Bilgisayar Sayısal Kontrollü ve Seçici Lazer Eritme üretim yöntemleriyle üretilen ortodontik mini vidaların primer stabilitelerinin karşılaştırılması: Keşif amaçlı bir çalışma
Yıl 2024,
Cilt: 11 Sayı: 3, 341 - 345, 23.12.2024
Meriç Öztürk Yaşar
,
Celal Irgın
Öz
Amaç: Bu çalışmanın amacı, geleneksel ve yeni bir üretim yöntemiyle üretilen aynı tasarıma sahip ortodontik mini vidaların primer stabilitesini değerlendirmekti.
Gereç ve Yöntemler: Çalışmada gövde uzunluğu 8 mm, çapı 1.6 mm, düğme başlıklı ve kendinden delme özelliğine sahip toplamda 150 adet ortodontik mini vida kullanıldı. Mini vidalar bilgisayarlı sayısal kontrollü (CNC) ve seçici lazer eritme (SLM) üretim yöntemleriyle üretildi. İmalat malzemesi olarak titanyum (T) ve paslanmaz çelik (SS) alaşımlar kullanıldı. Çalışma CNC-T, SLM-T ve SLM-SS olmak üzere üç grup üzerinde yürütüldü. Mini vidalar, kortikal kemik kalınlığının 2 mm olduğu taze sığır femur kemiklerine 60 ve 90 derecelik açılarla yerleştirildi. Mini vidaların primer stabiliteleri Radyofrekans analiz (RFA) tekniği ile mini vidalar yerleştirildikten hemen sonra (F0), mini vidalara ortodontik kuvvet uygulandıktan hemen sonra (F1), 6 saat sonra (F6) ve 24 saat sonra (F24) ölçüldü. Verileri karşılaştırmak için üç yönlü robust ANOVA test istatistiği kullanıldı ve Bonferroni düzeltmesi uygulandı.
Bulgular: Mini vidaların yerleştirme açısı dışında, grup ve zaman faktörlerinin RFA değerleri üzerinde istatistiksel olarak anlamlı etkileri vardı. En yüksek RFA değeri SLM-T grubunda tespit edildi.
Sonuçlar: SLM teknolojisi kullanılarak titanyum veya paslanmaz çelik alaşımlardan üretilen ortodontik mini vidalar, geleneksel üretim yöntemi kullanılarak üretilen mini vidalara alternatif olabilir. SLM teknolojisi kullanılarak üretilen mini vidalar, ortodontik kuvvete maruz kaldıklarında yeterli primer stabilite göstermişlerdir.
Kaynakça
- 1. Proffit WR, Fields HW, Larson B, Sarver DM. Contemporary Orthodontics e-book. Amsterdam: Elsevier Health Sciences; 2018.
- 2. Sherman AJ. Bone reaction to orthodontic forces on vitreous carbon dental implants. Am J Orthod. 1978;74:79–87.
- 3. Schnelle MA, Beck FM, Jaynes RM, Huja SS. A radiographic evaluation of the availability of bone for placement of miniscrews. Angle Orthod. 2004;74:832–837.
- 4. Wilmes B, Rademacher C, Olthoff G, Drescher D. Parameters affecting primary stability of orthodontic mini-implants J Orofac Orthop. 2006;67:162–74.
- 5. Chen Y, Kyung HM, Zhao WT, Yu WJ. Critical factors for the success of orthodontic mini-implants: a systematic review. Am J Orthod Dentofacial Orthop. 2009;135:284–291.
- 6. Your CNC Machine. In: Build Your Own CNC Machine. Berkeley, CA: Apress; 2009;1–4.
- 7. Ahmadi M, Tabary SAAB, Rahmatabadi D, Ebrahimi MS, Abrinia K, Hashemi R. Review of selective laser melting of magnesium alloys: advantages, microstructure and mechanical characterizations, defects, challenges, and applications. J Mater Res Technol. 2022;19:1537–1562.
