Derleme
BibTex RIS Kaynak Göster

Dental ve Maksillofasial Manyetik Rezonans Görüntüleme güncel bilgiler

Yıl 2022, , 729 - 737, 24.08.2022
https://doi.org/10.15311/selcukdentj.860805

Öz

Düz radyografiler ve konik ışınlı bilgisayarlı tomografik görüntüleme (KIBT) ile yuşak doku sinyali, manyetik rezonans görüntülemeden sert doku sinyali tam anlamıyla alınamadığı için, sert ve yumuşak dokunun simultane görüntülenmesi henüz mümkün olamamaktadır. Rutin klinik kullanımda olan düz radyografilerin yumuşak doku patolojilerinde tanısal değeri yoktur. Son 10 yılda diş hekimliğinde görüntüleme ağırlıklı olarak KIBT’ye odaklansa da medikal görüntüleme alanında in vivo histolojik görüntüleme olarak nitelendirilen manyetik rezonans görüntüleme (MRG) teknikleri geliştirilmektedir. Bu teknikler oral ve maksillofasial radyoloji alanında anatomi ve patolojiinin görüntülenmesi için adapte edilmekte, disiplinler arası çalışmalarla optimum veri elde edilmeye çalışılmaktadır. Güncel olarak intraoral sarmal geliştirme çalışmaları, sert doku görüntüleme için tanımlanan yeni sekanslar, ultra yüksek manyetik alan kullanan cihazlar ile yapılan çalışmaların literatüre kazandırıldığını görmekteyiz.
Maksillofasial MRG’de bir sonraki adım, sert doku görüntüleme sekanslarının ve intraoral sarmalların optimizasyonu ile ultra yüksek alanlara sahip cihazlarda in vivo kullanımı olarak görünmektedir. Ancak bu teknolojinin diş hekimliği klinik uygulamasına girmesi için oldukça uzun bir süreye ihtiyaç olduğunu düşünmekteyiz.

