$Foeniculum$ $vulgare$ ve $Origanum$ $onites$ Uçucu Yağ Nanoemülsiyonlarının Bakteriyel Balık Patojenlerine Karşı Antibakteriyel ve Antibiyofilm Aktivitesinin Tespiti
Yıl 2025,
Cilt: 10 Sayı: 1, 73 - 88, 29.06.2025
Öznur Diler
,
Lokman Akın
,
Öznur Özil
Öz
Bu çalışmada, su ürünleri yetiştiriciliğinde mortalitelere sebep olan $Aeromonas$ $hydrophila$, $Vibrio$ $anguillarum$, $Photobacterium$ $damselae$, $Lactococcus$ $garvieae$, $Staphylococcus$ $warneri$ ve $Vagococcus$ $salmoninarum$ patojenlerine karşı $Origanum$ $onites$ (OEO) ve $Foeniculum$ $vulgare$ (FEO) uçucu yağlarının ve nanoemülsiyonlarının antibakteriyel aktivitesi, virülens faktörü olan biyofilm üretiminin tespiti ve antibiyofilm aktivitesinin belirlenmesi amaçlanmıştır. OEO ve FEO uçucu yağ ve nanoemülsiyonlarının antibakteriyel etkileri disk difüzyon yöntemi ile incelenmiştir. Tüm patojenlere karşı OEO güçlü antibakteriyel etki göstermiştir. Bu etkinin nanoemülsiyon formunda daha da güçlendiği görülmüştür. Özellikle OEO uçucu yağ nanoemülsiyonunun pozitif kontrol grubuna göre daha güçlü etkisi nedeniyle $A.$ $hydrophila$, $L.$ $garvieae$, $V.$ $anguillarum$ ve $P.$ $damselae$ bakterilerinin neden olduğu hastalıklarda doğal bir tedavi edici ürün olarak kullanılabileceği belirlenmiştir. Bakteriyel balık patojenlerinin biyofilm üretimi tüp yöntemi ile incelenmiş olup $V.$ $salmoninarum$ ve $S.$ $warneri$ türlerinde biyofilm üretimi pozitif olarak tespit edilmiştir. OEO uçucu yağının antibiyofilm aktivitesi için mikroplak yöntemi uygulanmıştır ve konsantrasyonlara bağlı olarak biyofim aktiviteyi engellediği belirlenmiştir.
Etik Beyan
Yazarlar arasında herhangi bir çıkar çatışması yoktur.
Destekleyen Kurum
TÜBİTAK
Proje Numarası
2209-B Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı
Teşekkür
Bu çalışmanın antibakteriyel etkinin belirlenmesi bölümüne 2209-B Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı ile maddi olarak destek veren TÜBİTAK’ a teşekkür ederiz.
Kaynakça
-
Metin, S., & Biçer, Z. I. (2020). Antibacterial activity of some essential oils againts Vagococcus salmoninarum. Ege Journal of Fisheries and Aquatic Sciences, 37(2), 167-173. http://doi.org/10.12714/egejfas.37.2.07
-
Özil, Ö., & Diler Ö. (2023). Effect of dietary Origanum onites on growth, non specific immunity and resistance against Yersinia ruckeri of rainbow trout (Oncorhynchus mykiss). Anais da Academia Brasileira de Ciências, 95(2), e20200952. https://doi.org/10.1590/0001-3765202320200952
-
Baydar, H. (2009). Tıbbi ve Aromatik Bitkiler Bilimi ve Teknolojisi (Genişletilmiş 3. Baskı). SDÜ Yayınları No: 51, s:194-212, Isparta.
-
Evren, M., & Tekgüler, B. (2011). Uçucu yağların antimikrobiyel özellikleri. Elektronik Mikrobiyoloji Dergisi, 9(3), 28-40.
-
Saddiqi, H. A., & Iqbal, Z. (2011). Usage and Significance of Fennel (Foeniculum Vulgare Mill.) Seeds in Eastern Medicine. Elsevier, pp. 461–467, Amsterdam, The Netherlands.
