Araştırma Makalesi
BibTex RIS Kaynak Göster

Geri Dönüştürülmüş Asfalt Kaplama ve Pomza Tozu Kullanılarak Üretilen Harçlarin Asit Etkisi Altında Mühendislik Özelliklerinin İncelenmesi

Yıl 2025, Cilt: 10 Sayı: 2, 513 - 529, 24.12.2025
https://doi.org/10.33484/sinopfbd.1602495

Öz

Asfalt kaplamalar, yol üst yapısının oluşturulmasında temel bir işlev görür ve servis ömürlerini tamamladıktan sonra yenilenme çalışmaları için kazılarak atık malzemeler üretilirler. Bu tür atıkların kullanılması, ekonomik ve çevresel avantajlar sağlayarak enerji tasarrufunu, çevresel kirliliğin azaltılmasını, maliyetin düşürülmesini ve depolama alanlarının azaltılmasını mümkün kılar. Geri dönüştürülmüş asfalt atıkları (RAP), sürdürülebilir malzeme kullanımında önemli bir yere sahiptir. Bu çalışmada, Pomza Tozu (PP) katkılı harçların hidroklorik asit (HCl) ortamında sergilediği mühendislik özellikleri detaylı bir şekilde değerlendirilmiştir. Çalışmada bağlayıcı olarak CEM I 42.5/R tipi portland çimentosu, mineral katkı maddesi olarak PP ve ince agrega olarak 0-4 mm boyutlarında kırma kum ile RAP kullanılmıştır. Deneysel tasarımda, çimento ağırlığının %10, %20 ve %30’u PP ile, kırma kumun ise %0, %25, %50, %75 ve %100’ü RAP ile değiştirilerek farklı karışımlar elde edilmiştir. Üretilen harç numunelerine yayılma, su emme, porozite, ultrasonik geçiş hızı, kapiler su emme, eğilme ve basınç dayanımı testleri, numunelerin 7 ve 28 günlük standart kür süresinden sonra uygulanmıştır. Ayrıca 28 gün kür havuzunda bekletilen numuneler, HCl çözeltisinde 7 ve 28 gün maruz bırakılarak fiziksel ve mekanik değişiklikler incelenmiştir. Sonuçlar, PP’nin %10 oranında ve RAP’nin %25 oranında kullanıldığı durumlarda en iyi performansın elde edildiğini ortaya koymuştur.