Kaynakça

  • Referans1. Abhinaya L, Muthukrishnan A. DENTAL MRI-A REVIEW. Journal of Pharmaceutical Sciences and Research. 2019;11:3643-5.
  • Referans2. Horowitz AL. Pulse Cycles, Pulse Sequences, and Tissue Contrast. In MRI Physics for Radiologists. 3rd ed. Springer, New York, NY. 1995:33-7
  • Referans3. Nakada T. Clinical application of high and ultra high-field MRI. Brain and Development. 2007;29(6):325-35.
  • Referans4. Karamat MI, Darvish-Molla S, Santos-Diaz A. Opportunities and challenges of 7 tesla magnetic resonance imaging: a review. Critical Reviews in Biomedical Engineering. 2016;44:1-2.
  • Referans5. Administration USFAD. Guidance for Industry and FDA Staff: Criteria for Significant Risk Investigations of Magnetic Resonance Diagnostic Devices. 2014.
  • Referans6. Protection ICON-IR. Guidelines on limits of exposure to static magnetic fields. Health Physics. 2009;96(4):504-14.
  • Referans7. Commission IE. Particular requirements for the safety of magnetic resonance diagnostic devices. Geneva, Switzerland: International Electrotechnical Commission; 2015.
  • Referans8. Administration USFAD. FDA clears first 7T magnetic resonance imaging device. 2017.
  • Referans9. Hoff MN, McKinney IV A, Shellock FG, Rassner U, Gilk T, Watson Jr RE, Greenberg TD, Froelich J, Kanal E. Safety Considerations of 7-T MRI in Clinical Practice. Radiology. 2019;292(3):509-18.
  • Referans10. Huettel S, Song AW, McCarthy G. Functional magnetic resonance imaging (Vol. 1). 2nd ed. Sunderland, MA: Sinauer Associates.2004:31-55
  • Referans11. Kamil K. Görüntü kalitesinde uygulamalar. MR fizik kursu Türk Manyetik Rezonans Derneği. İzmir, Türkiye: Tasarım Yayın Hizmetleri, Türk Manyetik Rezonans Derneği 2009: 121.
  • Referans12. Hövener JB, Zwick S, Leupold J, Eisenbeiβ AK, Scheifele C, Schellenberger F, Hennig J, Elverfdt D, Ludwig U. Dental MRI: imaging of soft and solid components without ionizing radiation. Journal of Magnetic Resonance Imaging. 2012;36(4):841-6.
  • Referans13. Tymofiyeva O, Rottner K, Jakob P, Richter E-J, Proff P. Three-dimensional localization of impacted teeth using magnetic resonance imaging. Clinical oral investigations. 2010;14(2):169-76.
  • Referans14. Idiyatullin D, Corum CA, Nixdorf DR, Garwood M. Intraoral approach for imaging teeth using the transverse B1 field components of an occlusally oriented loop coil. Magnetic resonance in medicine. 2014;72(1):160-5.
  • Referans15. Tymofiyeva O, Rottner K, Gareis D, Boldt J, Schmid F, Lopez MA, E.‐J. Richter P.M. Jakob. In vivo MRI‐based dental impression using an intraoral RF receiver coil. Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering: An Educational Journal. 2008;33(4):244-51.
  • Referans16. Prager M, Heiland S, Gareis D, Hilgenfeld T, Bendszus M, Gaudino C. Dental MRI using a dedicated RF-coil at 3 Tesla. Journal of Cranio-Maxillofacial Surgery. 2015;43(10):2175-82.
  • Referans17. Ludwig U, Eisenbeiss A-K, Scheifele C, Nelson K, Bock M, Hennig J, Elverfeldt D, Herdt O, Flügge T, Hövener JB. Dental MRI using wireless intraoral coils. Scientific reports. 2016;6(1):1-11.
  • Referans18. Idiyatullin D, Corum C, Moeller S, Prasad HS, Garwood M, Nixdorf DR. Dental magnetic resonance imaging: making the invisible visible. Journal of endodontics. 2011;37(6):745-52.
  • Referans19. Gradl J, Höreth M, Pfefferle T, Prager M, Hilgenfeld T, Gareis D, Bäumer P, Heiland S, Bendszus M, Hähnel S. Application of a dedicated surface coil in dental MRI provides superior image quality in comparison with a standard coil. Clinical neuroradiology. 2017;27(3):371-8.
  • Referans20. Flügge T, Hövener JB, Ludwig U, Eisenbeiss AK, Spittau B, Hennig J, Schmelzeisen R, Nelson K. Magnetic resonance imaging of intraoral hard and soft tissues using an intraoral coil and FLASH sequences. European radiology. 2016;26(12):4616-23.
  • Referans21. Eichhorn T, Ludwig U, Fischer E, Gröbner J, Göpper M, Eisenbeiss AK, Flügge T, Hennig J, Elverfeldt D, Hövener JB. Modular coils with low hydrogen content especially for MRI of dry solids. PloS one. 2015;10(10).
  • Referans22. Funduk N, Kydon D, Schreiner L, Peemoeller H, Miljković L, Pintar M. Composition and relaxation of the proton magnetization of human enamel and its contribution to the tooth NMR image. Magnetic resonance in medicine. 1984;1(1):66-75.
  • Referans23. Gatehouse P, Bydder G. Magnetic resonance imaging of short T2 components in tissue. Clinical radiology. 2003;58(1):1-19.
  • Referans24. Appel TR, Baumann MA. Solid-state nuclear magnetic resonance microscopy demonstrating human dental anatomy. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2002;94(2):256-61.
  • Referans25. Weiger M, Stampanoni M, Pruessmann KP. Direct depiction of bone microstructure using MRI with zero echo time. Bone. 2013;54(1):44-7.
  • Referans25. Lloyd C, Scrimgeour SN, Hunter G, Chudek JA, Lane DM, Mcdonald PJ. Solid state spatially resolved 1 H and 19 F nuclear magnetic resonance spectroscopy of dental materials by stray-field imaging. Journal of Materials Science: Materials in Medicine, 1999;10(6): 369-73.
  • Referans26. Hafner S. Fast imaging in liquids and solids with the Back-projection Low Angle ShoT (BLAST) technique. Magnetic resonance imaging, 1994;12(7): 1047-51.