- 8. Wen S, Gan J, Li F, Zhou Y, Yan C, Yusheng Shi Y. Research status and prospect of additive manufactured nickel-titanium shape memory alloys. Materials (Basel). 2021;14(16):4496.
- 9. Park HS, Jeong SH, Kwon OW. Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofacial Orthop. 2006;130:18–25.
- 10. Pan CY, Chou ST, Tseng YC, Yang YH, Wu CY, Lan TH, et al. Influence of different implant materials on the primary stability of orthodontic mini-implants. Kaohsiung J Med Sci. 2012; 28:673–678.
- 11. Disegi JA, Eschbach L. Stainless steel in bone surgery. Injury. 2000; 31 Suppl 4:2–6.
- 12. Wilmes B, Su YY, Drescher D. Insertion angle impact on primary stability of orthodontic mini-implants. Angle Orthod. 2008;78:1065–1070.
- 13. Ono A, Motoyoshi M, Shimizu N. Cortical bone thickness in the buccal posterior region for orthodontic mini-implants. Int J Oral Maxillofac Surg. 2008;37:334–340.
- 14. Deguchi T, Nasu M, Murakami K, Yabuuchi T, Kamioka H, Takano-Yamamoto T. Quantitative evaluation of cortical bone thickness with computed tomographic scanning for orthodontic implants. Am J Orthod Dentofacial Orthop. 2006;129:721.e7-12.
- 15. Baumgaertel S, Hans MG. Buccal cortical bone thickness for mini-implant placement. Am J Orthod Dentofacial Orthop. 2009;136:230–235.
- 16. Brown RN, Sexton BE, Gabriel Chu TM, Katona TR, Stewart KT, Kyung HM, et al. Comparison of stainless steel and titanium alloy orthodontic miniscrew implants: a mechanical and histologic analysis. Am J Orthod Dentofacial Orthop. 2014;145:496–504.
- 17. Jeong M, Radomski K, Lopez D, Liu JT, Lee JD, Lee SJ. Materials and Applications of 3D Printing Technology in Dentistry: An Overview. Dent J (Basel). 2024; 12(1):1.
- 18. Melsen B. Mini-implants: Where are we? J Clin Orthod. 2005; 39: 539–547.
- 19. Büchter A, Wiechmann D, Koerdt S, Wiesmann HP, Piffko J, Meyer U. Load-related implant reaction of mini-implants used for orthodontic anchorage. Clin Oral Implants Res. 2005;16:473–479.
- 20. Melsen B, Costa A. Immediate loading of implants used for orthodontic anchorage. Clin Orthod Res. 2000; 3: 23–28.
- 21. Wiechmann D, Meyer U, Büchter A. Success rate of mini- and micro-implants used for orthodontic anchorage: a prospective clinical study. Clin Oral Implants Res. 2007;18: 263–267.
- 22. Melsen B, Lang NP. Biological reactions of alveolar bone to orthodontic loading of oral implants. Clin Oral Implants Res. 2001;12:144–152.
- 23. Manni A, Cozzani M, Tamborrino F, De Rinaldis S, Menini A. Factors influencing the stability of miniscrews. A retrospective study on 300 mini-screws. Eur J Orthod. 2011;33:388–395.
- 24. Kuroda S, Sugawara Y, Deguchi T, Kyung HM, Takano-Yamamoto T. Clinical use of miniscrew implants as orthodontic anchorage: success rates and postoperative discomfort. Am J Orthod Dentofacial Orthop. 2007;131: 9–15.
- 25. Araghbidikashani M, Golshah A, Nikkerdar N, Rezaei M. In-vitro impact of insertion angle on primary stability of miniscrews. Am J Orthod Dentofacial Orthop. 2016;150:436–443.
- 26. Park HS, Bae SM, Kyung HM, Sung JH. Micro-implant anchorage for treatment of skeletal Class I bialveolar protrusion. J Clin Orthod. 2001;35:417–422.
