunu gösterdi, ancak diğer gruplarla karşılaştırıldığında istatistiksel olarak anlamlı bir fark yoktu (p>0.05). Tüm blokların 48 saat sonra hücre çoğalmasına neden olduğu belirlendi (p>0.05). Sitotoksik etkileri araştırılan tüm blokların farklı uygulama sürelerinde (24 saat ve 48 saat) herhangi bir toksik etkiye (24 saat VM ve LU hariç) neden olmadığı gösterildi.
Sonuç: Elde edilen sonuçlara ve mevcut in vitro çalışmanın sınırlamalarına dayanarak, test edilen materyaller sitotoksik değildi. 24 saatlik sonuçlarda VM ve LU ihmal edilebilir sitotoksisiteye neden oldu.

Kaynakça

  • [1] Pagano S, Lombardo G, Caponi S, Costanzi E, Di Michele A, Bruscoli S, et al. Bio-mechanical characterization of a CAD/CAM PMMA resin for digital removable prostheses. Dent Mater. 2021;37(3):e118-e130. doi:10.1016/j.dental.2020.11.003
  • [2] Ramanathan M, Panneerselvam E, Krishna Kumar Raja VB. 3D planning in mandibular fractures using CAD/CAM surgical splints - A prospective randomized controlled clinical trial. J Craniomaxillofac Surg. 2020;48(4):405-412. doi:10.1016/j.jcms.2020.02.004
  • [3] Goujat A, Abouelleil H, Colon P, Jeannin C, Pradelle N, SeuxD, et al. Marginal and internal fit of CAD-CAM inlay/onlay restorations: A systematic review of in vitro studies. J Prosthet Dent. 2019;121(4):590-597.e3. doi:10.1016/j.prosdent.2018.06.006
  • [4] Zarone F, Russo S, Sorrentino R. From porcelain-fused-to-metal to zirconia: clinical and experimental considerations. Dent Mater. 2011;27(1):83-96. doi:10.1016/j.dental.2010.10.024
  • [5] Guess PC, Selz CF, Steinhart YN, Stampf S, Strub JR. Prospective clinical split-mouth study of pressed and CAD/CAM all-ceramic partial-coverage restorations: 7-year results. Int J Prosthodont. 2013;26(1):21-25. doi:10.11607/ijp.3043
  • [6] Aktas G, Yerlikaya H, Akca K. Mechanical Failure of Endocrowns Manufactured with Different Ceramic Materials: An In Vitro Biomechanical Study. J Prosthodont. 2018;27(4):340-346. doi:10.1111/jopr.12499
  • [7] Alamoush RA, Kushnerev E, Yates JM, Satterthwaite JD, Silikas N. Response of two gingival cell lines to CAD/CAM composite blocks. Dent Mater. 2020;36(9):1214-1225. doi:10.1016/j.dental.2020.05.014
  • [8] Atay A, Gürdal I, Bozok Çetıntas V, Üşümez A, Cal E. Effects of New Generation All-Ceramic and Provisional Materials on Fibroblast Cells. J Prosthodont. 2019;28(1):e383-e394. doi:10.1111/jopr.12915
  • [9] Lauvahutanon S, Takahashi H, Shiozawa M, Iwasaki N, Asakawa Y, Oki M et al. Mechanical properties of composite resin blocks for CAD/CAM. Dent Mater J. 2014;33(5):705-710. doi:10.4012/dmj.2014-208
  • [10] Sieper K, Wille S, Kern M. Fracture strength of lithium disilicate crowns compared to polymer-infiltrated ceramic-network and zirconia reinforced lithium silicate crowns. J Mech Behav Biomed Mater. 2017;74:342-348. doi:10.1016/j.jmbbm.2017.06.025
  • [11] Silva LHD, Lima E, Miranda RBP, Favero SS, Lohbauer U, Cesar PF. Dental ceramics: a review of new materials and processing methods. Braz Oral Res. 2017;31(suppl 1):e58. Published 2017 Aug 28. doi:10.1590/1807-3107BOR-2017.vol31.0058