  • Referans27. Madio DP, Lowe IJ. Ultra‐fast imaging using low flip angles and FIDs. Magnetic resonance in medicine. 1995;34(4): 525-9.
  • Referans28. Robson MD, Gatehouse PD, Bydder M, Bydder GM. Magnetic resonance: an introduction to ultrashort TE (UTE) imaging. Journal of computer assisted tomography. 2003;27(6):825-46.
  • Referans29. Bracher AK, Hofmann C, Bornstedt A, Boujraf S, Hell E, Ulrici J, et al. Feasibility of ultra‐short echo time (UTE) magnetic resonance imaging for identification of carious lesions. Magnetic resonance in medicine. 2011;66(2):538-45.
  • Referans30. Idiyatullin D, Corum C, Park J-Y, Garwood M. Fast and quiet MRI using a swept radiofrequency. Journal of Magnetic Resonance. 2006;181(2):342-9.
  • Referans31. Weiger M, Pruessmann KP, Bracher AK, Köhler S, Lehmann V, Wolfram U, Hennel F, Rasche V. High‐resolution ZTE imaging of human teeth. NMR in Biomedicine. 2012;25(10):1144-51.
  • Referans32. Mastrogiacomo S, Dou W, Jansen JA, Walboomers XF. Magnetic resonance imaging of hard tissues and hard tissue engineered bio-substitutes. Molecular imaging and biology. 2019;21(6):1003-19.
  • Referans33. Carl M, Chiang J, Han E, Bydder G, King K, editors. Bloch simulations of UTE, WASPI and SWIFT for imaging short T2 tissues. ISMRM Annual Scientific Meeting & Exhibition; 2010.
  • Referans34. Cha MJ, Park HJ, Paek MY, Stemmer A, Lee ES, Park SB, Kim SY. Free-breathing ultrashort echo time lung magnetic resonance imaging using stack-of-spirals acquisition: a feasibility study in oncology patients. Magnetic resonance imaging. 2018;51:137-43.
  • Referans35. Dournes G, Grodzki D, Macey J, Girodet PO, Fayon M, Chateil JF, Montaudon M, Berger P, Laurent F. Quiet submillimeter MR imaging of the lung is feasible with a PETRA sequence at 1.5 T. Radiology. 2015;276(1):258-65.
  • Referans36. Wiesinger F, Sacolick LI, Menini A, Kaushik SS, Ahn S, Veit‐Haibach P, Delso G, Shanbhag DD. Zero TE MR bone imaging in the head. Magnetic resonance in medicine. 2016;75(1):107-14.
  • Referans37. Weiger M, Pruessmann KP, Hennel F. MRI with zero echo time: hard versus sweep pulse excitation. Magnetic resonance in medicine. 2011;66(2):379-89.
  • Referans38. Alibek S, Vogel M, Sun W, Winkler D, Baker CA, Burke M, Gloger H. Acoustic noise reduction in MRI using Silent Scan: an initial experience. Diagnostic and interventional radiology. 2014;20(4):360.
  • Referans39. Zheng W, Kim JP, Kadbi M, Movsas B, Chetty IJ, Glide-Hurst CK. Magnetic resonance–based automatic air segmentation for generation of synthetic computed tomography scans in the head region. International Journal of Radiation Oncology* Biology* Physics. 2015;93(3):497-506.
  • Referans40. Cho S, Baek H, Ryu K, Choi B, Moon J, Kim TB, Kim SK, Park H, Hwang MJ. Clinical feasibility of zero TE skull MRI in patients with head trauma in comparison with CT: a single-center study. American Journal of Neuroradiology. 2019;40(1):109-15.
  • Referans41. Lee C, Jeon KJ, Han SS, Kim YH, Choi YJ, Lee A, Choi HJ. CT-like MRI using the zero-TE technique for osseous changes of the TMJ. Dentomaxillofacial Radiology. 2020;49(3):20190272.
  • Referans42. Lu A, Gorny K, Ho ML. Zero TE MRI for Craniofacial Bone Imaging. American Journal of Neuroradiology. 2019;40(9):1562-6.
  • Referans43. Weiger M, Stampanoni M, Pruessmann KP. Direct depiction of bone microstructure using MRI with zero echo time. Bone, 2013;54(1): 44-7.
  • Referans44. Idiyatullin D, Garwood M, Gaalaas L, Nixdorf DR. Role of MRI for detecting micro cracks in teeth. Dentomaxillofacial Radiology, 2016;45(7), 20160150..
  • Referans45. Schuurmans TJ, Nixdorf DR, Idiyatullin DS, Law AS, Barsness BD, Roach SH, Gaalaas L. Accuracy and Reliability of Root Crack and Fracture Detection in Teeth Using Magnetic Resonance Imaging. Journal of endodontics. 2019;45(6):750-5.
  • Referans46. Kendi, A.T.K., A.T.K. Kendi, S.S. Khariwala, J. Zhang, D.S. Idiyatullin, C.A. Corum, S. Michaeli, S.E. Pambuccian, M. Garwood, B. Yueh Transformation in mandibular imaging with sweep imaging with fourier transform magnetic resonance imaging. Archives of Otolaryngology–Head & Neck Surgery. 2011:137(9): 916-919.
  • Referans47. Li C, Magland JF, Rad HS, Song KH, Wehrli FW. Comparison of optimized soft‐tissue suppression schemes for ultrashort echo time MRI. Magnetic resonance in medicine, 2012:68(3): 680-9.
  • Referans48. Rahmer J, Blume U, Börnert P. Selective 3D ultrashort TE imaging: comparison of “dual-echo” acquisition and magnetization preparation for improving short-T 2 contrast. Magnetic Resonance Materials in Physics, Biology and Medicine. 2007:20(2): 83.
  • Referans49. Lee H, Zhao X, Song HK, Zhang R, Bartlett SP, Wehrli FW. Rapid dual‐RF, dual‐echo, 3D ultrashort echo time craniofacial imaging: A feasibility study. Magnetic resonance in medicine. 2019;81(5):3007-16.
  • Referans50. Eley K, McIntyre A, Watt-Smith S, Golding S. “Black bone” MRI: a partial flip angle technique for radiation reduction in craniofacial imaging. The British journal of radiology. 2012;85(1011):272-8.
  • Referans51. Dremmen M, Wagner M, Bosemani T, Tekes A, Agostino D, Day E, Soares BP, Huisman TAGM. Does the addition of a “black bone” sequence to a fast multisequence trauma MR protocol allow MRI to replace CT after traumatic brain injury in children? American Journal of Neuroradiology. 2017;38(11):2187-92.