Kaynakça

  • Bittencourt, S. V., da Silva Magalhães, M., & da Nóbrega Tavares, M. E. (2021). Mechanical behavior and water infiltration of pervious concrete incorporating recycled asphalt pavement aggregate. Case Studies in Construction Materials, 14, e00473. https://doi.org/10.1016/J.CSCM.2020.E00473
  • Ahmad, W., Ahmad, A., Ostrowski, K. A., Aslam, F., & Joyklad, P. (2021). A scientometric review of waste material utilization in concrete for sustainable construction. Case Studies in Construction Materials, 15, 15, e00683 https://doi.org/10.1016/j.cscm.2021.e00683
  • Hossain, K. M.A., Ahmed, S., & Lachemi, M. (2011). Lightweight concrete incorporating pumice based blended cement and aggregate: Mechanical and durability characteristics. Construction and Building Materials, 25(3), 1186–1195. https://doi.org/10.1016/j.conbuildmat.2010.09.036
  • Tam, V. W. Y., Soomro, M., & Evangelista, A. C. J. (2018). A review of recycled aggregate in concrete applications (2000–2017). Construction and Building Materials, 172, 272–292. https://doi.org/10.1016/j.conbuildmat.2018.03.240
  • Bamigboye, G. O., Bassey, D. E., Olukanni, D. O., Ngene, B. U., Adegoke, D., Odetoyan, A. O., Kareem, M. A., Enabulele, D. O., & Nworgu, A. T. (2021). Waste materials in highway applications: An overview on generation and utilization implications on sustainability. Journal of Cleaner Production, 283, 124581. https://doi.org/10.1016/J.JCLEPRO.2020.124581
  • Mostofinejad, D., Hosseini, S. M., Nosouhian, F., Ozbakkaloglu, T., & Nader Tehrani, B. (2020). Durability of concrete containing recycled concrete coarse and fine aggregates and milled waste glass in magnesium sulfate environment. Journal of Building Engineering, 29, 101182 https://doi.org/10.1016/j.jobe.2020.101182
  • Kareem, M. A., Raheem, A. A., Oriola, K. O., & Abdulwahab, R. (2022). A review on application of oil palm shell as aggregate in concrete - Towards realising a pollution-free environment and sustainable concrete. Environmental Challenges. 8, 100531. https://doi.org/10.1016/j.envc.2022.100531
  • Choudhary, J., Kumar, B., & Gupta, A. (2020). Performance evaluation of asphalt concrete mixes having copper industry waste as filler. Transportation Research Procedia, 48, 3656–3667. https://doi.org/10.1016/J.TRPRO.2020.08.083
  • Avirneni, D., Peddinti, P. R. T., & Saride, S. (2016). Durability and long term performance of geopolymer stabilized reclaimed asphalt pavement base courses. Construction and Building Materials, 121, 198–209. https://doi.org/10.1016/J.CONBUILDMAT.2016.05.162
  • Al-Mufti, R. L., & Fried, A. N. (2017). Improving the strength properties of recycled asphalt aggregate concrete. Construction and Building Materials, 149, 45–52. https://doi.org/10.1016/j.conbuildmat.2017.05.056
  • Mengilli, G. (2022). Asfalt atığının alkali aktivasyonlu harçların fiziksel ve mekanik özelliklerine etkisinin incelenmesi. (Tez no. 729719) [Yüksel Lisans Tezi, Osmaniye Korkut Ata Üniversitesi].
  • Fidan, O. (2022). Beton ve asfalt atığı içeren kolemanit katkılı harçların mekanik ve fiziksel özelliklerinin incelenmesi. (Tez no. 726373) [Yüksel Lisans Tezi, Osmaniye Korkut Ata Üniversitesi].
  • Karcı, T. C. (2022). Betonda cam elyaf ve kazınmış asfalt atığı kullanımının donatı korozyonu üzerine etkisinin araştırılması. (Tez no. 792042) [Yüksel Lisans Tezi, Osmaniye Korkut Ata Üniversitesi].
  • Çınar Resuloğulları, E., Uygunoğlu, T., & Dündar, B. (2022). Investigation of physical and mechanical properties of mortars produced with recycled asphalt waste under the influence of high temperature. Journal of Material Cycles and Waste Management, 24(2), 743–750. https://doi.org/10.1007/s10163-022-01354-4
  • Santha Kumar, G., & Minocha, A. K. (2018). Studies on thermo-chemical treatment of recycled concrete fine aggregates for use in concrete. Journal of Material Cycles and Waste Management, 20(1), 469-480. https://doi.org/10.1007/s10163-017-0604-6.
  • Askarian, M., Fakhretaha Aval, S., & Joshaghani, A. (2018). A comprehensive experimental study on the performance of pumice powder in self-compacting concrete (SCC). Journal of Sustainable Cement-Based Materials, 7(6), 340–356. https://doi.org/10.1080/21650373.2018.1511486