  • [12] Elsaka SE, Elnaghy AM. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic. Dent Mater. 2016;32(7):908-914. doi:10.1016/j.dental.2016.03.013
  • [13] Awada A, Nathanson D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. J Prosthet Dent. 2015;114(4):587-593. doi:10.1016/j.prosdent.2015.04.016
  • [14] Jakovac M, Zivko-Babic J, Curkovic L, Aurer A. Measurement of ion elution from dental ceramics. J Eur Ceram Soc.2006;26(9):1695-1700. doi:10.1016/j.jeurceramsoc.2005.03.242.
  • [15] Lygre H. Prosthodontic biomaterials and adverse reactions: a critical review of the clinical and research literature. Acta Odontol Scand. 2002;60(1):1-9. doi:10.1080/000163502753471925
  • [16] Elshahawy WM, Watanabe I, Kramer P. In vitro cytotoxicity evaluation of elemental ions released from different prosthodontic materials. Dent Mater. 2009;25(12):1551-1555. doi:10.1016/j.dental.2009.07.008
  • [17] Shim JS, Kim HC, Park SI, Yun HJ, Ryu JJ. Comparison of Various Implant Provisional Resin Materials for Cytotoxicity and Attachment to Human Gingival Fibroblasts. Int J Oral Maxillofac Implants. 2019;34(2):390-396. doi:10.11607/jomi.6707
  • [18] Elshahawy W, Shohieb F, Yehia H, Etman W, Watanabe I, Kramer P. Cytotoxic effect of elements released clinically from gold and CAD-CAM fabricated ceramic crowns. Tanta Dent. J. 2014;11, 189–193.
  • [19] Gupta SK, Saxena P, Pant VA, Pant AB. Release and toxicity of dental resin composite. Toxicol Int. 2012;19(3):225-234. doi:10.4103/0971-6580.103652
  • [20] Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008;29(20):2941-2953. doi:10.1016/j.biomaterials.2008.04.023
  • [21] Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55-63. doi:10.1016/0022-1759(83)90303-4
  • [22] Alcaide M, Portolés P, López-Noriega A, Arcos D, Vallet-Regí M, Portolés MT. Interaction of an ordered mesoporous bioactive glass with osteoblasts, fibroblasts and lymphocytes, demonstrating its biocompatibility as a potential bone graft material. Acta Biomater. 2010;6(3):892-899. doi:10.1016/j.actbio.2009.09.008
  • [23] Ojeda G, Ronda M, Ballester S, Díez-Orejas R, Feito MJ, García-Albert L, et al. A hyperreactive variant of a CD4+ T cell line is activated by syngeneic antigen presenting cells in the absence of antigen. Cell Immunol. 1995;164(2):265-278. doi:10.1006/cimm.1995.1170
  • [24] Rizo-Gorrita M, Herráez-Galindo C, Torres-Lagares D, Serrera-Figallo MÁ, Gutiérre-Pérez JL. Biocompatibility of Polymer and Ceramic CAD/CAM Materials with Human Gingival Fibroblasts (HGFs). Polymers (Basel). 2019;11(9):1446. Published 2019 Sep 3. doi:10.3390/polym11091446
  • [25] Grenade C, De Pauw-Gillet MC, Gailly P, Vanheusden A, Mainjot A. Biocompatibility of polymer-infiltrated-ceramic-network (PICN) materials with Human Gingival Fibroblasts (HGFs). Dent Mater. 2016;32(9):1152-1164. doi:10.1016/j.dental.2016.06.020
  • [26] Pae A, Lee H, Kim HS, Kwon YD, Woo YH. Attachment and growth behaviour of human gingival fibroblasts on titanium and zirconia ceramic surfaces. Biomed Mater. 2009;4(2):025005. doi:10.1088/1748-6041/4/2/025005