  • Referans52. Suchyta MA, Gibreel W, Hunt CH, Gorny KR, Bernstein MA, Mardini S. Using black bone magnetic resonance imaging in craniofacial virtual surgical planning: a comparative cadaver study. Plastic and reconstructive surgery. 2018;141(6):1459-70.
  • Referans53. Saarikko A, Mellanen E, Linda K, Junnu L, Karppinen A, Autti T, Virtanen P, Brandstack N. Comparison of Black-Bone MRI and 3D-CT in the preoperative evaluation of patients with craniosynostosis. Journal of Plastic, Reconstructive & Aesthetic Surgery. 2020;73 (4): 723-31.
  • Referans54. Ladd ME, Bachert P, Meyerspeer M, Moser E, Nagel AM, Norris DG, Schmitter S, Speck O, Straub S, Zaiss M. Pros and cons of ultra-high-field MRI/MRS for human application. Progress in nuclear magnetic resonance spectroscopy. 2018;109:1-50.
  • Referans55. Stucht D, Danishad KA, Schulze P, Godenschweger F, Zaitsev M, Speck O. Highest resolution in vivo human brain MRI using prospective motion correction. PloS one. 2015;10(7):e0133921.
  • Referans56. Lüsebrink F, Sciarra A, Mattern H, Yakupov R, Speck O. T 1-weighted in vivo human whole brain MRI dataset with an ultrahigh isotropic resolution of 250 μm. Scientific data. 2017;4(1):1-12.
  • Referans57. Barisano G, Sepehrband F, Ma S, Jann K, Cabeen R, Wang DJ, Toga AW, Law M. Clinical 7 T MRI: Are we there yet? A review about magnetic resonance imaging at ultra-high field. The British journal of radiology. 2019;92(1094):20180492.
  • Referans58. Trattnig S, Zbýň Š, Schmitt B, Friedrich K, Juras V, Szomolanyi P, Bogner W. Advanced MR methods at ultra-high field (7 Tesla) for clinical musculoskeletal applications. European radiology. 2012;22(11):2338-46.
  • Referans58. Manoliu A, Spinner G, Wyss M, Ettlin DA, Nanz D, Kuhn FP, Luigi GM. Gustav A. Magnetic resonance imaging of the temporomandibular joint at 7.0 T using high-permittivity dielectric pads: a feasibility study. Investigative radiology. 2015;50(12):843-9.
  • Referans59. Kraff O, Quick HH. 7T: Physics, safety, and potential clinical applications. Journal of Magnetic Resonance Imaging. 2017;46(6): 1573-89.
  • Referans60. Yilmaz S, Adisen MZ. Ex vivo mercury release from dental amalgam after 7.0-T and 1.5-T MRI. Radiology. 2018;288(3):799-803
  • Referans61. Manoliu A, Spinner G, Wyss M, Ettlin DA, Nanz D, Kuhn F, Gallo LM, Andreisek G. Magnetic resonance imaging of the temporomandibular joint at 7.0 T using high-permittivity dielectric pads: a feasibility study. Investigative radiology. 2015;50(12): 843-9.
  • Referans62. Kim KN, Kim YB, Cho ZH. Improvement of a 4-Channel Spiral-Loop RF Coil Array for TMJ MR Imaging at 7T. Journal of the Korean Society of Magnetic Resonance in Medicine. 2012;16(2): 103-14.
  • Referans63. Rieger J, Kronnerwetter C, Graessl A, Waiczies H, Endemann B, Trattnig S, Niendorf T. High Spatial Resolution MRI of Temporo-Mandibular Joint at 7.0 Tesla Using a Modestly Shaped 8 Channel Transceiver RF Coil Array. Conference paper, Proceedins of the ISMRM, Toronto. May 2015
  • Referans64. Kuhn FP, Spinner G, Del Grande F, Wyss M, Piccirelli M, Erni S, Pfister P, Ho M, Sah BR, Filli L, Ettlin DA, Gallo LM, Andreisek G.Manoliu A. MR imaging of the temporomandibular joint: comparison between acquisitions at 7.0 T using dielectric pads and 3.0 T. Dentomaxillofacial Radiology. 2017;46(1):20160280.
  • Referans65. Timme M, Masthoff M, Nagelmann N, Masthoff M, Faber C, Bürklein S. Imaging of root canal treatment using ultra high field 9.4 T UTE-MRI–a preliminary study. Dentomaxillofacial Radiology. 2020;49(1):20190183.
  • Referans66. Krug R, Carballido‐Gamio J, Banerjee S, Burghardt AJ, Link TM, Majumdar S. In vivo ultra‐high‐field magnetic resonance imaging of trabecular bone microarchitecture at 7 T. Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine. 2008;27(4):854-9.
  • Referans67. Atkinson IC, Renteria L, Burd H, Pliskin NH, Thulborn KR. Safety of human MRI at static fields above the FDA 8T guideline: Sodium imaging at 9.4 T does not affect vital signs or cognitive ability. Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine. 2007;26(5):1222-7.
  • Referans68. Deelchand DK, Van de Moortele PF, Adriany G, Iltis I, Andersen P, Strupp JP, Vaughan JT, Uğurbil K,Henry PG. In vivo 1H NMR spectroscopy of the human brain at 9.4 T: initial results. Journal of Magnetic Resonance. 2010;206(1):74-80.
  • Referans69. Memon A, Godward S, Williams D, Siddique I, Al-Saleh K. Dental x-rays and the risk of thyroid cancer: a case-control study. Acta Oncologica. 2010;49(4):447-53.
  • Referans70. Memon A, Rogers I, Paudyal P, Sundin J. Dental x-rays and the risk of thyroid cancer and meningioma: A systematic review and meta-analysis of current epidemiological evidence. Thyroid. 2019;29(11):1572-93.
  • Referans71. Hwang SY, Choi ES, Kim YS, Gim BE, Ha M, Kim HY. Health effects from exposure to dental diagnostic X-ray. Environmental health and toxicology. 2018;33(4).
  • Referans72. European Commission. European guidelines on radiation protection in dental radiology. Office for Official Publications of the European Communities. Radiation Protection 136 (2004). Available on http://ec.europa.eu/energy/nuclear/radioprotection/publication/doc/136_en.pdf