-
Barros, L., Carvalho, A. M., & Ferreira, I. C. F. R. (2010). The nutritional composition of fennel (Foeniculum vulgare): shoots, leaves, stems and inflorescences. LWT-Food Science and Technology, 43(5), 814–818. https://doi.org/10.1016/j.lwt.2010.01.010
-
Salami, M., Rahimmalek, M., & Ehtemam, M. H. (2017). Comprehensive research on essential oil and phenolic variation in different Foeniculum vulgare populations during transition from vegetative to reproductive stage. Chemistry & Biodiversity, 14(2), e1600246. https://doi.org/10.1002/cbdv.201600246
-
Kalleli, F., Bettaieb Rebey, I., Wannes, W. A., Boughalleb, F., Hammami, M., Saidani Tounsi, M., & Hamdi, M. (2019). Chemical composition and antioxidant potential of essential oil and methanol extract from Tunisian and French fennel (Foeniculum vulgare Mill.) seeds. Journal of Food Biochemistry, 43(8), 1-14. https://doi.org/10.1111/jfbc.12935
-
Egidio, M., Casalino, L., De Biasio, F., Di Paolo, M., Gómez-García, R., Pintado, M., Sardo, A., & Marrone, R. (2024). Antimicrobial properties of fennel by-product extracts and their potential applications in meat products. Antibiotics, 13(10), 932-952. https://doi.org/10.3390/antibiotics13100932
-
Tepe, B., Cakir, A., & Sihoglu Tepe, A. (2016). Medicinal uses, phytochemistry, and pharmacology of Origanum onites (L.): A Review. Chemistry & Biodiversity, 13(5), 504-520. https://doi.org/10.1002/cbdv.201500069
-
Proestos, C., Chorianopoulos, N., Nychas, G. J., & Komaitis, M. (2005). RP-HPLC analysis of the phenolic compounds of plant extracts. Investigation of their antioxidant capacity and antimicrobial activity. Journal of Agricultural and Food Chemistry, 53(4), 1190-1195. https://doi.org/10.1021/jf040083t
-
Tüylek, Z. (2021). Reflections to our lives in nanotechnology applications. Eurasian Journal of Biological and Chemical Sciences, 4(2), 69-79. https://orcid.org/0000-0002-9086-1327
-
Solans, C., Izquierdo, P., Nolla, J., Azemar, N., & Garcia-Celma, M. J. (2005). Nano-emulsions. Current Opinion in Colloid and Interface Science, 10(3), 102-110. https://doi.org/10.1016/j.cocis.2005.06.004
-
Yazgan, H. (2020). Investigation of antimicrobial properties of sage essential oil and its nanoemulsion as antimicrobial agent. LWT, Food Science and Technology, 130, 109669. https://doi.org/10.1016/j.lwt.2020.109669
-
Makidon, P. E., Bielinska, A. U., Nigavekar, S. S., Janczak, K. W., Knowlton, J., Scott, A. J., Mank, N., Cao, Z., Rathinavelu, S., Beer, M. R., Wilkinson, J. E., Blanco, L. P., Landers, J. J., & Baker Jr, J. R. (2008). Pre-clinical evaluation of a novel nanoemulsion-based hepatitis B mucosal vaccine. PloS one, 3(8), e2954. https://doi.org/10.1371/journal.pone.0002954
-
Singh, K. K., & Vingkar, S. K. (2008). Formulation, antimalarial activity and biodistribution of oral lipid nanoemulsion of primaquine. International Journal of Pharmaceutics, 347(1-2), 136-143. https://doi.org/10.1016/j.ijpharm.2007.06.035
-
Shah, P., Bhalodia, D., & Shelat, P. (2010). Nanoemulsion: A pharmaceutical review. Systematic Reviews in Pharmacy, 1(1), 24-32. https://doi.org/10.4103/0975-8453.59509
-
Xu, C., Gantumur, M. A., Sun, J., Guo, J., Ma, J., Jiang, Z., Wang, W., Zhang, J., Ma, Y., Hou, J., & McClements, D. J. (2024). Design of probiotic delivery systems for targeted release. Food Hydrocolloids, 149, 109588. https://doi.org/10.1016/j.foodhyd.2023.109588
-
Kavanaugh, N. L., & Ribbeck, K. (2012). Selected antimicrobial essential oils eradicate Pseudomonas spp. and Staphylococcus aureus biofilms. Applied and Environmental Microbiology, 78(11), 4057-4061. https://doi.org/10.1128/AEM.07499-11
-
Oral, N. B., Vatansever, L., Aydin, B. D., Sezer, C., Guven, A., Gumez, M., & Kurkcuoglu, M. (2010). Effect of oregano essential oil on biofilms formed by Staphylococci and Escherichia coli. Kafkas Universitesi Veteriner Fakültesi Dergisi, 16(Suppl A), 23-29. https://doi.org/10.9775/kvfd.2009.1147
-
Ceri, H., Olson, M. E., Stremick, C., Read, R. R., Morck, D., & Buret, A. (1999). The calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. Journal of Clinical Microbiology, 37(6), 1771-1776. https://doi.org/10.1128/JCM.37.6.1771-1776.1999
-
Stewart, P. S., & Costerton, J. W. (2001). Antibiotic resistance of bacteria in biofilms. The Lancet, 358(9276), 135-138. https://doi.org/10.1016/s0140-6736(01)05321-1
-
Bektaş S., Özdal M., & Gurkok S. (2023). Determination of antibacterial and antibiofilm activities for laurel (Laurus nobilis L.) essential oil against the fish pathogen Pseudomonas species. Menba Journal of Fisheries Faculty, 9(1), 25-33. https://doi.org/10.58626/menba.1289033
-
Hamouda, T., Hayes, M. M., Cao, Z., Tonda, R., Johnson, K., Wright, D. C., & Baker, J. R. (1999). A novel surfactant nanoemulsion with broadspectrum sporicidal activity against Bacillus species. Journal of Infectious Diseases, 180(6), 1939-1949. https://doi.org/10.1086/315124
-
EUCAST 6.0, (2017). Antimicrobial Susceptibility Testing. EUCAST, European.
