Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparison of type A silicones with contact angle and tensile test

Yıl 2024, Cilt: 11 Sayı: 3, 282 - 286, 23.12.2024
https://doi.org/10.15311/selcukdentj.1435344

Öz

Amaç: Bu çalışmanın amacı sürfaktan ve nanopartikül içeriği farklı a tipi silikon ölçü materyallerine temas açısı/ıslanabilirliği (contact angle) ve çekme testi (tensile strenght) uygulanarak materyallerin çekme dayanıklılığı ve hidrofilik özelliklerini değerlendirmektir.
Gereç ve Yöntemler: Çalışmamızda a tipi polivinil siloksan ölçü materyallerinden nanopartikül ve sürfaktan içerikleri farklı olan Zhermack Elite Hd (Ivoclar, Vivadent, Lienchenstein, Germany) ile Imicryl Spirias (Konya, Türkiye) kullanılmıştır. Temas açısı testi ve çekme testi için 20’şer örnek hazırlanmıştır. Dataphysics Oca 50 micro cihazında başlangıç olarak 0.138 sn. ve bitiş olarak 82.8. sn.deki temas açısı ölçümleri yapılmıştır. DVT GPE 13888 YBS cihazda 50 mm/dk hızda çekme testi uygulanmıştır. Numunelerin koptuğu anda uygulanan kuvvet Fmax (Mpa), çekme uzama yüzdesi (ΔL) ve elastik modülüsü (E= N/mm²) kayıt edilmiştir. Sonuçlar IBM SPSS V23 ve RStudio ile analiz edilmiştir.
Bulgular: Temas açısı ölçüm değerleri arasındaki fark istatistiksel olarak anlamlı bulunmuştur (p<0,001). Ölçü materyalleri ve temas açısı arasında anlamlı ilişki bulunmuştur. Ölçü maddelerinin ikisinde de çekme testinde maksimum uygulanan kuvvet (Fmax) ortalama değerler arasında istatistiksel olarak anlamlı fark bulunmuştur (p<0,001). Spiriasın Fmax ortalama değeri 4.3 mPa ve Zhermack Elite HD’nin 2.64 mPa olarak elde edilmiştir. Materyallerin elastik modülüs ortalama değerleri arasında istatistiksel olarak anlamlı bir fark bulunmuştur. Spiriasın E’si 1.86, Zhermack Elite HD’nin 1 olarak bulunmuştur. 0.138. sn.de Zhermack Elite Hd’nin, Spiriasa göre ıslanabilirliği daha yüksek bulunmuştur. 82.8. sn.de ise Spirias’ın ıslanabilirlik değerleri daha yüksek bulunmuştur. Çekme testinde Spiriasta Fmax ve E değerleri daha yüksek bulunmuştur. Materyallerin çekme uzama (ΔL) (%) değerleri arasında istatistiksel olarak anlamlı bir fark bulunmamıştır (p=0,113).
Sonuç: Bu in vitro çalışmanın sınırlamaları dahilinde, Spirias en yüksek çekme direncine ve sertliğine sahiptir. Spirias ve Zhermack başlangıç ve bitiş saniyelerinde karşılaştırılabilir hidrofiliklik sunarken, birbirlerine bir üstünlükleri yoktur.
Anahtar sözcükler: Çekme testi, polivinil siloksan, temas açısı testi
Comparison of type A silicones with contact angle and tensile test

Purpose: The aim of this study is to evaluate the tensile strength and hydrophilic properties of two different A-type silicone impression materials by applying contact angle/wettability and tensile strength test.
Materials and Method: In our study, nanoparticle containing A type polyvinilsilicone Zhermack Elite Hd (Lienchenstein, Germany) and Imicryl Spirias (Konya, Turkey) impression materials were used. A total of 40 samples were used for our study. 20 samples were used for each contact angle test and tensile test. The contact angle measurements were done in the starting 0.138 th sec. and finally in the 82.8 th sec. The tensile strenght test of the samples was done at 50 mm/min speed by DVT GPE 13888 YBS device. The applied force Fmax (Mpa), tensile elongation percentage (ΔL) and elastic modulus (E= N/mm²) of the specimens at the moment of impression material were recorded. The results were analyzed with IBM SPSS V23 and RStudio.