Dental and Maxillofacial Magnetic Resonance Imaging; an update

Yıl 2022, , 729 - 737, 24.08.2022
https://doi.org/10.15311/selcukdentj.860805

Öz

Düz radyografiler ve konik ışınlı bilgisayarlı tomografik görüntüleme (KIBT) ile yuşak doku sinyali, manyetik rezonans görüntülemeden sert doku sinyali tam anlamıyla alınamadığı için, sert ve yumuşak dokunun simultane görüntülenmesi henüz mümkün olamamaktadır. Rutin klinik kullanımda olan düz radyografilerin yumuşak doku patolojilerinde tanısal değeri yoktur. Son 10 yılda diş hekimliğinde görüntüleme ağırlıklı olarak KIBT’ye odaklansa da medikal görüntüleme alanında in vivo histolojik görüntüleme olarak nitelendirilen manyetik rezonans görüntüleme (MRG) teknikleri geliştirilmektedir. Bu teknikler oral ve maksillofasial radyoloji alanında anatomi ve patolojiinin görüntülenmesi için adapte edilmekte, disiplinler arası çalışmalarla optimum veri elde edilmeye çalışılmaktadır. Güncel olarak intraoral sarmal geliştirme çalışmaları, sert doku görüntüleme için tanımlanan yeni sekanslar, ultra yüksek manyetik alan kullanan cihazlar ile yapılan çalışmaların literatüre kazandırıldığını görmekteyiz.
Maksillofasial MRG’de bir sonraki adım, sert doku görüntüleme sekanslarının ve intraoral sarmalların optimizasyonu ile ultra yüksek alanlara sahip cihazlarda in vivo kullanımı olarak görünmektedir. Ancak bu teknolojinin diş hekimliği klinik uygulamasına girmesi için oldukça uzun bir süreye ihtiyaç olduğunu düşünmekteyiz.

