Titanium Dioxide Impact on Growth and Yield Parameters of Sunflower
Yıl 2025,
Cilt: 39 Sayı: 2, 427 - 433, 27.08.2025
Sibel Day
,
Nilüfer Koçak
Öz
Nanoparticles have unique properties and are used in fertilizers. Seed priming can improve seed germination and seedling growth. Various nanoparticles are used in seed germination and growth of various plant species and varieties. This experiment was conducted to investigate the effect of TiO2 nanoparticles on plant morphology when applied from leaves at different growth stages of sunflower and used as seed priming material. Before the start of the field experiment the seeds were soaked in 20 mg Lˉ¹ for 8 hours. The experiment was laid out in a randomized complete block design using five TiO2 treatments with three times replicated doses of 0 (control), 20 mg Lˉ¹ TiO2 treatments to seeds, and at different growth stages. Plant height reached its highest level with TiO2 treatments to seeds in both years. The maximum yield value observed in TiO2 treatments to seeds in the first year of the experiment. Results revealed that TiO2 application to seeds and at V-4 stage is the most effective stages on sunflower growth.
Kaynakça
-
Acharya D, Mohanta B, Pandey P, Singha M, Nasiri F (2017). Optical and antibacterial properties of synthesised silver nanoparticles. Micro & Nano Letters 12(4), 223-226.
-
Akyıldız AR (1968). Yemler bilgisi laboratuvar klavuzu. Ziraat Fakültesi Yayınları, 358. Uygulama Klavuzu. 122 s. Ankara.
-
Bourioug M, Ezzaza K, Bouabid R, Alaoui-Mhamdi M, Bungau S, Bourgeade P, Alaoui-Sossé L, Alaoui-Sossé B, Aleya L (2020). Influence of hydro-and osmo-priming on sunflower seeds to break dormancy and improve crop performance under water stress. Environmental Science and Pollution Research 27, 13215-13226.
-
Burke DJ, Zhu S, Pablico-Lansigan MP Hewins CR, Samia ACS (2014) Titanium oxide nanoparticle effects on composition of soil microbial communities and plant performance. Biology and Fertility of Soils 50, 1169–1173. https://doi.org/10.1007/s00374-014-0938-3
-
Day S (2008). Bazı çerezlik ayçiçeği (Helianthus Annuus L.) genotiplerinin çimlenmesi üzerine NaCI konsantrasyonlarının etkileri. Journal of Agricultural Sciences 14(03), 230-236
-
Day S (2022). Impact of seed priming on germination performance of fresh and aged seeds of Canola. International Journal of Agriculture Environment and Food Sciences 6(1), 37-40.
-
Estrada-Urbina J, Cruz-Alonso A, Santander-González M, Méndez-Albores A, Vázquez-Durán A (2018) Nanoscale zinc oxide particles for improving the physiological and sanitary quality of a Mexican landrace of red maize. Nanomaterials 8, 247.
-
Ernst D, Kolenčík M, Šebesta M, Ďurišová Ľ, Ďúranová H, Kšiňan S, Illa R, Safarik I, Černý I, Kratošová G, Žitniak Čurná V, Ivanič Porhajašová J, Babošová M, Feng H, Dobročka E, Bujdoš M, Pospiskova KZ, Afzal S, Singh NK, Aydın E (2023). Agronomic investigation of spray dispersion of metal-based nanoparticles on sunflowers in real-world environments. Plants 12(9), 1789. https://doi.org/10.3390/plants12091789
-
Faraji J, Sepehri A (2019). Ameliorative effects of TiO₂ nanoparticles and sodium nitroprusside on seed germination and seedling growth of wheat under PEG-stimulated drought stress. Journal of Seed Science 41, 309-317.
-
Gohari G, Mohammadi A, Akbari A, Panahirad S, Dadpour MR, Fotopoulos V, Kimura S (2020). Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Scientific Reports 10, 912. https://doi.org/10.1038/s41598-020-57794-1
-
Hao Y, Yuan W, Ma C, White JC, Zhang Z, Adeel M, Zou T, Rui Y, Xing B (2018). Engineered nanomaterials suppress Turnip mosaic virus infection in tobacco (Nicotiana benthamiana). Environmental Science: Nano 5(7), 1685-1693.