  • [27] Tetè S, Zizzari VL, Borelli B, De Colli M, Zara S, Sorrentino R, et al. Proliferation and adhesion capability of human gingival fibroblasts onto zirconia, lithium disilicate and feldspathic veneering ceramic in vitro. Dent Mater J. 2014;33(1):7-15. doi:10.4012/dmj.2013-185
  • [28] Goetze E, Moergel M, Gielisch M, Kämmerer PW. Safety of resection margins in CAD/CAM-guided primarily reconstructed oral squamous cell carcinoma-a retrospective case series. Oral Maxillofac Surg. 2019;23(4):459-464. doi:10.1007/s10006-019-00797-8
  • [29] Sabaliauskas V, Juciute R, Bukelskiene V, Rutkunas V, Trumpaite-Vanagiene R, Puriene A. In vitro evaluation of cytotoxicity of permanent prosthetic materials. Stomatologija. 2011;13(3):75-80.
  • [30] Pera P, Conserva E, Pin D, Acquaviva A, Riboldi A, Mariottini GL, et al. Cytotoxicity in vitro analysis of ceramic materials for ''metal free'' prosthetic substructures. Minerva Stomatol. 2005;54(6):363-371.
  • [31] Sjögren G, Sletten G, Dahl JE. Cytotoxicity of dental alloys, metals, and ceramics assessed by millipore filter, agar overlay, and MTT tests. J Prosthet Dent. 2000;84(2):229-236. doi:10.1067/mpr.2000.107227
  • [32] Messer RL, Lockwood PE, Wataha JC, Lewis JB, Norris S, Bouillaguet S. In vitro cytotoxicity of traditional versus contemporary dental ceramics. J Prosthet Dent. 2003;90(5):452-458. doi:10.1016/s0022-3913(03)00533-x
  • [33] Raffaelli L, Rossi Iommetti P, Piccioni E, Toesca A, Serini S, Resci F, et al. Growth, viability, adhesion potential, and fibronectin expression in fibroblasts cultured on zirconia or feldspatic ceramics in vitro. J Biomed Mater Res A. 2008;86(4):959-968. doi:10.1002/jbm.a.31693
  • [34] Brackett MG, Lockwood PE, Messer RL, Lewis JB, Bouillaguet S, Wataha JC. In vitro cytotoxic response to lithium disilicate dental ceramics. Dent Mater. 2008;24(4):450-456. doi:10.1016/j.dental.2007.06.013
  • [35] Campaner M, Takamiya AS, Bitencourt SB, Mazza LC, de Oliveira SHP, Shibayama R, et al. Cytotoxicity and inflammatory response of different types of provisional restorative materials. Arch Oral Biol. 2020;111:104643. doi:10.1016/j.archoralbio.2019.104643
  • [36] Tassin M, Bonte E, Loison-Robert LS, Nassif A, Berbar T, LeGoff S, et al. Effects of High-Temperature-Pressure Polymerized Resin-Infiltrated Ceramic Networks on Oral Stem Cells. PLoS One. 2016;11(5):e0155450. Published 2016 May 19. doi:10.1371/journal.pone.0155450
  • [37] Hussain B, Thieu MKL, Johnsen GF, Reseland JE, Haugen HJ. Can CAD/CAM resin blocks be considered as substitute for conventional resins?. Dent Mater. 2017;33(12):1362-1370. doi:10.1016/j.dental.2017.09.003
  • [38] Krifka S, Spagnuolo G, Schmalz G, Schweikl H. A review of adaptive mechanisms in cell responses towards oxidative stress caused by dental resin monomers. Biomaterials. 2013;34(19):4555-4563. doi:10.1016/j.biomaterials.2013.03.019
  • [39] Schweikl H, Spagnuolo G, Schmalz G. Genetic and cellular toxicology of dental resin monomers. J Dent Res. 2006;85(10):870-877. doi:10.1177/154405910608501001
  • [40] International Standards Organization (ISO) 10993–5:1992. Biological evaluation of medical devices - Part 5: Tests for in vitro cytotoxicity. International Standards Organization, Geneva; Switzerland, 1992.