-
Christensen, G. D., Simpson, W. A., Younger, J. A., Baddour, L. M., Barrett, F. F., Melton, D. M., & Beachey, E. H. (1985). Adherence of coagulase negative Staphylococci to plastic tissue cultures: a quantitative model for the adherence of Staphylococci to medical devices. Journal of Clinical Microbiology, 22(6), 996-1006. https://doi.org/10.1128/jcm.22.6.996-1006.1985
-
Demir, C., & İnanç, B. B. (2015). Investigate nasal colonize Staphylococcus species biofilm produced (Nazal kolonize Stafilokok türlerinde biyofilm üretiminin araştırılması). Journal of Clinical Analytical Mmedicine, 6(4), 414-418. https://doi.org/10.4328/JCAM.2082
-
O'Toole, G. A., & Kolter, R. (1998). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Molecular Microbiology, 28(3), 449-461. https://doi.org/10.1046/j.1365-2958.1998.00797.x
-
Diler, Ö., Özil, Ö., Bayrak, H., Yiğit, N. Ö., Özmen, Ö., Saygın, M., & Aslankoç, R. (2021). Effect of dietary supplementation of sumac fruit powder (Rhus coriaria L.) on growth performance, serum biochemistry, intestinal morphology and antioxidant capacity of rainbow trout (Oncorhynchus mykiss, Walbaum). Animal Feed Science and Technology, 278, 114993. https://doi.org/10.1016/j.anifeedsci.2021.114993
-
Tyagi, A. K., & Malik, A. (2011). Antimicrobial potential and chemical composition of Eucalyptus globulus oil in liquid and vapour phase against food spoilage microorganisms. Food Chemistry, 126(1), 228-235. https://doi.org/10.1016/j.foodchem.2010.11.002
-
Sikkema, J., de Bont, J. A., & Poolman, B. (1995). Mechanisms of membrane toxicity of hydrocarbons. Microbiological Reviews, 59(2), 201-222. https://doi.org/10.1128/mr.59.2.201-222.1995
-
Pathania, R., Kaushik, R., & Khan, M. A. (2018). Essential oil nanoemulsions and their antimicrobial and food applications. Current Research in Nutrition and Food Science Journal, 6(3), 626-643. https://dx.doi.org/10.12944/CRNFSJ.6.3.05
-
Raj, D. S., Dhamodharan, D., Thanigaivel, S., Vickram, A. S., & Byun, H. S. (2022). Nanoemulsion as an effective inhibitor of biofilm-forming bacterial associated drug resistance: an insight into COVID based nosocomial infections. Biotechnology and Bioprocess Engineering, 27(4), 543-555. https://dx.doi.org/10.1007/s12257-022-0055-3
-
Shabaaz Begum, J. P., Sahu, P., Vinode, R., Patel, A., Alomary, M. N., Begum, M. Y., Jamous, Y. F., Siddiqua, A., Fatease, A. A., & Ansari, M. A. (2024). Antimicrobial nanoemulsion: A futuristic approach in antibacterial drug delivery system. Journal of Saudi Chemical Society, 28(4), 101896. https://doi.org/10.1016/j.jscs.2024.101896
-
Wei, S., Tian, Q., Zhao, X., Liu, X., Husien, H. M., Liu, M., Bo, R., & Li, J. (2022). Tea tree oil nanoemulsion potentiates antibiotics against multidrug-resistant Escherichia coli. ACS Infectious Diseases, 8(8), 1618-1626. https://doi.org/10.1021/acsinfecdis.2c00223
-
Nazıroğlu, M., Diler, Ö., Özil, Ö., & Diler, A. (2022). In vitro antibacterial activity of Origanum onites and Mentha spicata subs tomentosa essential oil nanoemulsions against bacterial fish pathogens. Acta Aquatica Turcica, 18(4), 495-504. https://doi.org/10.22392/actaquatr.1145109
-