- 27. Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T, Takano-Yamamoto T. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop. 2003;124: 373–378.
Comparison of the primary stability of orthodontic mini-screws manufactured by the Computer Numerically Control and Selective Laser Melting manufacturing methods: An exploratory study
Yıl 2024,
Cilt: 11 Sayı: 3, 341 - 345, 23.12.2024
Meriç Öztürk Yaşar
,
Celal Irgın
Öz
Background: This study was to assess the primary stability of orthodontic mini-screws of the same design produced by a conventional and a novel manufacturing method.
Methods: A total of 150 orthodontic mini-screws with a body length of 8 mm, a diameter of 1.6 mm, a button head, and a self-drilling feature were used in the study. Mini-screws were manufactured through computer numerically controlled (CNC) and selective laser melting (SLM) manufacturing methods. Titanium (T) and stainless steel (SS) alloys were used as manufacturing materials. The study was conducted on three groups; CNC-T, SLM-T and SLM-SS. Mini-screws were placed at 60- and 90-degree angles in fresh bovine femur bones, where the cortical bone thickness was 2 mm. With the radiofrequency analysis (RFA) technique, the stability of the mini-screws was determined immediately after they were placed (F0), immediately after applying orthodontic force to the mini-screw (F1), after six hours (F6), and after 24 hours (F24). Three-way robust ANOVA was used to compare the data, and the Bonferroni correction was statistically applied.
Results: Except for the insertion angle of the mini-screw, the group and time factors had statistically significant effects on the RFA values. The highest RFA value was detected in the SLM-T group.
Conclusion: Orthodontic mini-screws manufactured from titanium or stainless steel alloys using the SLM technology can be an alternative to mini-screws manufactured using the traditional manufacturing method. The mini-screws manufactured using the SLM technology demonstrated adequate primary stability when subjected to an orthodontic force.
Keywords: Orthodontic mini-screw, Primary stability, Selective laser melting, Computer numerical control, Radiofrequency analysis
Etik Beyan
This article is not the version of a presentation.
This article has been prepared on the basis of a master’s thesis.
It is declared that during the preparation process of this study, scientific and ethical principles were followed, and all the studies benefited are stated in the bibliography.
Destekleyen Kurum
This study was financed Erciyes University Research Projects Unit.
Teşekkür
The authors would like to express their gratitude to Prof. Dr. İbrahim Yavuz for his invaluable support of the study and to Benlioglu Dental, the distributor of Dentaurum in Türkiye, for their contribution to the supply and manufacturing of mini-screws.
Kaynakça
- 1. Proffit WR, Fields HW, Larson B, Sarver DM. Contemporary Orthodontics e-book. Amsterdam: Elsevier Health Sciences; 2018.
- 2. Sherman AJ. Bone reaction to orthodontic forces on vitreous carbon dental implants. Am J Orthod. 1978;74:79–87.
- 3. Schnelle MA, Beck FM, Jaynes RM, Huja SS. A radiographic evaluation of the availability of bone for placement of miniscrews. Angle Orthod. 2004;74:832–837.
- 4. Wilmes B, Rademacher C, Olthoff G, Drescher D. Parameters affecting primary stability of orthodontic mini-implants J Orofac Orthop. 2006;67:162–74.
- 5. Chen Y, Kyung HM, Zhao WT, Yu WJ. Critical factors for the success of orthodontic mini-implants: a systematic review. Am J Orthod Dentofacial Orthop. 2009;135:284–291.
- 6. Your CNC Machine. In: Build Your Own CNC Machine. Berkeley, CA: Apress; 2009;1–4.
- 7. Ahmadi M, Tabary SAAB, Rahmatabadi D, Ebrahimi MS, Abrinia K, Hashemi R. Review of selective laser melting of magnesium alloys: advantages, microstructure and mechanical characterizations, defects, challenges, and applications. J Mater Res Technol. 2022;19:1537–1562.