-
Haghighi, M, Teixeira da Silva, JA (2014). The effect of N-TiO2 on tomato, onion, and radish seed germination. Journal of Crop Science and Biotechnology 17, 221–227. https://doi.org/10.1007/s12892-014-0056-7
-
JMP®, Version <x>. SAS Institute Inc., Cary, NC, 1989–2023.
-
Kolenčík M, Ernst D, Urík M, Ďurišová Ľ, Bujdoš M, Šebesta M, Dobročka E, Kšiňan S, Illa R, Qian Y, Feng H, Černý I, Holišová V, Kratošová G (2020). Foliar application of low concentrations of titanium dioxide and zinc oxide nanoparticles to the common sunflower under field conditions. Nanomaterials 10(8), 1619. https://doi.org/10.3390/nano10081619
-
Kolenčík M, Ernst D, Komár M, Urík M, Šebesta M, Ďurišová Ľ, Bujdoš M, Černý I, Chlpík J, Juriga M, Illa R, Qian Y, Feng
H, Kratošová G, Barabaszová KČ, Ducsay L, Aydın E (2022). Effects of foliar application of ZnO nanoparticles on lentil production, stress level and nutritional seed quality under field conditions. Nanomaterials 12(3), 310. https://doi.org/10.3390/nano12030310
-
Liu R, Lal R (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment 514, 131–139.
-
Marchiol L, Mattiello A, Pošćić F, Fellet G, Zavalloni C, Carlino E, Musetti R (2016). Changes in physiological and agronomical parameters of barley (Hordeum vulgare) exposed to cerium and titanium dioxide nanoparticles. International Journal of Environmental Research and Public Health 13(3), 332.
-
MSTAT-C (1991). A software program for the design, management and analysis of agronomic research experiments. Michigan State University, East Lansing.
-
Prasad, TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012). Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition 35, 905–927.
-
Prasad R, Bhattacharyya A, Nguyen QD (2017). Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Frontiers in microbiology 8, 1014.
-
Rizwan M, Ali S, Ali B, Adrees M, Arshad M, Hussain A, Rehman MZ, Waris, AA (2019). Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 214, 269-277.
-
Satti SH, Raja NI, Javed B, Akram A, Mashwani ZuR, et al. (2021). Titanium dioxide nanoparticles elicited agro-morphological and physicochemical modifications in wheat plants to control Bipolaris sorokiniana PLOS ONE 16(2), e0246880. https://doi.org/10.1371/journal.pone.0246880
-
Schneiter AA, Miller JF (1981). Description of sunflower growth stages. Crop Science 21, 901-903.
-
Shrestha A, Pradhan S, Shrestha J, Subedi M (2019). Role of seed priming in improving seed germination and seedling growth of maize (Zea mays L.) under rain fed condition. Journal of Agriculture and Natural Resources 2(1), 265-273.
-
TUIK (2024). Agricultural statistics summary. https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr (access date: 20.11.2024).
-
Zahra Z, Maqbool T, Arshad M, Badshah MA, Choi HK, Hur J (2019). Changes in fluorescent dissolved organic matter and their association with phyto available phosphorus in soil amended with TiO₂ nanoparticles. Chemosphere 227, 17-25.