Kaynakça

  • Referans1. Abhinaya L, Muthukrishnan A. DENTAL MRI-A REVIEW. Journal of Pharmaceutical Sciences and Research. 2019;11:3643-5.
  • Referans2. Horowitz AL. Pulse Cycles, Pulse Sequences, and Tissue Contrast. In MRI Physics for Radiologists. 3rd ed. Springer, New York, NY. 1995:33-7
  • Referans3. Nakada T. Clinical application of high and ultra high-field MRI. Brain and Development. 2007;29(6):325-35.
  • Referans4. Karamat MI, Darvish-Molla S, Santos-Diaz A. Opportunities and challenges of 7 tesla magnetic resonance imaging: a review. Critical Reviews in Biomedical Engineering. 2016;44:1-2.
  • Referans5. Administration USFAD. Guidance for Industry and FDA Staff: Criteria for Significant Risk Investigations of Magnetic Resonance Diagnostic Devices. 2014.
  • Referans6. Protection ICON-IR. Guidelines on limits of exposure to static magnetic fields. Health Physics. 2009;96(4):504-14.
  • Referans7. Commission IE. Particular requirements for the safety of magnetic resonance diagnostic devices. Geneva, Switzerland: International Electrotechnical Commission; 2015.
  • Referans8. Administration USFAD. FDA clears first 7T magnetic resonance imaging device. 2017.
  • Referans9. Hoff MN, McKinney IV A, Shellock FG, Rassner U, Gilk T, Watson Jr RE, Greenberg TD, Froelich J, Kanal E. Safety Considerations of 7-T MRI in Clinical Practice. Radiology. 2019;292(3):509-18.
  • Referans10. Huettel S, Song AW, McCarthy G. Functional magnetic resonance imaging (Vol. 1). 2nd ed. Sunderland, MA: Sinauer Associates.2004:31-55
  • Referans11. Kamil K. Görüntü kalitesinde uygulamalar. MR fizik kursu Türk Manyetik Rezonans Derneği. İzmir, Türkiye: Tasarım Yayın Hizmetleri, Türk Manyetik Rezonans Derneği 2009: 121.
  • Referans12. Hövener JB, Zwick S, Leupold J, Eisenbeiβ AK, Scheifele C, Schellenberger F, Hennig J, Elverfdt D, Ludwig U. Dental MRI: imaging of soft and solid components without ionizing radiation. Journal of Magnetic Resonance Imaging. 2012;36(4):841-6.
  • Referans13. Tymofiyeva O, Rottner K, Jakob P, Richter E-J, Proff P. Three-dimensional localization of impacted teeth using magnetic resonance imaging. Clinical oral investigations. 2010;14(2):169-76.
  • Referans14. Idiyatullin D, Corum CA, Nixdorf DR, Garwood M. Intraoral approach for imaging teeth using the transverse B1 field components of an occlusally oriented loop coil. Magnetic resonance in medicine. 2014;72(1):160-5.
  • Referans15. Tymofiyeva O, Rottner K, Gareis D, Boldt J, Schmid F, Lopez MA, E.‐J. Richter P.M. Jakob. In vivo MRI‐based dental impression using an intraoral RF receiver coil. Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering: An Educational Journal. 2008;33(4):244-51.
  • Referans16. Prager M, Heiland S, Gareis D, Hilgenfeld T, Bendszus M, Gaudino C. Dental MRI using a dedicated RF-coil at 3 Tesla. Journal of Cranio-Maxillofacial Surgery. 2015;43(10):2175-82.
  • Referans17. Ludwig U, Eisenbeiss A-K, Scheifele C, Nelson K, Bock M, Hennig J, Elverfeldt D, Herdt O, Flügge T, Hövener JB. Dental MRI using wireless intraoral coils. Scientific reports. 2016;6(1):1-11.
  • Referans18. Idiyatullin D, Corum C, Moeller S, Prasad HS, Garwood M, Nixdorf DR. Dental magnetic resonance imaging: making the invisible visible. Journal of endodontics. 2011;37(6):745-52.
  • Referans19. Gradl J, Höreth M, Pfefferle T, Prager M, Hilgenfeld T, Gareis D, Bäumer P, Heiland S, Bendszus M, Hähnel S. Application of a dedicated surface coil in dental MRI provides superior image quality in comparison with a standard coil. Clinical neuroradiology. 2017;27(3):371-8.
  • Referans20. Flügge T, Hövener JB, Ludwig U, Eisenbeiss AK, Spittau B, Hennig J, Schmelzeisen R, Nelson K. Magnetic resonance imaging of intraoral hard and soft tissues using an intraoral coil and FLASH sequences. European radiology. 2016;26(12):4616-23.
  • Referans21. Eichhorn T, Ludwig U, Fischer E, Gröbner J, Göpper M, Eisenbeiss AK, Flügge T, Hennig J, Elverfeldt D, Hövener JB. Modular coils with low hydrogen content especially for MRI of dry solids. PloS one. 2015;10(10).
  • Referans22. Funduk N, Kydon D, Schreiner L, Peemoeller H, Miljković L, Pintar M. Composition and relaxation of the proton magnetization of human enamel and its contribution to the tooth NMR image. Magnetic resonance in medicine. 1984;1(1):66-75.
  • Referans23. Gatehouse P, Bydder G. Magnetic resonance imaging of short T2 components in tissue. Clinical radiology. 2003;58(1):1-19.
  • Referans24. Appel TR, Baumann MA. Solid-state nuclear magnetic resonance microscopy demonstrating human dental anatomy. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2002;94(2):256-61.
  • Referans25. Weiger M, Stampanoni M, Pruessmann KP. Direct depiction of bone microstructure using MRI with zero echo time. Bone. 2013;54(1):44-7.
  • Referans25. Lloyd C, Scrimgeour SN, Hunter G, Chudek JA, Lane DM, Mcdonald PJ. Solid state spatially resolved 1 H and 19 F nuclear magnetic resonance spectroscopy of dental materials by stray-field imaging. Journal of Materials Science: Materials in Medicine, 1999;10(6): 369-73.
  • Referans26. Hafner S. Fast imaging in liquids and solids with the Back-projection Low Angle ShoT (BLAST) technique. Magnetic resonance imaging, 1994;12(7): 1047-51.
  • Referans27. Madio DP, Lowe IJ. Ultra‐fast imaging using low flip angles and FIDs. Magnetic resonance in medicine. 1995;34(4): 525-9.