Cytotoxicity Evaluation of Different Types of CAD/CAM Blocks

Yıl 2023, , 462 - 467, 21.08.2023
https://doi.org/10.15311/selcukdentj.1199010

Öz

Aim: The aim of this study is to determine the cytotoxic effects of Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) blocks produced by different companies on human peripheral blood lymphocytes by MTT assay.
Methods: Six different CAD/CAM materials were investigated: feldspar ceramic VM (Vitablocks Mark II ), resin nano-ceramic LU (Lava Ultimate), hybrid ceramic C (Cerasmart), leucite-reinforced ceramic LRF (GC LRF), zirconia-reinforced lithium silicate ceramic VS (Vita Suprinity), polymer-infiltrated ceramic-network VE (Vita Enamic). A total of 36 disc-shaped samples (Ø: 5 mm; h: 2 mm) were prepared from commercial blanks and blocks. Cell proliferation and cytotoxicity were assessed at 24h and 48h using MTT assay. The data were statistically evaluated with the Two-way ANOVA test (p < 0.05).
Results: MTT viability data at 24 h showed that group VM and LU blocks were mildly cytotoxic, but there was no statistically significant difference when compared with other groups (p>0.05). It was determined that all blocks caused cell proliferation after 48 hours of exposure (p>0.05). It has been shown that all blocks whose cytotoxic effects were investigated did not cause any toxic effects (except VM and LU for 24 h) at different application times (24 h and 48 h).
Conclusion: Based on the results obtained and the limitations of the current in vitro study, the tested materials were not cytotoxic. Only VM and LU caused negligible cytotoxicity at 24-hour exposure.