Results: The difference between the contact angle measurement values were statistically significant (p<0.001). The effect of material type and contact angle interaction on measurement values was found to be statistically significant (p<0.001). A statistically significant difference was found between the mean values of the maximum applied force (Fmax) in the tensile test (p<0.001). The mean Fmax value of Spirias was 4.3 mPa, and Zhermack Elite HD was 2.64 mPa. A statistically significant difference was found between the mean E values of the materials. E of spirias was 1.86, Zhermack Elite HD was 1. At 0.138. sec., Zhermack Elite Hd has found to have higher wettability than Spirias. At 82.8. th sec., the wettability values of Spirias were found to be higher. In the tensile strenght test, Spiriass’ Fmax and E were found to be higher. There was no statistically significant difference between the tensile elongation (ΔL) (%) values of the materials (p=0.113).
Conclusion: Within the limitations of this in vitro study, Spirias has the highest tensile strength and hardness. While Spirias and Zhermack offer comparable hydrophilicity in the starting and final seconds, they do not have an overall advantage over each other.
Key words: Tensile test, polyvinyl siloxane, contact angle test

Kaynakça

  • 1. O'Brien WJ. Dental materials and their selection: Quintessence Chicago; 2002.
  • 2. Jain AR, Nallaswamy D, Ariga P, Ganapathy D. Determination of correlation of width of Maxillary Anterior Teeth using Extraoral and Intraoral Factors in Indian Population: A systematic review. World J Dent. 2018;9(1):68-75.
  • 3. Hamalian TA, Nasr E, Chidiac JJ. Impression materials in fixed prosthodontics: influence of choice on clinical procedure. Journal of Prosthodontics: Implant, Esthetic and Reconstructive Dentistry. 2011;20(2):153-60.
  • 4. BOYACI BK, KOCACIKLI M. Elastomerik Ölçü Materyallerinde Güncel Gelişmeler. ADO Klinik Bilimler Dergisi. 2017;8(1):1535-46.
  • 5. Sheta MS, El-Shorbagy ZA, Karim UMA, Abd-Alla S. Laboratory comparative study of wettability, dimensional changes, flexibility and tear resistance of two recent elastomeric impression materials. Tanta Dental Journal. 2017;14(2):89-95.
  • 6. Chee WW, Donovan TE. Polyvinyl siloxane impression materials: a review of properties and techniques. The Journal of prosthetic dentistry. 1992;68(5):728-32.
  • 7. Rubel BS. Impression materials: a comparative review of impression materials most commonly used in restorative dentistry. Dental Clinics of North America. 2007;51(3):629-42.
  • 8. Sheta MS, El-Shorbagy ZA, Abdel Karim UM, Abd-Alla S. Laboratory comparative study of wettability, dimensional changes, flexibility and tear resistance of two recent elastomeric impression materials. Tanta Dental Journal. 2017;14(2):89-95.
  • 9. Menees TS, Radhakrishnan R, Ramp LC, Burgess JO, Lawson NC. Contact angle of unset elastomeric impression materials. The Journal of prosthetic dentistry. 2015;114(4):536-42.
  • 10. Nassar U, Tavoossi F, Pan YW, Milavong-Viravongsa N, Heo G, Nychka JA. Comparison of the contact angle of water on set elastomeric impression materials. J Can Dent Assoc. 2018;84(i6):1488-2159.
  • 11. Hayward JA, Chapman D. Biomembrane surfaces as models for polymer design: the potential for haemocompatibility. Biomaterials. 1984;5(3):135-42.
  • 12. Clancy JM, Scandrett FR, Ettinger RL. Long‐term dimensional stability of three current elastomers. Journal of oral rehabilitation. 1983;10(4):325-33.
  • 13. Sawyer HF, Dilts WE, Aubrey ME, Neiman R. Accuracy of casts produced from the three classes of elastomer impression materials. The Journal of the American Dental Association. 1974;89(3):644-8.
  • 14. Norling BK, Reisbick MH. The effect of nonionic surfactants on bubble entrapment in elastomeric impression materials. The Journal of Prosthetic Dentistry. 1979;42(3):342-7.
  • 15. Grundke K, Michel S, Knispel G, Grundler A. Wettability of silicone and polyether impression materials: Characterization by surface tension and contact angle measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2008;317(1-3):598-609.
  • 16. Lu H, Nguyen B, Powers JM. Mechanical properties of 3 hydrophilic addition silicone and polyether elastomeric impression materials. The Journal of prosthetic dentistry. 2004;92(2):151-4.
  • 17. Perakis N, Belser UC, Magne P. Final impressions: a review of material properties and description of a current technique. International Journal of Periodontics & Restorative Dentistry. 2004;24(2).
  • 18. Barszczewska-Rybarek IM. A guide through the dental dimethacrylate polymer network structural characterization and interpretation of physico-mechanical properties. Materials. 2019;12(24):4057.
  • 19. Kato K, Ikeda Y, Ito K. Direct determination of cross-link density and its correlation with the elastic modulus of a gel with slidable cross-links. ACS Macro Letters. 2019;8(6):700-4.
  • 20. Apinsathanon P, Bhattarai BP, Suphangul S, Wongsirichat N, Aimjirakul N. Penetration and tensile strength of various impression materials of vinylsiloxanether, polyether, and polyvinylsiloxane impression materials. European Journal of Dentistry. 2021;16(02):339-45.
  • 21. Karayazgan-Saracoğlu B. Silika ile güçlendirilmiş maksillofasiyal silikon elastomerlerin fiziksel özelliklerinin değerlendirilmesi. Cumhuriyet Dent J. 2010;13(1):34-9.
  • 22. Andreopoulos A, Evangelatou M. Evaluation of various reinforcements for maxillofacial silicone elastomers. Journal of biomaterials applications. 1994;8(4):344-60.
  • 23. Andreopoulos A, Evangelatou M, Tarantili P. Properties of maxillofacial silicone elastomers reinforced with silica powder. Journal of biomaterials applications. 1998;13(1):66-73.
  • 24. Aidasani AN, Jain S, Hassan S, Sharma A, Shanthi C, Fere S. Comparative Evaluation of the Rigidity and Accuracy of Different Elastomeric Impression Materials with Open Tray Implant Level Impression Technique-An In vitro Study. Journal of Pharmacy & Bioallied Science. 2023 Jul;15(Suppl 2): S1262-S1265.