  • Referans28. Robson MD, Gatehouse PD, Bydder M, Bydder GM. Magnetic resonance: an introduction to ultrashort TE (UTE) imaging. Journal of computer assisted tomography. 2003;27(6):825-46.
  • Referans29. Bracher AK, Hofmann C, Bornstedt A, Boujraf S, Hell E, Ulrici J, et al. Feasibility of ultra‐short echo time (UTE) magnetic resonance imaging for identification of carious lesions. Magnetic resonance in medicine. 2011;66(2):538-45.
  • Referans30. Idiyatullin D, Corum C, Park J-Y, Garwood M. Fast and quiet MRI using a swept radiofrequency. Journal of Magnetic Resonance. 2006;181(2):342-9.
  • Referans31. Weiger M, Pruessmann KP, Bracher AK, Köhler S, Lehmann V, Wolfram U, Hennel F, Rasche V. High‐resolution ZTE imaging of human teeth. NMR in Biomedicine. 2012;25(10):1144-51.
  • Referans32. Mastrogiacomo S, Dou W, Jansen JA, Walboomers XF. Magnetic resonance imaging of hard tissues and hard tissue engineered bio-substitutes. Molecular imaging and biology. 2019;21(6):1003-19.
  • Referans33. Carl M, Chiang J, Han E, Bydder G, King K, editors. Bloch simulations of UTE, WASPI and SWIFT for imaging short T2 tissues. ISMRM Annual Scientific Meeting & Exhibition; 2010.
  • Referans34. Cha MJ, Park HJ, Paek MY, Stemmer A, Lee ES, Park SB, Kim SY. Free-breathing ultrashort echo time lung magnetic resonance imaging using stack-of-spirals acquisition: a feasibility study in oncology patients. Magnetic resonance imaging. 2018;51:137-43.
  • Referans35. Dournes G, Grodzki D, Macey J, Girodet PO, Fayon M, Chateil JF, Montaudon M, Berger P, Laurent F. Quiet submillimeter MR imaging of the lung is feasible with a PETRA sequence at 1.5 T. Radiology. 2015;276(1):258-65.
  • Referans36. Wiesinger F, Sacolick LI, Menini A, Kaushik SS, Ahn S, Veit‐Haibach P, Delso G, Shanbhag DD. Zero TE MR bone imaging in the head. Magnetic resonance in medicine. 2016;75(1):107-14.
  • Referans37. Weiger M, Pruessmann KP, Hennel F. MRI with zero echo time: hard versus sweep pulse excitation. Magnetic resonance in medicine. 2011;66(2):379-89.
  • Referans38. Alibek S, Vogel M, Sun W, Winkler D, Baker CA, Burke M, Gloger H. Acoustic noise reduction in MRI using Silent Scan: an initial experience. Diagnostic and interventional radiology. 2014;20(4):360.
  • Referans39. Zheng W, Kim JP, Kadbi M, Movsas B, Chetty IJ, Glide-Hurst CK. Magnetic resonance–based automatic air segmentation for generation of synthetic computed tomography scans in the head region. International Journal of Radiation Oncology* Biology* Physics. 2015;93(3):497-506.
  • Referans40. Cho S, Baek H, Ryu K, Choi B, Moon J, Kim TB, Kim SK, Park H, Hwang MJ. Clinical feasibility of zero TE skull MRI in patients with head trauma in comparison with CT: a single-center study. American Journal of Neuroradiology. 2019;40(1):109-15.
  • Referans41. Lee C, Jeon KJ, Han SS, Kim YH, Choi YJ, Lee A, Choi HJ. CT-like MRI using the zero-TE technique for osseous changes of the TMJ. Dentomaxillofacial Radiology. 2020;49(3):20190272.
  • Referans42. Lu A, Gorny K, Ho ML. Zero TE MRI for Craniofacial Bone Imaging. American Journal of Neuroradiology. 2019;40(9):1562-6.
  • Referans43. Weiger M, Stampanoni M, Pruessmann KP. Direct depiction of bone microstructure using MRI with zero echo time. Bone, 2013;54(1): 44-7.
  • Referans44. Idiyatullin D, Garwood M, Gaalaas L, Nixdorf DR. Role of MRI for detecting micro cracks in teeth. Dentomaxillofacial Radiology, 2016;45(7), 20160150..
  • Referans45. Schuurmans TJ, Nixdorf DR, Idiyatullin DS, Law AS, Barsness BD, Roach SH, Gaalaas L. Accuracy and Reliability of Root Crack and Fracture Detection in Teeth Using Magnetic Resonance Imaging. Journal of endodontics. 2019;45(6):750-5.
  • Referans46. Kendi, A.T.K., A.T.K. Kendi, S.S. Khariwala, J. Zhang, D.S. Idiyatullin, C.A. Corum, S. Michaeli, S.E. Pambuccian, M. Garwood, B. Yueh Transformation in mandibular imaging with sweep imaging with fourier transform magnetic resonance imaging. Archives of Otolaryngology–Head & Neck Surgery. 2011:137(9): 916-919.
  • Referans47. Li C, Magland JF, Rad HS, Song KH, Wehrli FW. Comparison of optimized soft‐tissue suppression schemes for ultrashort echo time MRI. Magnetic resonance in medicine, 2012:68(3): 680-9.
  • Referans48. Rahmer J, Blume U, Börnert P. Selective 3D ultrashort TE imaging: comparison of “dual-echo” acquisition and magnetization preparation for improving short-T 2 contrast. Magnetic Resonance Materials in Physics, Biology and Medicine. 2007:20(2): 83.
  • Referans49. Lee H, Zhao X, Song HK, Zhang R, Bartlett SP, Wehrli FW. Rapid dual‐RF, dual‐echo, 3D ultrashort echo time craniofacial imaging: A feasibility study. Magnetic resonance in medicine. 2019;81(5):3007-16.
  • Referans50. Eley K, McIntyre A, Watt-Smith S, Golding S. “Black bone” MRI: a partial flip angle technique for radiation reduction in craniofacial imaging. The British journal of radiology. 2012;85(1011):272-8.
  • Referans51. Dremmen M, Wagner M, Bosemani T, Tekes A, Agostino D, Day E, Soares BP, Huisman TAGM. Does the addition of a “black bone” sequence to a fast multisequence trauma MR protocol allow MRI to replace CT after traumatic brain injury in children? American Journal of Neuroradiology. 2017;38(11):2187-92.
  • Referans52. Suchyta MA, Gibreel W, Hunt CH, Gorny KR, Bernstein MA, Mardini S. Using black bone magnetic resonance imaging in craniofacial virtual surgical planning: a comparative cadaver study. Plastic and reconstructive surgery. 2018;141(6):1459-70.