Kaynakça

  • [1] Pagano S, Lombardo G, Caponi S, Costanzi E, Di Michele A, Bruscoli S, et al. Bio-mechanical characterization of a CAD/CAM PMMA resin for digital removable prostheses. Dent Mater. 2021;37(3):e118-e130. doi:10.1016/j.dental.2020.11.003
  • [2] Ramanathan M, Panneerselvam E, Krishna Kumar Raja VB. 3D planning in mandibular fractures using CAD/CAM surgical splints - A prospective randomized controlled clinical trial. J Craniomaxillofac Surg. 2020;48(4):405-412. doi:10.1016/j.jcms.2020.02.004
  • [3] Goujat A, Abouelleil H, Colon P, Jeannin C, Pradelle N, SeuxD, et al. Marginal and internal fit of CAD-CAM inlay/onlay restorations: A systematic review of in vitro studies. J Prosthet Dent. 2019;121(4):590-597.e3. doi:10.1016/j.prosdent.2018.06.006
  • [4] Zarone F, Russo S, Sorrentino R. From porcelain-fused-to-metal to zirconia: clinical and experimental considerations. Dent Mater. 2011;27(1):83-96. doi:10.1016/j.dental.2010.10.024
  • [5] Guess PC, Selz CF, Steinhart YN, Stampf S, Strub JR. Prospective clinical split-mouth study of pressed and CAD/CAM all-ceramic partial-coverage restorations: 7-year results. Int J Prosthodont. 2013;26(1):21-25. doi:10.11607/ijp.3043
  • [6] Aktas G, Yerlikaya H, Akca K. Mechanical Failure of Endocrowns Manufactured with Different Ceramic Materials: An In Vitro Biomechanical Study. J Prosthodont. 2018;27(4):340-346. doi:10.1111/jopr.12499
  • [7] Alamoush RA, Kushnerev E, Yates JM, Satterthwaite JD, Silikas N. Response of two gingival cell lines to CAD/CAM composite blocks. Dent Mater. 2020;36(9):1214-1225. doi:10.1016/j.dental.2020.05.014
  • [8] Atay A, Gürdal I, Bozok Çetıntas V, Üşümez A, Cal E. Effects of New Generation All-Ceramic and Provisional Materials on Fibroblast Cells. J Prosthodont. 2019;28(1):e383-e394. doi:10.1111/jopr.12915
  • [9] Lauvahutanon S, Takahashi H, Shiozawa M, Iwasaki N, Asakawa Y, Oki M et al. Mechanical properties of composite resin blocks for CAD/CAM. Dent Mater J. 2014;33(5):705-710. doi:10.4012/dmj.2014-208
  • [10] Sieper K, Wille S, Kern M. Fracture strength of lithium disilicate crowns compared to polymer-infiltrated ceramic-network and zirconia reinforced lithium silicate crowns. J Mech Behav Biomed Mater. 2017;74:342-348. doi:10.1016/j.jmbbm.2017.06.025
  • [11] Silva LHD, Lima E, Miranda RBP, Favero SS, Lohbauer U, Cesar PF. Dental ceramics: a review of new materials and processing methods. Braz Oral Res. 2017;31(suppl 1):e58. Published 2017 Aug 28. doi:10.1590/1807-3107BOR-2017.vol31.0058
  • [12] Elsaka SE, Elnaghy AM. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic. Dent Mater. 2016;32(7):908-914. doi:10.1016/j.dental.2016.03.013
  • [13] Awada A, Nathanson D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. J Prosthet Dent. 2015;114(4):587-593. doi:10.1016/j.prosdent.2015.04.016
  • [14] Jakovac M, Zivko-Babic J, Curkovic L, Aurer A. Measurement of ion elution from dental ceramics. J Eur Ceram Soc.2006;26(9):1695-1700. doi:10.1016/j.jeurceramsoc.2005.03.242.
  • [15] Lygre H. Prosthodontic biomaterials and adverse reactions: a critical review of the clinical and research literature. Acta Odontol Scand. 2002;60(1):1-9. doi:10.1080/000163502753471925
  • [16] Elshahawy WM, Watanabe I, Kramer P. In vitro cytotoxicity evaluation of elemental ions released from different prosthodontic materials. Dent Mater. 2009;25(12):1551-1555. doi:10.1016/j.dental.2009.07.008
  • [17] Shim JS, Kim HC, Park SI, Yun HJ, Ryu JJ. Comparison of Various Implant Provisional Resin Materials for Cytotoxicity and Attachment to Human Gingival Fibroblasts. Int J Oral Maxillofac Implants. 2019;34(2):390-396. doi:10.11607/jomi.6707
  • [18] Elshahawy W, Shohieb F, Yehia H, Etman W, Watanabe I, Kramer P. Cytotoxic effect of elements released clinically from gold and CAD-CAM fabricated ceramic crowns. Tanta Dent. J. 2014;11, 189–193.
  • [19] Gupta SK, Saxena P, Pant VA, Pant AB. Release and toxicity of dental resin composite. Toxicol Int. 2012;19(3):225-234. doi:10.4103/0971-6580.103652
  • [20] Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008;29(20):2941-2953. doi:10.1016/j.biomaterials.2008.04.023
  • [21] Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55-63. doi:10.1016/0022-1759(83)90303-4
  • [22] Alcaide M, Portolés P, López-Noriega A, Arcos D, Vallet-Regí M, Portolés MT. Interaction of an ordered mesoporous bioactive glass with osteoblasts, fibroblasts and lymphocytes, demonstrating its biocompatibility as a potential bone graft material. Acta Biomater. 2010;6(3):892-899. doi:10.1016/j.actbio.2009.09.008