-
Ze Y, Liu C, Wang L, Hong M, Hong F (2011). The regulation of TiO2 nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana. Biological Trace Element Research 143, 1131–1141. https://doi.org/10.1007/s12011-0
Ayçiçeğinin verim ve büyüme parametrelerine titanyum dioksitin etkileri
Yıl 2025,
Cilt: 39 Sayı: 2, 427 - 433, 27.08.2025
Sibel Day
,
Nilüfer Koçak
Öz
Nanopartiküller benzersiz özelliklere sahiptir ve gübrelerde kullanılır. Tohumları ön uygulamalara tabi tutumak, tohum çimlenmesini ve fide büyümesini iyileştirebilir. Çeşitli bitki türlerinin ve çeşitlerinin tohum çimlenmesinde ve büyümesinde çeşitli nanopartiküller kullanılmaktadır. Bu deney, TiO2 nanopartiküllerinin ayçiçeğinin farklı büyüme aşamalarında yapraklardan uygulandığında ve tohuma ön işlem uygulama malzemesi olarak kullanıldığında bitki morfolojisi üzerindeki etkisini araştırmak için yapılmıştır. Tarla denemesine başlamadan önce tohumlar 8 saat boyunca 20 mg Lˉ¹ içinde ıslatılmıştır. Deney, 0 (kontrol), tohumlara 20 mg Lˉ¹ TiO2 uygulamaları ve farklı büyüme aşamalarında üç kez tekrarlanan dozlarla beş TiO2 uygulaması kullanılarak tesadüf blokları deneme düzeninde yürürlmüştür. Bitki boyu her iki yılda da tohumlara TiO2 uygulamasıyla en yüksek seviyeye ulaşmıştır. En yüksek verim değeri denemenin ilk yılında tohumlara TiO2 uygulamalarında gözlenmiştir. Sonuçlar, tohumlara TiO2 uygulamasının ve V-4 aşamasında yapraktan uygulamanın ayçiçeği büyümesi üzerinde en etkili aşamalar olduğunu ortaya koymuştur.
Kaynakça
-
Acharya D, Mohanta B, Pandey P, Singha M, Nasiri F (2017). Optical and antibacterial properties of synthesised silver nanoparticles. Micro & Nano Letters 12(4), 223-226.
-
Akyıldız AR (1968). Yemler bilgisi laboratuvar klavuzu. Ziraat Fakültesi Yayınları, 358. Uygulama Klavuzu. 122 s. Ankara.
-
Bourioug M, Ezzaza K, Bouabid R, Alaoui-Mhamdi M, Bungau S, Bourgeade P, Alaoui-Sossé L, Alaoui-Sossé B, Aleya L (2020). Influence of hydro-and osmo-priming on sunflower seeds to break dormancy and improve crop performance under water stress. Environmental Science and Pollution Research 27, 13215-13226.
-
Burke DJ, Zhu S, Pablico-Lansigan MP Hewins CR, Samia ACS (2014) Titanium oxide nanoparticle effects on composition of soil microbial communities and plant performance. Biology and Fertility of Soils 50, 1169–1173. https://doi.org/10.1007/s00374-014-0938-3
-
Day S (2008). Bazı çerezlik ayçiçeği (Helianthus Annuus L.) genotiplerinin çimlenmesi üzerine NaCI konsantrasyonlarının etkileri. Journal of Agricultural Sciences 14(03), 230-236
-
Day S (2022). Impact of seed priming on germination performance of fresh and aged seeds of Canola. International Journal of Agriculture Environment and Food Sciences 6(1), 37-40.
-
Estrada-Urbina J, Cruz-Alonso A, Santander-González M, Méndez-Albores A, Vázquez-Durán A (2018) Nanoscale zinc oxide particles for improving the physiological and sanitary quality of a Mexican landrace of red maize. Nanomaterials 8, 247.
-
Ernst D, Kolenčík M, Šebesta M, Ďurišová Ľ, Ďúranová H, Kšiňan S, Illa R, Safarik I, Černý I, Kratošová G, Žitniak Čurná V, Ivanič Porhajašová J, Babošová M, Feng H, Dobročka E, Bujdoš M, Pospiskova KZ, Afzal S, Singh NK, Aydın E (2023). Agronomic investigation of spray dispersion of metal-based nanoparticles on sunflowers in real-world environments. Plants 12(9), 1789. https://doi.org/10.3390/plants12091789
-
Faraji J, Sepehri A (2019). Ameliorative effects of TiO₂ nanoparticles and sodium nitroprusside on seed germination and seedling growth of wheat under PEG-stimulated drought stress. Journal of Seed Science 41, 309-317.