El-Ekiaby, W. T. (2019). Basil oil nanoemulsion formulation and its antimicrobial activity against fish pathogen and enhance disease resistance against Aeromonas hydrophila in cultured Nile tilapia. Egyptian Journal for Aquaculture, 9(4), 13-33. https://doi.org/10.21608/eja.2019.18567.1007
-
Taşar, N., Yazdıç, F. C., Karaman, A., & Gedik, O. (2023). Antimicrobial activity of essential oils of Foeniculum vulgare Mill and Pimpinella anisum L (Apiaceae) species. International Journal of Innovative Engineering Applications, 7(1), 119-122. https://doi.org/10.46460/ijiea.1179593
-
Di Napoli, M., Castagliuolo, G., Badalamenti, N., Maresca, V., Basile, A., Bruno, M., Varcamonti, M., & Zanfardino, A. (2022). Antimicrobial, antibiofilm, and antioxidant properties of essential oil of Foeniculum vulgare Mill. leaves. Plants, 11(24), 3573. https://doi.org/10.3390/plants11243573
-
Çalışkan, U. K., Özçelik, B., Sazlı, A., & Sezik, E. (2010). Comparison of volatile oil from herbalist and cultivar samples of Foeniculum vulgare Mill. for their compliance with European pharmacopea and antimicrobial activity. Journal of Faculty of Pharmacy of Ankara University, 39(3), 195-210. https://doi.org/10.1501/Eczfak_0000000566
-
Williams, V., & Fletcher, M. (1996). Pseudomonas fluorescens adhesion and transport through porous media are affected by lipopolysaccharide composition. Applied and Environmental Microbiology, 62(1), 100-104. https://doi.org/10.1128/aem.62.1.100-104.1996
-
Characklis, W. G., & Marshall, K. C. (1990). Biofilms. Wiley, New York.
-
Howell, D., & Behrends, B. (2006). A review of surface roughness in antifouling coatings illustrating the importance of cutoff length. Biofouling, 22(6), 401-410. https://doi.org/10.1080/08927010601035738
-
Cai, W., & Arias, C. R. (2017). Biofilm formation on aquaculture substrates by selected bacterial fish pathogens. Journal of Aquatic Animal Health, 29(2), 95-104. https://doi.org/10.1080/08997659.2017.1290711
-
Filik, F., & Kubilay, A. (2019). Bazı bakteriyel balık patojenlerinde biyofilm oluşumunun farklı in vitro metodlarla tespiti. Acta Aquatica Turcica, 15(3), 378-390. https://doi.org/10.22392/actaquatr.537796
-
Bazargani, M. M., & Rohloff, J. (2016). Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control, 61, 156-164. https://doi.org/10.1016/j.foodcont.2015.09.036
-
Zammuto, V., Rizzo, M. G., Spanò, A., Genovese, G., Morabito, M., Spagnuolo, D., Capparucci, F., Gervasi, C., Smeriglio, A., Trombetta, D., Guglielmino, S., Nicolo, M. S., & Gugliandolo, C. (2022). In vitro evaluation of antibiofilm activity of crude extracts from macroalgae against pathogens relevant in aquaculture. Aquaculture, 549, 737729. https://doi.org/10.1016/j.aquaculture.2021.737729
-
Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., & De Feo, V. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6(12), 1451-1474. https://doi.org/10.3390/ph6121451
-
Algburi, A., Comito, N., Kashtanov, D., Dicks, L. M., & Chikindas, M. L. (2017). Control of biofilm formation: antibiotics and beyond. Applied and Environmental Microbiology, 83(3), e02508-16. https://doi.org/10.1128/AEM.02508-16
-