  • [23] Ojeda G, Ronda M, Ballester S, Díez-Orejas R, Feito MJ, García-Albert L, et al. A hyperreactive variant of a CD4+ T cell line is activated by syngeneic antigen presenting cells in the absence of antigen. Cell Immunol. 1995;164(2):265-278. doi:10.1006/cimm.1995.1170
  • [24] Rizo-Gorrita M, Herráez-Galindo C, Torres-Lagares D, Serrera-Figallo MÁ, Gutiérre-Pérez JL. Biocompatibility of Polymer and Ceramic CAD/CAM Materials with Human Gingival Fibroblasts (HGFs). Polymers (Basel). 2019;11(9):1446. Published 2019 Sep 3. doi:10.3390/polym11091446
  • [25] Grenade C, De Pauw-Gillet MC, Gailly P, Vanheusden A, Mainjot A. Biocompatibility of polymer-infiltrated-ceramic-network (PICN) materials with Human Gingival Fibroblasts (HGFs). Dent Mater. 2016;32(9):1152-1164. doi:10.1016/j.dental.2016.06.020
  • [26] Pae A, Lee H, Kim HS, Kwon YD, Woo YH. Attachment and growth behaviour of human gingival fibroblasts on titanium and zirconia ceramic surfaces. Biomed Mater. 2009;4(2):025005. doi:10.1088/1748-6041/4/2/025005
  • [27] Tetè S, Zizzari VL, Borelli B, De Colli M, Zara S, Sorrentino R, et al. Proliferation and adhesion capability of human gingival fibroblasts onto zirconia, lithium disilicate and feldspathic veneering ceramic in vitro. Dent Mater J. 2014;33(1):7-15. doi:10.4012/dmj.2013-185
  • [28] Goetze E, Moergel M, Gielisch M, Kämmerer PW. Safety of resection margins in CAD/CAM-guided primarily reconstructed oral squamous cell carcinoma-a retrospective case series. Oral Maxillofac Surg. 2019;23(4):459-464. doi:10.1007/s10006-019-00797-8
  • [29] Sabaliauskas V, Juciute R, Bukelskiene V, Rutkunas V, Trumpaite-Vanagiene R, Puriene A. In vitro evaluation of cytotoxicity of permanent prosthetic materials. Stomatologija. 2011;13(3):75-80.
  • [30] Pera P, Conserva E, Pin D, Acquaviva A, Riboldi A, Mariottini GL, et al. Cytotoxicity in vitro analysis of ceramic materials for ''metal free'' prosthetic substructures. Minerva Stomatol. 2005;54(6):363-371.
  • [31] Sjögren G, Sletten G, Dahl JE. Cytotoxicity of dental alloys, metals, and ceramics assessed by millipore filter, agar overlay, and MTT tests. J Prosthet Dent. 2000;84(2):229-236. doi:10.1067/mpr.2000.107227
  • [32] Messer RL, Lockwood PE, Wataha JC, Lewis JB, Norris S, Bouillaguet S. In vitro cytotoxicity of traditional versus contemporary dental ceramics. J Prosthet Dent. 2003;90(5):452-458. doi:10.1016/s0022-3913(03)00533-x
  • [33] Raffaelli L, Rossi Iommetti P, Piccioni E, Toesca A, Serini S, Resci F, et al. Growth, viability, adhesion potential, and fibronectin expression in fibroblasts cultured on zirconia or feldspatic ceramics in vitro. J Biomed Mater Res A. 2008;86(4):959-968. doi:10.1002/jbm.a.31693
  • [34] Brackett MG, Lockwood PE, Messer RL, Lewis JB, Bouillaguet S, Wataha JC. In vitro cytotoxic response to lithium disilicate dental ceramics. Dent Mater. 2008;24(4):450-456. doi:10.1016/j.dental.2007.06.013
  • [35] Campaner M, Takamiya AS, Bitencourt SB, Mazza LC, de Oliveira SHP, Shibayama R, et al. Cytotoxicity and inflammatory response of different types of provisional restorative materials. Arch Oral Biol. 2020;111:104643. doi:10.1016/j.archoralbio.2019.104643
  • [36] Tassin M, Bonte E, Loison-Robert LS, Nassif A, Berbar T, LeGoff S, et al. Effects of High-Temperature-Pressure Polymerized Resin-Infiltrated Ceramic Networks on Oral Stem Cells. PLoS One. 2016;11(5):e0155450. Published 2016 May 19. doi:10.1371/journal.pone.0155450
  • [37] Hussain B, Thieu MKL, Johnsen GF, Reseland JE, Haugen HJ. Can CAD/CAM resin blocks be considered as substitute for conventional resins?. Dent Mater. 2017;33(12):1362-1370. doi:10.1016/j.dental.2017.09.003
  • [38] Krifka S, Spagnuolo G, Schmalz G, Schweikl H. A review of adaptive mechanisms in cell responses towards oxidative stress caused by dental resin monomers. Biomaterials. 2013;34(19):4555-4563. doi:10.1016/j.biomaterials.2013.03.019
  • [39] Schweikl H, Spagnuolo G, Schmalz G. Genetic and cellular toxicology of dental resin monomers. J Dent Res. 2006;85(10):870-877. doi:10.1177/154405910608501001
  • [40] International Standards Organization (ISO) 10993–5:1992. Biological evaluation of medical devices - Part 5: Tests for in vitro cytotoxicity. International Standards Organization, Geneva; Switzerland, 1992.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Diş Hekimliği
Bölüm Araştırma
Yazarlar

Fikret Özgür Coşkun 0000-0002-6095-2818

Giray Buğra Akbaba 0000-0002-1413-9498

Mustafa Hayati Atala 0000-0003-1194-0703

Semanur Özüdoğru 0000-0001-7967-9121

Yayımlanma Tarihi 21 Ağustos 2023
Gönderilme Tarihi 3 Kasım 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

Vancouver Coşkun FÖ, Akbaba GB, Atala MH, Özüdoğru S. Cytotoxicity Evaluation of Different Types of CAD/CAM Blocks. Selcuk Dent J. 2023;10(2):462-7.