A tipi silikonların temas açısı ve çekme testi ile karşılaştırılması

Yıl 2024, Cilt: 11 Sayı: 3, 282 - 286, 23.12.2024
https://doi.org/10.15311/selcukdentj.1435344

Öz

Amaç: Bu çalışmanın amacı sürfaktan ve nanopartikül içeriği farklı a tipi silikon ölçü materyallerine temas açısı/ıslanabilirliği (contact angle) ve çekme testi (tensile strenght) uygulanarak materyallerin çekme dayanıklılığı ve hidrofilik özelliklerini değerlendirmektir.
Yöntem: Çalışmamızda a tipi polivinil siloksan ölçü materyallerinden nanopartikül ve sürfaktan içerikleri farklı olan Zhermack Elite Hd (Ivoclar, Vivadent, Lienchenstein, Germany) ile Imicryl Spirias (Konya, Türkiye) kullanılmıştır. Temas açısı testi ve çekme testi için 20’şer örnek hazırlanmıştır. Dataphysics Oca 50 micro cihazında başlangıç olarak 0.138 sn. ve bitiş olarak 82.8. sn.deki temas açısı ölçümleri yapılmıştır. DVT GPE 13888 YBS cihazda 50 mm/dk hızda çekme testi uygulanmıştır. Numunelerin koptuğu anda uygulanan kuvvet Fmax (Mpa), çekme uzama yüzdesi (ΔL) ve elastik modülüsü (E= N/mm²) kayıt edilmiştir. Sonuçlar IBM SPSS V23 ve RStudio ile analiz edilmiştir.
Bulgular: Temas açısı ölçüm değerleri arasındaki fark istatistiksel olarak anlamlı bulunmuştur (p<0,001). Ölçü materyalleri ve temas açısı arasında anlamlı ilişki bulunmuştur. Ölçü maddelerinin ikisinde de çekme testinde maksimum uygulanan kuvvet (Fmax) ortalama değerler arasında istatistiksel olarak anlamlı fark bulunmuştur (p<0,001). Spiriasın Fmax ortalama değeri 4.3 mPa ve Zhermack Elite HD’nin 2.64 mPa olarak elde edilmiştir. Materyallerin elastik modülüs ortalama değerleri arasında istatistiksel olarak anlamlı bir fark bulunmuştur. Spiriasın E’si 1.86, Zhermack Elite HD’nin 1 olarak bulunmuştur. 0.138. sn.de Zhermack Elite Hd’nin, Spiriasa göre ıslanabilirliği daha yüksek bulunmuştur. 82.8. sn.de ise Spirias’ın ıslanabilirlik değerleri daha yüksek bulunmuştur. Çekme testinde Spiriasta Fmax ve E değerleri daha yüksek bulunmuştur. Materyallerin çekme uzama (ΔL) (%) değerleri arasında istatistiksel olarak anlamlı bir fark bulunmamıştır (p=0,113).
Sonuç: Bu in vitro çalışmanın sınırlamaları dahilinde, Spirias en yüksek çekme direncine ve sertliğine sahiptir. Spirias ve Zhermack başlangıç ve bitiş saniyelerinde karşılaştırılabilir hidrofiliklik sunarken, birbirlerine bir üstünlükleri yoktur.
Anahtar sözcükler: Çekme testi, polivinil siloksan, temas açısı testi
Comparison of type A silicones with contact angle and tensile test