Snoussi, M., Dehmani, A., Noumi, E., Flamini, G., & Papetti, A. (2016). Chemical composition and antibiofilm activity of Petroselinum crispum and Ocimum basilicum essential oils against Vibrio spp. strains. Microbial Pathogenesis, 90, 13-21. https://doi.org/10.1016/j.micpath.2015.11.004
-
da Silva, E. G., Bandeira Junior, G., Cargnelutti, J. F., Santos, R. C. V., Gündel, A., & Baldisserotto, B. (2021). In vitro antimicrobial and antibiofilm activity of S-(-)-limonene and R-(+)-limonene against fish bacteria. Fishes, 6(3), 32. https://doi.org/10.3390/fishes6030032
-
Dorman, H. D., & Deans, S. G. (2000). Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88(2), 308-316. https://doi.org/10.1046/j.1365-2672.2000.00969.x
Antibacterial and Antibiofilm Activity of $Foeniculum$ $vulgare$ and $Origanum$ $onites$ Essential Oil Nanoemulsions Against Bacterial Fish Pathogens
Yıl 2025,
Cilt: 10 Sayı: 1, 73 - 88, 29.06.2025
Öznur Diler
,
Lokman Akın
,
Öznur Özil
Öz
The present study was conducted to determine the antibacterial and antibiofilm activity of $Origanum$ $onites$ (thyme, OEO) and $Foeniculum$ $vulgare$ (fennel, FEO) essential oils and nanoemulsions against bacterial species ($Aeromonas$ $hydrophila$, $Vibrio$ $anguillarum$, $Photobacterium$ $damselae$, $Lactococcus$ $garvieae$, $Staphylococcus$ $warneri$ and $Vagococcus$ $salmoninarum$) that cause mortality in aquaculture. Antimicrobial activities were determined using the disc diffusion method. It was found that the essential oil of OEO exhibited strong antibacterial activity against bacterial fish pathogens. It has been determined that this antibacterial effect is further increased in the nanoemulsion form of the oils. Especially, the nanoemulsion form of OEO essential oil showed a stronger impact than the positive control group, indicating its potential as a natural therapeutic agent for treating bacterial diseases caused by $A.$ $hydrophila$, $L.$ $garvieae$, $V.$ $anguillarum$ and $P.$ $damselae$ species. The biofilm production of bacterial fish pathogens was examined using the tube method, with positive biofilm production detected in $V.$ $salmoninarum$ and $S.$ $warneri$ species. The well plate method was applied to determine the antibiofilm activity of OEO. It was determined that it was effective on the decrease in activity.
Proje Numarası
2209-B Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı
Kaynakça
-
Metin, S., & Biçer, Z. I. (2020). Antibacterial activity of some essential oils againts Vagococcus salmoninarum. Ege Journal of Fisheries and Aquatic Sciences, 37(2), 167-173. http://doi.org/10.12714/egejfas.37.2.07
-
Özil, Ö., & Diler Ö. (2023). Effect of dietary Origanum onites on growth, non specific immunity and resistance against Yersinia ruckeri of rainbow trout (Oncorhynchus mykiss). Anais da Academia Brasileira de Ciências, 95(2), e20200952. https://doi.org/10.1590/0001-3765202320200952
-
Baydar, H. (2009). Tıbbi ve Aromatik Bitkiler Bilimi ve Teknolojisi (Genişletilmiş 3. Baskı). SDÜ Yayınları No: 51, s:194-212, Isparta.
-
Evren, M., & Tekgüler, B. (2011). Uçucu yağların antimikrobiyel özellikleri. Elektronik Mikrobiyoloji Dergisi, 9(3), 28-40.
-
Saddiqi, H. A., & Iqbal, Z. (2011). Usage and Significance of Fennel (Foeniculum Vulgare Mill.) Seeds in Eastern Medicine. Elsevier, pp. 461–467, Amsterdam, The Netherlands.