-
Gohari G, Mohammadi A, Akbari A, Panahirad S, Dadpour MR, Fotopoulos V, Kimura S (2020). Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Scientific Reports 10, 912. https://doi.org/10.1038/s41598-020-57794-1
-
Hao Y, Yuan W, Ma C, White JC, Zhang Z, Adeel M, Zou T, Rui Y, Xing B (2018). Engineered nanomaterials suppress Turnip mosaic virus infection in tobacco (Nicotiana benthamiana). Environmental Science: Nano 5(7), 1685-1693.
-
Haghighi, M, Teixeira da Silva, JA (2014). The effect of N-TiO2 on tomato, onion, and radish seed germination. Journal of Crop Science and Biotechnology 17, 221–227. https://doi.org/10.1007/s12892-014-0056-7
-
JMP®, Version <x>. SAS Institute Inc., Cary, NC, 1989–2023.
-
Kolenčík M, Ernst D, Urík M, Ďurišová Ľ, Bujdoš M, Šebesta M, Dobročka E, Kšiňan S, Illa R, Qian Y, Feng H, Černý I, Holišová V, Kratošová G (2020). Foliar application of low concentrations of titanium dioxide and zinc oxide nanoparticles to the common sunflower under field conditions. Nanomaterials 10(8), 1619. https://doi.org/10.3390/nano10081619
-
Kolenčík M, Ernst D, Komár M, Urík M, Šebesta M, Ďurišová Ľ, Bujdoš M, Černý I, Chlpík J, Juriga M, Illa R, Qian Y, Feng
H, Kratošová G, Barabaszová KČ, Ducsay L, Aydın E (2022). Effects of foliar application of ZnO nanoparticles on lentil production, stress level and nutritional seed quality under field conditions. Nanomaterials 12(3), 310. https://doi.org/10.3390/nano12030310
-
Liu R, Lal R (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment 514, 131–139.
-
Marchiol L, Mattiello A, Pošćić F, Fellet G, Zavalloni C, Carlino E, Musetti R (2016). Changes in physiological and agronomical parameters of barley (Hordeum vulgare) exposed to cerium and titanium dioxide nanoparticles. International Journal of Environmental Research and Public Health 13(3), 332.
-
MSTAT-C (1991). A software program for the design, management and analysis of agronomic research experiments. Michigan State University, East Lansing.
-
Prasad, TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012). Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition 35, 905–927.
-
Prasad R, Bhattacharyya A, Nguyen QD (2017). Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Frontiers in microbiology 8, 1014.
-
Rizwan M, Ali S, Ali B, Adrees M, Arshad M, Hussain A, Rehman MZ, Waris, AA (2019). Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 214, 269-277.
-
Satti SH, Raja NI, Javed B, Akram A, Mashwani ZuR, et al. (2021). Titanium dioxide nanoparticles elicited agro-morphological and physicochemical modifications in wheat plants to control Bipolaris sorokiniana PLOS ONE 16(2), e0246880. https://doi.org/10.1371/journal.pone.0246880
-
Schneiter AA, Miller JF (1981). Description of sunflower growth stages. Crop Science 21, 901-903.
-
Shrestha A, Pradhan S, Shrestha J, Subedi M (2019). Role of seed priming in improving seed germination and seedling growth of maize (Zea mays L.) under rain fed condition. Journal of Agriculture and Natural Resources 2(1), 265-273.
-
TUIK (2024). Agricultural statistics summary. https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr (access date: 20.11.2024).
-
Zahra Z, Maqbool T, Arshad M, Badshah MA, Choi HK, Hur J (2019). Changes in fluorescent dissolved organic matter and their association with phyto available phosphorus in soil amended with TiO₂ nanoparticles. Chemosphere 227, 17-25.
-
Ze Y, Liu C, Wang L, Hong M, Hong F (2011). The regulation of TiO2 nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana. Biological Trace Element Research 143, 1131–1141. https://doi.org/10.1007/s12011-0