Purpose: The aim of this study is to evaluate the tensile strength and hydrophilic properties of two different A-type silicone impression materials by applying contact angle/wettability and tensile strength test.
Materials and Method: In our study, nanoparticle containing A type polyvinilsilicone Zhermack Elite Hd (Lienchenstein, Germany) and Imicryl Spirias (Konya, Turkey) impression materials were used. A total of 40 samples were used for our study. 20 samples were used for each contact angle test and tensile test. The contact angle measurements were done in the starting 0.138 th sec. and finally in the 82.8 th sec. The tensile strenght test of the samples was done at 50 mm/min speed by DVT GPE 13888 YBS device. The applied force Fmax (Mpa), tensile elongation percentage (ΔL) and elastic modulus (E= N/mm²) of the specimens at the moment of impression material were recorded. The results were analyzed with IBM SPSS V23 and RStudio.

Results: The difference between the contact angle measurement values were statistically significant (p<0.001). The effect of material type and contact angle interaction on measurement values was found to be statistically significant (p<0.001). A statistically significant difference was found between the mean values of the maximum applied force (Fmax) in the tensile test (p<0.001). The mean Fmax value of Spirias was 4.3 mPa, and Zhermack Elite HD was 2.64 mPa. A statistically significant difference was found between the mean E values of the materials. E of spirias was 1.86, Zhermack Elite HD was 1. At 0.138. sec., Zhermack Elite Hd has found to have higher wettability than Spirias. At 82.8. th sec., the wettability values of Spirias were found to be higher. In the tensile strenght test, Spiriass’ Fmax and E were found to be higher. There was no statistically significant difference between the tensile elongation (ΔL) (%) values of the materials (p=0.113).
Conclusion: Within the limitations of this in vitro study, Spirias has the highest tensile strength and hardness. While Spirias and Zhermack offer comparable hydrophilicity in the starting and final seconds, they do not have an overall advantage over each other.
Key words: Tensile test, polyvinyl siloxane, contact angle test