-
Barros, L., Carvalho, A. M., & Ferreira, I. C. F. R. (2010). The nutritional composition of fennel (Foeniculum vulgare): shoots, leaves, stems and inflorescences. LWT-Food Science and Technology, 43(5), 814–818. https://doi.org/10.1016/j.lwt.2010.01.010
-
Salami, M., Rahimmalek, M., & Ehtemam, M. H. (2017). Comprehensive research on essential oil and phenolic variation in different Foeniculum vulgare populations during transition from vegetative to reproductive stage. Chemistry & Biodiversity, 14(2), e1600246. https://doi.org/10.1002/cbdv.201600246
-
Kalleli, F., Bettaieb Rebey, I., Wannes, W. A., Boughalleb, F., Hammami, M., Saidani Tounsi, M., & Hamdi, M. (2019). Chemical composition and antioxidant potential of essential oil and methanol extract from Tunisian and French fennel (Foeniculum vulgare Mill.) seeds. Journal of Food Biochemistry, 43(8), 1-14. https://doi.org/10.1111/jfbc.12935
-
Egidio, M., Casalino, L., De Biasio, F., Di Paolo, M., Gómez-García, R., Pintado, M., Sardo, A., & Marrone, R. (2024). Antimicrobial properties of fennel by-product extracts and their potential applications in meat products. Antibiotics, 13(10), 932-952. https://doi.org/10.3390/antibiotics13100932
-
Tepe, B., Cakir, A., & Sihoglu Tepe, A. (2016). Medicinal uses, phytochemistry, and pharmacology of Origanum onites (L.): A Review. Chemistry & Biodiversity, 13(5), 504-520. https://doi.org/10.1002/cbdv.201500069
-
Proestos, C., Chorianopoulos, N., Nychas, G. J., & Komaitis, M. (2005). RP-HPLC analysis of the phenolic compounds of plant extracts. Investigation of their antioxidant capacity and antimicrobial activity. Journal of Agricultural and Food Chemistry, 53(4), 1190-1195. https://doi.org/10.1021/jf040083t
-
Tüylek, Z. (2021). Reflections to our lives in nanotechnology applications. Eurasian Journal of Biological and Chemical Sciences, 4(2), 69-79. https://orcid.org/0000-0002-9086-1327
-
Solans, C., Izquierdo, P., Nolla, J., Azemar, N., & Garcia-Celma, M. J. (2005). Nano-emulsions. Current Opinion in Colloid and Interface Science, 10(3), 102-110. https://doi.org/10.1016/j.cocis.2005.06.004
-
Yazgan, H. (2020). Investigation of antimicrobial properties of sage essential oil and its nanoemulsion as antimicrobial agent. LWT, Food Science and Technology, 130, 109669. https://doi.org/10.1016/j.lwt.2020.109669
-
Makidon, P. E., Bielinska, A. U., Nigavekar, S. S., Janczak, K. W., Knowlton, J., Scott, A. J., Mank, N., Cao, Z., Rathinavelu, S., Beer, M. R., Wilkinson, J. E., Blanco, L. P., Landers, J. J., & Baker Jr, J. R. (2008). Pre-clinical evaluation of a novel nanoemulsion-based hepatitis B mucosal vaccine. PloS one, 3(8), e2954. https://doi.org/10.1371/journal.pone.0002954
-
Singh, K. K., & Vingkar, S. K. (2008). Formulation, antimalarial activity and biodistribution of oral lipid nanoemulsion of primaquine. International Journal of Pharmaceutics, 347(1-2), 136-143. https://doi.org/10.1016/j.ijpharm.2007.06.035
-
Shah, P., Bhalodia, D., & Shelat, P. (2010). Nanoemulsion: A pharmaceutical review. Systematic Reviews in Pharmacy, 1(1), 24-32. https://doi.org/10.4103/0975-8453.59509
-
Xu, C., Gantumur, M. A., Sun, J., Guo, J., Ma, J., Jiang, Z., Wang, W., Zhang, J., Ma, Y., Hou, J., & McClements, D. J. (2024). Design of probiotic delivery systems for targeted release. Food Hydrocolloids, 149, 109588. https://doi.org/10.1016/j.foodhyd.2023.109588
-
Kavanaugh, N. L., & Ribbeck, K. (2012). Selected antimicrobial essential oils eradicate Pseudomonas spp. and Staphylococcus aureus biofilms. Applied and Environmental Microbiology, 78(11), 4057-4061. https://doi.org/10.1128/AEM.07499-11
-
Oral, N. B., Vatansever, L., Aydin, B. D., Sezer, C., Guven, A., Gumez, M., & Kurkcuoglu, M. (2010). Effect of oregano essential oil on biofilms formed by Staphylococci and Escherichia coli. Kafkas Universitesi Veteriner Fakültesi Dergisi, 16(Suppl A), 23-29. https://doi.org/10.9775/kvfd.2009.1147
-
Ceri, H., Olson, M. E., Stremick, C., Read, R. R., Morck, D., & Buret, A. (1999). The calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. Journal of Clinical Microbiology, 37(6), 1771-1776. https://doi.org/10.1128/JCM.37.6.1771-1776.1999
-
Stewart, P. S., & Costerton, J. W. (2001). Antibiotic resistance of bacteria in biofilms. The Lancet, 358(9276), 135-138. https://doi.org/10.1016/s0140-6736(01)05321-1
-
Bektaş S., Özdal M., & Gurkok S. (2023). Determination of antibacterial and antibiofilm activities for laurel (Laurus nobilis L.) essential oil against the fish pathogen Pseudomonas species. Menba Journal of Fisheries Faculty, 9(1), 25-33. https://doi.org/10.58626/menba.1289033
-
Hamouda, T., Hayes, M. M., Cao, Z., Tonda, R., Johnson, K., Wright, D. C., & Baker, J. R. (1999). A novel surfactant nanoemulsion with broadspectrum sporicidal activity against Bacillus species. Journal of Infectious Diseases, 180(6), 1939-1949. https://doi.org/10.1086/315124
-
EUCAST 6.0, (2017). Antimicrobial Susceptibility Testing. EUCAST, European.