  • Zeyad, A. M., Khan, A. H., & Tayeh, B. A. (2020). Durability and strength characteristics of high-strength concrete incorporated with volcanic pumice powder and polypropylene fibers. Journal of Materials Research and Technology, 9(1), 806–813. https://doi.org/10.1016/j.jmrt.2019.11.021
  • Ulusu, H., Aruntaş, H. Y., Gültekin, A. B., Dayı, M., Çavuş, M., & Kaplan, G. (2023). Mechanical, durability and microstructural characteristics of Portland pozzolan cement (PPC) produced with high volume pumice: Green, cleaner and sustainable cement development. Construction and Building Materials, 378, 131070. https://doi.org/10.1016/j.conbuildmat.2023.131070
  • Kayıhan, M. R., Dündar, B., & Çınar Resuloğulları, E. (2022). Öğütülmüş pomza tozlu harçların hidroklorik asit direncinin incelenmesi. Sürdürülebilir Mühendislik Uygulamaları ve Teknolojik Gelişmeler Dergisi, 5(2), 160–170. https://doi.org/10.51764/smutgd.1199413
  • American Concrete Institute. (2013). Guide to selecting protective treatments for concrete (ACI 515.2R-13). American Concrete Institute.
  • O’Connell, M., McNally, C., & Richardson, M. G. (2012). Performance of concrete incorporating GGBS in aggressive wastewater environments. Construction and Building Materials, 27(1), 368–374. https://doi.org/10.1016/j.conbuildmat.2011.07.036
  • Irassar, E. F., Bonavetti, V. L., & González, M. (2003). Microstructural study of sulfate attack on ordinary and limestone Portland cements at ambient temperature. Cement and Concrete Research, 33(1), 31-41.
  • Bertron, A., Duchesne, J., & Escadeillas, G. (2005). Attack of cement pastes exposed to organic acids in manure. Cement and Concrete Composites, 27(9–10), 898–909. https://doi.org/10.1016/j.cemconcomp.2005.06.003
  • Gutberlet, T., Hilbig, H., & Beddoe, R. E. (2015). Acid attack on hydrated cement - Effect of mineral acids on the degradation process. Cement and Concrete Research, 74, 35–43. https://doi.org/10.1016/j.cemconres.2015.03.011
  • Alexander, M., Bertron, A., & De Belie, N. (2013). Performance of Cement-Based Materials in Aggressive Aqueous Environments. Dordrecht, The Netherlands, Springer.
  • Aguiar, J. B., Camões, A., & Moreira, P. M. (2008). Coatings for concrete protection against aggressive environments. Journal of Advanced Concrete Technology, 6(1), 243-250. https://doi.org/10.3151/jact.6.243
  • Neville, A. (2004). The confused world of sulfate attack on concrete. Cement and Concrete Research, 34(8), 1275–1296. https://doi.org/10.1016/j.cemconres.2004.04.004
  • Kantarcı, F. (2021). Lif boyunun ve içeriğinin geopolimer betonların asit direncine etkisi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(2), 424-437. https://doi.org/10.17714/gumusfenbil.866094
  • Karademir, C., Ghilan, D. M. A., & Teomete, E. (2019). Atık polipropilen liflerin harcın mekanik özelliklerine etkisi. Hazır Beton Dergisi, 152, 74–78.
  • Alakara, E. H. (2022). Geri dönüştürülmüş asfalt tozunun alkali aktifleştirilmiş cüruf harçları üzerindeki etkisi. International Journal of Engineering Research and Development, 14(3), 362-368. https://doi.org/10.29137/umagd.1207073
  • Turkish Standards Institution. (2012). TS EN 197-1: Cement – Part 1: General cements – Composition, specifications, and conformity criteria. Turkish Standards Institution.
  • Turkish Standards Institution. (2009). TS 706 EN 12620+A1: Aggregates for concrete. Turkish Standards Institution.
  • Turkish Standards Institution. (2003). TS EN 1008: Mixing water for concrete – Specification for sampling, testing, and assessing the suitability of water, including water recovered from processes in the concrete industry, as mixing water for concrete. Turkish Standards Institution.
  • Turkish Standards Institution. (2017). TS EN ISO 9001: Quality management systems – Requirements. Turkish Standards Institution.
  • Turkish Standards Institution. (2000). TS EN 1015-3: Methods of test for mortar – Determination of fresh mortar consistency. Turkish Standards Institution.
  • Turkish Standards Institution. (2016). TS EN 196-1: Methods of testing cement – Part 1: Determination of strength. Turkish Standards Institution.