Kaynakça

  • 1. O'Brien WJ. Dental materials and their selection: Quintessence Chicago; 2002.
  • 2. Jain AR, Nallaswamy D, Ariga P, Ganapathy D. Determination of correlation of width of Maxillary Anterior Teeth using Extraoral and Intraoral Factors in Indian Population: A systematic review. World J Dent. 2018;9(1):68-75.
  • 3. Hamalian TA, Nasr E, Chidiac JJ. Impression materials in fixed prosthodontics: influence of choice on clinical procedure. Journal of Prosthodontics: Implant, Esthetic and Reconstructive Dentistry. 2011;20(2):153-60.
  • 4. BOYACI BK, KOCACIKLI M. Elastomerik Ölçü Materyallerinde Güncel Gelişmeler. ADO Klinik Bilimler Dergisi. 2017;8(1):1535-46.
  • 5. Sheta MS, El-Shorbagy ZA, Karim UMA, Abd-Alla S. Laboratory comparative study of wettability, dimensional changes, flexibility and tear resistance of two recent elastomeric impression materials. Tanta Dental Journal. 2017;14(2):89-95.
  • 6. Chee WW, Donovan TE. Polyvinyl siloxane impression materials: a review of properties and techniques. The Journal of prosthetic dentistry. 1992;68(5):728-32.
  • 7. Rubel BS. Impression materials: a comparative review of impression materials most commonly used in restorative dentistry. Dental Clinics of North America. 2007;51(3):629-42.
  • 8. Sheta MS, El-Shorbagy ZA, Abdel Karim UM, Abd-Alla S. Laboratory comparative study of wettability, dimensional changes, flexibility and tear resistance of two recent elastomeric impression materials. Tanta Dental Journal. 2017;14(2):89-95.
  • 9. Menees TS, Radhakrishnan R, Ramp LC, Burgess JO, Lawson NC. Contact angle of unset elastomeric impression materials. The Journal of prosthetic dentistry. 2015;114(4):536-42.
  • 10. Nassar U, Tavoossi F, Pan YW, Milavong-Viravongsa N, Heo G, Nychka JA. Comparison of the contact angle of water on set elastomeric impression materials. J Can Dent Assoc. 2018;84(i6):1488-2159.
  • 11. Hayward JA, Chapman D. Biomembrane surfaces as models for polymer design: the potential for haemocompatibility. Biomaterials. 1984;5(3):135-42.
  • 12. Clancy JM, Scandrett FR, Ettinger RL. Long‐term dimensional stability of three current elastomers. Journal of oral rehabilitation. 1983;10(4):325-33.
  • 13. Sawyer HF, Dilts WE, Aubrey ME, Neiman R. Accuracy of casts produced from the three classes of elastomer impression materials. The Journal of the American Dental Association. 1974;89(3):644-8.
  • 14. Norling BK, Reisbick MH. The effect of nonionic surfactants on bubble entrapment in elastomeric impression materials. The Journal of Prosthetic Dentistry. 1979;42(3):342-7.
  • 15. Grundke K, Michel S, Knispel G, Grundler A. Wettability of silicone and polyether impression materials: Characterization by surface tension and contact angle measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2008;317(1-3):598-609.
  • 16. Lu H, Nguyen B, Powers JM. Mechanical properties of 3 hydrophilic addition silicone and polyether elastomeric impression materials. The Journal of prosthetic dentistry. 2004;92(2):151-4.
  • 17. Perakis N, Belser UC, Magne P. Final impressions: a review of material properties and description of a current technique. International Journal of Periodontics & Restorative Dentistry. 2004;24(2).
  • 18. Barszczewska-Rybarek IM. A guide through the dental dimethacrylate polymer network structural characterization and interpretation of physico-mechanical properties. Materials. 2019;12(24):4057.
  • 19. Kato K, Ikeda Y, Ito K. Direct determination of cross-link density and its correlation with the elastic modulus of a gel with slidable cross-links. ACS Macro Letters. 2019;8(6):700-4.
  • 20. Apinsathanon P, Bhattarai BP, Suphangul S, Wongsirichat N, Aimjirakul N. Penetration and tensile strength of various impression materials of vinylsiloxanether, polyether, and polyvinylsiloxane impression materials. European Journal of Dentistry. 2021;16(02):339-45.
  • 21. Karayazgan-Saracoğlu B. Silika ile güçlendirilmiş maksillofasiyal silikon elastomerlerin fiziksel özelliklerinin değerlendirilmesi. Cumhuriyet Dent J. 2010;13(1):34-9.
  • 22. Andreopoulos A, Evangelatou M. Evaluation of various reinforcements for maxillofacial silicone elastomers. Journal of biomaterials applications. 1994;8(4):344-60.
  • 23. Andreopoulos A, Evangelatou M, Tarantili P. Properties of maxillofacial silicone elastomers reinforced with silica powder. Journal of biomaterials applications. 1998;13(1):66-73.
  • 24. Aidasani AN, Jain S, Hassan S, Sharma A, Shanthi C, Fere S. Comparative Evaluation of the Rigidity and Accuracy of Different Elastomeric Impression Materials with Open Tray Implant Level Impression Technique-An In vitro Study. Journal of Pharmacy & Bioallied Science. 2023 Jul;15(Suppl 2): S1262-S1265.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Protez
Bölüm Araştırma
Yazarlar

Necla Demir 0000-0003-0927-6962

Zişan Çapar 0009-0007-6146-8917

Yayımlanma Tarihi 23 Aralık 2024
Gönderilme Tarihi 11 Şubat 2024
Kabul Tarihi 15 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 11 Sayı: 3

Kaynak Göster

Vancouver Demir N, Çapar Z. A tipi silikonların temas açısı ve çekme testi ile karşılaştırılması. Selcuk Dent J. 2024;11(3):282-6.