- 8. Wen S, Gan J, Li F, Zhou Y, Yan C, Yusheng Shi Y. Research status and prospect of additive manufactured nickel-titanium shape memory alloys. Materials (Basel). 2021;14(16):4496.
- 9. Park HS, Jeong SH, Kwon OW. Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofacial Orthop. 2006;130:18–25.
- 10. Pan CY, Chou ST, Tseng YC, Yang YH, Wu CY, Lan TH, et al. Influence of different implant materials on the primary stability of orthodontic mini-implants. Kaohsiung J Med Sci. 2012; 28:673–678.
- 11. Disegi JA, Eschbach L. Stainless steel in bone surgery. Injury. 2000; 31 Suppl 4:2–6.
- 12. Wilmes B, Su YY, Drescher D. Insertion angle impact on primary stability of orthodontic mini-implants. Angle Orthod. 2008;78:1065–1070.
- 13. Ono A, Motoyoshi M, Shimizu N. Cortical bone thickness in the buccal posterior region for orthodontic mini-implants. Int J Oral Maxillofac Surg. 2008;37:334–340.
- 14. Deguchi T, Nasu M, Murakami K, Yabuuchi T, Kamioka H, Takano-Yamamoto T. Quantitative evaluation of cortical bone thickness with computed tomographic scanning for orthodontic implants. Am J Orthod Dentofacial Orthop. 2006;129:721.e7-12.
- 15. Baumgaertel S, Hans MG. Buccal cortical bone thickness for mini-implant placement. Am J Orthod Dentofacial Orthop. 2009;136:230–235.
- 16. Brown RN, Sexton BE, Gabriel Chu TM, Katona TR, Stewart KT, Kyung HM, et al. Comparison of stainless steel and titanium alloy orthodontic miniscrew implants: a mechanical and histologic analysis. Am J Orthod Dentofacial Orthop. 2014;145:496–504.
- 17. Jeong M, Radomski K, Lopez D, Liu JT, Lee JD, Lee SJ. Materials and Applications of 3D Printing Technology in Dentistry: An Overview. Dent J (Basel). 2024; 12(1):1.
- 18. Melsen B. Mini-implants: Where are we? J Clin Orthod. 2005; 39: 539–547.
- 19. Büchter A, Wiechmann D, Koerdt S, Wiesmann HP, Piffko J, Meyer U. Load-related implant reaction of mini-implants used for orthodontic anchorage. Clin Oral Implants Res. 2005;16:473–479.
- 20. Melsen B, Costa A. Immediate loading of implants used for orthodontic anchorage. Clin Orthod Res. 2000; 3: 23–28.
- 21. Wiechmann D, Meyer U, Büchter A. Success rate of mini- and micro-implants used for orthodontic anchorage: a prospective clinical study. Clin Oral Implants Res. 2007;18: 263–267.
- 22. Melsen B, Lang NP. Biological reactions of alveolar bone to orthodontic loading of oral implants. Clin Oral Implants Res. 2001;12:144–152.
- 23. Manni A, Cozzani M, Tamborrino F, De Rinaldis S, Menini A. Factors influencing the stability of miniscrews. A retrospective study on 300 mini-screws. Eur J Orthod. 2011;33:388–395.
- 24. Kuroda S, Sugawara Y, Deguchi T, Kyung HM, Takano-Yamamoto T. Clinical use of miniscrew implants as orthodontic anchorage: success rates and postoperative discomfort. Am J Orthod Dentofacial Orthop. 2007;131: 9–15.
- 25. Araghbidikashani M, Golshah A, Nikkerdar N, Rezaei M. In-vitro impact of insertion angle on primary stability of miniscrews. Am J Orthod Dentofacial Orthop. 2016;150:436–443.
- 26. Park HS, Bae SM, Kyung HM, Sung JH. Micro-implant anchorage for treatment of skeletal Class I bialveolar protrusion. J Clin Orthod. 2001;35:417–422.
- 27. Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T, Takano-Yamamoto T. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop. 2003;124: 373–378.