  • ASTM International. (2019). ASTM C618: Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete (Standard No. C618-19). ASTM International. https://doi.org/10.1520/C0618-19
  • Bani Ardalan, R., Joshaghani, A., & Hooton, R. D. (2017). Workability retention and compressive strength of self-compacting concrete incorporating pumice powder and silica fume. Construction and Building Materials, 134, 116–122. https://doi.org/10.1016/j.conbuildmat.2016.12.090
  • Ayele, G. (2021). The effect of ground pumice on the strength of normal concrete. [Master’s Thesis, Addis Ababa University]
  • Zeyad, A. M., Khan, A. H., & Tayeh, B. A. (2020). Durability and strength characteristics of high-strength concrete incorporated with volcanic pumice powder and polypropylene fibers. Journal of Materials Research and Technology, 9(1), 806–813. https://doi.org/10.1016/j.jmrt.2019.11.021
  • Kwasny, J., Aiken, T. A., Soutsos, M. N., McIntosh, J. A., & Cleland, D. J. (2018). Sulfate and acid resistance of lithomarge-based geopolymer mortars. Construction and Building Materials, 166, 537–553. https://doi.org/10.1016/j.conbuildmat.2018.01.129
  • Fan, C. C., Huang, R., Hwang, H., & Chao, S. J. (2016). Properties of concrete incorporating fine recycled aggregates from crushed concrete wastes. Construction and Building Materials, 112, 708–715. https://doi.org/10.1016/j.conbuildmat.2016.02.154
  • Kayıhan, M. R., Dündar, B., & Çınar, E. R. (2022, June 28-30). Geri Dönüştürülmüş Asfalt Atığı İle Üretilen Öğütülmüş Pomza Tozu Katkılı Harçların Mühendislik Özelliklerinin Araştırılması. [Conference presentation]. International Korkut Ata Scientific Researches Conference, Osmaniye, Türkiye.
  • Liu, K., Yu, R., Shui, Z., Li, X., Ling, X., He, W., Yi, S., & Wu, S. (2018). Effects of pumice-based porous material on hydration characteristics and persistent shrinkage of Ultra-High Performance Concrete (UHPC). Materials, 12(1). https://doi.org/10.3390/ma12010011
  • Hossain, M. U., Dong, Y., & Ng, S. T. (2021). Influence of supplementary cementitious materials in sustainability performance of concrete industry: A case study in Hong Kong. Case Studies in Construction Materials, 15. https://doi.org/10.1016/j.cscm.2021.e00659
  • Benaicha, M., Jalbaud, O., Alaoui, A. H., & Burtschell, Y. (2015). Correlation between the mechanical behavior and the ultrasonic velocity of fiber-reinforced concrete. Construction and Building Materials, 101, 702-709. https://doi.org/10.1016/j.conbuildmat.2015.10.047
  • Shariq, M., Prasad, J., & Masood, A. (2013). Studies in ultrasonic pulse velocity of concrete containing GGBFS. Construction and Building Materials, 40, 944–950. https://doi.org/10.1016/j.conbuildmat.2012.11.070
  • Rajeswari, S., & George, S. (2016). Experimental study of lightweight concrete by partial replacement of coarse aggregate using pumice aggregate. International Journal of Scientific Engineering and Research (IJSER), 4(5), 50-53. https://www.ijser.in/abstract.php?paperid=IJSER15801
  • Rahmani, H., & Ramazanianpour, A. A. (2008). Effect of binary cement replacement materials on sulfuric acid resistance of dense concretes. Magazine of Concrete Research, 60(2), 145–155. https://doi.org/10.1680/macr.2008.60.2.145
  • Hossain, K. M. A. (2003). Blended cement using volcanic ash and pumice. Cement and Concrete Research, 33(10), 1601–1605. https://doi.org/10.1016/S0008-8846(03)00127-3
  • Abubakar, Y., Muazu, U., & Attah, M. U. (2020). Effect of hydrochloric acid (HCl) on the compressive strength of concrete at early ages. Journal of Scientific and Engineering Research, 7(1), 207–210.
  • Hasyim, S., Nurjannah, S. A., Usman, A. P., Putra, F. S., & Hashim, M. F. A. (2021, July 21). The durability of lightweight concrete against 5% hydrochloric acid solution with various size of expanded polystyrene. AIP Conference Proceedings 2347 (1): 020227. https://doi.org/10.1063/5.0051716
  • Janowska-Renkas, E., Kaliciak, A., Janus, G., & Kowalska, J. (2021). Durability of cement and ash mortars with fluidized and siliceous fly ashes exposed to HCl acid environment over a period of 2 years. Materials, 14(12), 3229. https://doi.org/10.3390/ma14123229