-
Christensen, G. D., Simpson, W. A., Younger, J. A., Baddour, L. M., Barrett, F. F., Melton, D. M., & Beachey, E. H. (1985). Adherence of coagulase negative Staphylococci to plastic tissue cultures: a quantitative model for the adherence of Staphylococci to medical devices. Journal of Clinical Microbiology, 22(6), 996-1006. https://doi.org/10.1128/jcm.22.6.996-1006.1985
-
Demir, C., & İnanç, B. B. (2015). Investigate nasal colonize Staphylococcus species biofilm produced (Nazal kolonize Stafilokok türlerinde biyofilm üretiminin araştırılması). Journal of Clinical Analytical Mmedicine, 6(4), 414-418. https://doi.org/10.4328/JCAM.2082
-
O'Toole, G. A., & Kolter, R. (1998). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Molecular Microbiology, 28(3), 449-461. https://doi.org/10.1046/j.1365-2958.1998.00797.x
-
Diler, Ö., Özil, Ö., Bayrak, H., Yiğit, N. Ö., Özmen, Ö., Saygın, M., & Aslankoç, R. (2021). Effect of dietary supplementation of sumac fruit powder (Rhus coriaria L.) on growth performance, serum biochemistry, intestinal morphology and antioxidant capacity of rainbow trout (Oncorhynchus mykiss, Walbaum). Animal Feed Science and Technology, 278, 114993. https://doi.org/10.1016/j.anifeedsci.2021.114993
-
Tyagi, A. K., & Malik, A. (2011). Antimicrobial potential and chemical composition of Eucalyptus globulus oil in liquid and vapour phase against food spoilage microorganisms. Food Chemistry, 126(1), 228-235. https://doi.org/10.1016/j.foodchem.2010.11.002
-
Sikkema, J., de Bont, J. A., & Poolman, B. (1995). Mechanisms of membrane toxicity of hydrocarbons. Microbiological Reviews, 59(2), 201-222. https://doi.org/10.1128/mr.59.2.201-222.1995
-
Pathania, R., Kaushik, R., & Khan, M. A. (2018). Essential oil nanoemulsions and their antimicrobial and food applications. Current Research in Nutrition and Food Science Journal, 6(3), 626-643. https://dx.doi.org/10.12944/CRNFSJ.6.3.05
-
Raj, D. S., Dhamodharan, D., Thanigaivel, S., Vickram, A. S., & Byun, H. S. (2022). Nanoemulsion as an effective inhibitor of biofilm-forming bacterial associated drug resistance: an insight into COVID based nosocomial infections. Biotechnology and Bioprocess Engineering, 27(4), 543-555. https://dx.doi.org/10.1007/s12257-022-0055-3
-
Shabaaz Begum, J. P., Sahu, P., Vinode, R., Patel, A., Alomary, M. N., Begum, M. Y., Jamous, Y. F., Siddiqua, A., Fatease, A. A., & Ansari, M. A. (2024). Antimicrobial nanoemulsion: A futuristic approach in antibacterial drug delivery system. Journal of Saudi Chemical Society, 28(4), 101896. https://doi.org/10.1016/j.jscs.2024.101896
-
Wei, S., Tian, Q., Zhao, X., Liu, X., Husien, H. M., Liu, M., Bo, R., & Li, J. (2022). Tea tree oil nanoemulsion potentiates antibiotics against multidrug-resistant Escherichia coli. ACS Infectious Diseases, 8(8), 1618-1626. https://doi.org/10.1021/acsinfecdis.2c00223
-
Nazıroğlu, M., Diler, Ö., Özil, Ö., & Diler, A. (2022). In vitro antibacterial activity of Origanum onites and Mentha spicata subs tomentosa essential oil nanoemulsions against bacterial fish pathogens. Acta Aquatica Turcica, 18(4), 495-504. https://doi.org/10.22392/actaquatr.1145109
-
El-Ekiaby, W. T. (2019). Basil oil nanoemulsion formulation and its antimicrobial activity against fish pathogen and enhance disease resistance against Aeromonas hydrophila in cultured Nile tilapia. Egyptian Journal for Aquaculture, 9(4), 13-33. https://doi.org/10.21608/eja.2019.18567.1007
-