  • Referans53. Saarikko A, Mellanen E, Linda K, Junnu L, Karppinen A, Autti T, Virtanen P, Brandstack N. Comparison of Black-Bone MRI and 3D-CT in the preoperative evaluation of patients with craniosynostosis. Journal of Plastic, Reconstructive & Aesthetic Surgery. 2020;73 (4): 723-31.
  • Referans54. Ladd ME, Bachert P, Meyerspeer M, Moser E, Nagel AM, Norris DG, Schmitter S, Speck O, Straub S, Zaiss M. Pros and cons of ultra-high-field MRI/MRS for human application. Progress in nuclear magnetic resonance spectroscopy. 2018;109:1-50.
  • Referans55. Stucht D, Danishad KA, Schulze P, Godenschweger F, Zaitsev M, Speck O. Highest resolution in vivo human brain MRI using prospective motion correction. PloS one. 2015;10(7):e0133921.
  • Referans56. Lüsebrink F, Sciarra A, Mattern H, Yakupov R, Speck O. T 1-weighted in vivo human whole brain MRI dataset with an ultrahigh isotropic resolution of 250 μm. Scientific data. 2017;4(1):1-12.
  • Referans57. Barisano G, Sepehrband F, Ma S, Jann K, Cabeen R, Wang DJ, Toga AW, Law M. Clinical 7 T MRI: Are we there yet? A review about magnetic resonance imaging at ultra-high field. The British journal of radiology. 2019;92(1094):20180492.
  • Referans58. Trattnig S, Zbýň Š, Schmitt B, Friedrich K, Juras V, Szomolanyi P, Bogner W. Advanced MR methods at ultra-high field (7 Tesla) for clinical musculoskeletal applications. European radiology. 2012;22(11):2338-46.
  • Referans58. Manoliu A, Spinner G, Wyss M, Ettlin DA, Nanz D, Kuhn FP, Luigi GM. Gustav A. Magnetic resonance imaging of the temporomandibular joint at 7.0 T using high-permittivity dielectric pads: a feasibility study. Investigative radiology. 2015;50(12):843-9.
  • Referans59. Kraff O, Quick HH. 7T: Physics, safety, and potential clinical applications. Journal of Magnetic Resonance Imaging. 2017;46(6): 1573-89.
  • Referans60. Yilmaz S, Adisen MZ. Ex vivo mercury release from dental amalgam after 7.0-T and 1.5-T MRI. Radiology. 2018;288(3):799-803
  • Referans61. Manoliu A, Spinner G, Wyss M, Ettlin DA, Nanz D, Kuhn F, Gallo LM, Andreisek G. Magnetic resonance imaging of the temporomandibular joint at 7.0 T using high-permittivity dielectric pads: a feasibility study. Investigative radiology. 2015;50(12): 843-9.
  • Referans62. Kim KN, Kim YB, Cho ZH. Improvement of a 4-Channel Spiral-Loop RF Coil Array for TMJ MR Imaging at 7T. Journal of the Korean Society of Magnetic Resonance in Medicine. 2012;16(2): 103-14.
  • Referans63. Rieger J, Kronnerwetter C, Graessl A, Waiczies H, Endemann B, Trattnig S, Niendorf T. High Spatial Resolution MRI of Temporo-Mandibular Joint at 7.0 Tesla Using a Modestly Shaped 8 Channel Transceiver RF Coil Array. Conference paper, Proceedins of the ISMRM, Toronto. May 2015
  • Referans64. Kuhn FP, Spinner G, Del Grande F, Wyss M, Piccirelli M, Erni S, Pfister P, Ho M, Sah BR, Filli L, Ettlin DA, Gallo LM, Andreisek G.Manoliu A. MR imaging of the temporomandibular joint: comparison between acquisitions at 7.0 T using dielectric pads and 3.0 T. Dentomaxillofacial Radiology. 2017;46(1):20160280.
  • Referans65. Timme M, Masthoff M, Nagelmann N, Masthoff M, Faber C, Bürklein S. Imaging of root canal treatment using ultra high field 9.4 T UTE-MRI–a preliminary study. Dentomaxillofacial Radiology. 2020;49(1):20190183.
  • Referans66. Krug R, Carballido‐Gamio J, Banerjee S, Burghardt AJ, Link TM, Majumdar S. In vivo ultra‐high‐field magnetic resonance imaging of trabecular bone microarchitecture at 7 T. Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine. 2008;27(4):854-9.
  • Referans67. Atkinson IC, Renteria L, Burd H, Pliskin NH, Thulborn KR. Safety of human MRI at static fields above the FDA 8T guideline: Sodium imaging at 9.4 T does not affect vital signs or cognitive ability. Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine. 2007;26(5):1222-7.
  • Referans68. Deelchand DK, Van de Moortele PF, Adriany G, Iltis I, Andersen P, Strupp JP, Vaughan JT, Uğurbil K,Henry PG. In vivo 1H NMR spectroscopy of the human brain at 9.4 T: initial results. Journal of Magnetic Resonance. 2010;206(1):74-80.
  • Referans69. Memon A, Godward S, Williams D, Siddique I, Al-Saleh K. Dental x-rays and the risk of thyroid cancer: a case-control study. Acta Oncologica. 2010;49(4):447-53.
  • Referans70. Memon A, Rogers I, Paudyal P, Sundin J. Dental x-rays and the risk of thyroid cancer and meningioma: A systematic review and meta-analysis of current epidemiological evidence. Thyroid. 2019;29(11):1572-93.
  • Referans71. Hwang SY, Choi ES, Kim YS, Gim BE, Ha M, Kim HY. Health effects from exposure to dental diagnostic X-ray. Environmental health and toxicology. 2018;33(4).
  • Referans72. European Commission. European guidelines on radiation protection in dental radiology. Office for Official Publications of the European Communities. Radiation Protection 136 (2004). Available on http://ec.europa.eu/energy/nuclear/radioprotection/publication/doc/136_en.pdf
Toplam 74 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Diş Hekimliği
Bölüm Derleme
Yazarlar

Selmi Yılmaz 0000-0001-9546-6548

Yayımlanma Tarihi 24 Ağustos 2022
Gönderilme Tarihi 14 Ocak 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

Vancouver Yılmaz S. Dental ve Maksillofasial Manyetik Rezonans Görüntüleme güncel bilgiler. Selcuk Dent J. 2022;9(2):729-37.