Taşar, N., Yazdıç, F. C., Karaman, A., & Gedik, O. (2023). Antimicrobial activity of essential oils of Foeniculum vulgare Mill and Pimpinella anisum L (Apiaceae) species. International Journal of Innovative Engineering Applications, 7(1), 119-122. https://doi.org/10.46460/ijiea.1179593
-
Di Napoli, M., Castagliuolo, G., Badalamenti, N., Maresca, V., Basile, A., Bruno, M., Varcamonti, M., & Zanfardino, A. (2022). Antimicrobial, antibiofilm, and antioxidant properties of essential oil of Foeniculum vulgare Mill. leaves. Plants, 11(24), 3573. https://doi.org/10.3390/plants11243573
-
Çalışkan, U. K., Özçelik, B., Sazlı, A., & Sezik, E. (2010). Comparison of volatile oil from herbalist and cultivar samples of Foeniculum vulgare Mill. for their compliance with European pharmacopea and antimicrobial activity. Journal of Faculty of Pharmacy of Ankara University, 39(3), 195-210. https://doi.org/10.1501/Eczfak_0000000566
-
Williams, V., & Fletcher, M. (1996). Pseudomonas fluorescens adhesion and transport through porous media are affected by lipopolysaccharide composition. Applied and Environmental Microbiology, 62(1), 100-104. https://doi.org/10.1128/aem.62.1.100-104.1996
-
Characklis, W. G., & Marshall, K. C. (1990). Biofilms. Wiley, New York.
-
Howell, D., & Behrends, B. (2006). A review of surface roughness in antifouling coatings illustrating the importance of cutoff length. Biofouling, 22(6), 401-410. https://doi.org/10.1080/08927010601035738
-
Cai, W., & Arias, C. R. (2017). Biofilm formation on aquaculture substrates by selected bacterial fish pathogens. Journal of Aquatic Animal Health, 29(2), 95-104. https://doi.org/10.1080/08997659.2017.1290711
-
Filik, F., & Kubilay, A. (2019). Bazı bakteriyel balık patojenlerinde biyofilm oluşumunun farklı in vitro metodlarla tespiti. Acta Aquatica Turcica, 15(3), 378-390. https://doi.org/10.22392/actaquatr.537796
-
Bazargani, M. M., & Rohloff, J. (2016). Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control, 61, 156-164. https://doi.org/10.1016/j.foodcont.2015.09.036
-
Zammuto, V., Rizzo, M. G., Spanò, A., Genovese, G., Morabito, M., Spagnuolo, D., Capparucci, F., Gervasi, C., Smeriglio, A., Trombetta, D., Guglielmino, S., Nicolo, M. S., & Gugliandolo, C. (2022). In vitro evaluation of antibiofilm activity of crude extracts from macroalgae against pathogens relevant in aquaculture. Aquaculture, 549, 737729. https://doi.org/10.1016/j.aquaculture.2021.737729
-
Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., & De Feo, V. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6(12), 1451-1474. https://doi.org/10.3390/ph6121451
-
Algburi, A., Comito, N., Kashtanov, D., Dicks, L. M., & Chikindas, M. L. (2017). Control of biofilm formation: antibiotics and beyond. Applied and Environmental Microbiology, 83(3), e02508-16. https://doi.org/10.1128/AEM.02508-16
-
Snoussi, M., Dehmani, A., Noumi, E., Flamini, G., & Papetti, A. (2016). Chemical composition and antibiofilm activity of Petroselinum crispum and Ocimum basilicum essential oils against Vibrio spp. strains. Microbial Pathogenesis, 90, 13-21. https://doi.org/10.1016/j.micpath.2015.11.004
-
da Silva, E. G., Bandeira Junior, G., Cargnelutti, J. F., Santos, R. C. V., Gündel, A., & Baldisserotto, B. (2021). In vitro antimicrobial and antibiofilm activity of S-(-)-limonene and R-(+)-limonene against fish bacteria. Fishes, 6(3), 32. https://doi.org/10.3390/fishes6030032
-
Dorman, H. D., & Deans, S. G. (2000). Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88(2), 308-316. https://doi.org/10.1046/j.1365-2672.2000.00969.x