Investigation of the Engineering Properties of Mortars Produced Using Recycled Asphalt Pavements and Pumice Powder under the Effect of Acid

Yıl 2025, Cilt: 10 Sayı: 2, 513 - 529, 24.12.2025
https://doi.org/10.33484/sinopfbd.1602495

Öz

Asphalt pavements play a fundamental role in the formation of the road superstructure and after completing their service life, they are excavated for renewal works and waste materials are produced. The use of such wastes provides economic and environmental advantages, enabling energy saving, reduction of environmental pollution, cost reduction and reduction of landfill areas. Recycled asphalt waste (RAP) has an important place in sustainable material use. In this study, the engineering properties of mortars with Pumice Powder (PP) in hydrochloric acid (HCl) environment were evaluated in detail. In the study, CEM I 42.5/R type Portland cement was used as binder, PP as mineral additive, and 0-4 mm crushed sand and RAP were used as fine aggregate. In the experimental design, different mixtures were obtained by replacing 10%, 20% and 30% of the cement weight with PP, and 0%, 25%, 50%, 75% and 100% of the crushed sand with RAP. Spreading, water absorption, porosity, ultrasonic transmission rate, capillary water absorption, flexural and compressive strength tests were applied to the produced mortar samples after 7 and 28 days of standard curing period of the samples. In addition, the physical and mechanical changes were investigated by exposing the samples kept in the curing pool for 28 days to the HCl solution for 7 and 28 days. The results revealed that the best performance was obtained when PP was used at a rate of 10% and RAP was used at a rate of 25%.

Etik Beyan

The study does not require ethics committee approval or any special permission.

Destekleyen Kurum

Authors have not received any financial support for the research or publication of this study.

Kaynakça

  • Bittencourt, S. V., da Silva Magalhães, M., & da Nóbrega Tavares, M. E. (2021). Mechanical behavior and water infiltration of pervious concrete incorporating recycled asphalt pavement aggregate. Case Studies in Construction Materials, 14, e00473. https://doi.org/10.1016/J.CSCM.2020.E00473
  • Ahmad, W., Ahmad, A., Ostrowski, K. A., Aslam, F., & Joyklad, P. (2021). A scientometric review of waste material utilization in concrete for sustainable construction. Case Studies in Construction Materials, 15, 15, e00683 https://doi.org/10.1016/j.cscm.2021.e00683
  • Hossain, K. M.A., Ahmed, S., & Lachemi, M. (2011). Lightweight concrete incorporating pumice based blended cement and aggregate: Mechanical and durability characteristics. Construction and Building Materials, 25(3), 1186–1195. https://doi.org/10.1016/j.conbuildmat.2010.09.036
  • Tam, V. W. Y., Soomro, M., & Evangelista, A. C. J. (2018). A review of recycled aggregate in concrete applications (2000–2017). Construction and Building Materials, 172, 272–292. https://doi.org/10.1016/j.conbuildmat.2018.03.240
  • Bamigboye, G. O., Bassey, D. E., Olukanni, D. O., Ngene, B. U., Adegoke, D., Odetoyan, A. O., Kareem, M. A., Enabulele, D. O., & Nworgu, A. T. (2021). Waste materials in highway applications: An overview on generation and utilization implications on sustainability. Journal of Cleaner Production, 283, 124581. https://doi.org/10.1016/J.JCLEPRO.2020.124581
  • Mostofinejad, D., Hosseini, S. M., Nosouhian, F., Ozbakkaloglu, T., & Nader Tehrani, B. (2020). Durability of concrete containing recycled concrete coarse and fine aggregates and milled waste glass in magnesium sulfate environment. Journal of Building Engineering, 29, 101182 https://doi.org/10.1016/j.jobe.2020.101182
  • Kareem, M. A., Raheem, A. A., Oriola, K. O., & Abdulwahab, R. (2022). A review on application of oil palm shell as aggregate in concrete - Towards realising a pollution-free environment and sustainable concrete. Environmental Challenges. 8, 100531. https://doi.org/10.1016/j.envc.2022.100531
  • Choudhary, J., Kumar, B., & Gupta, A. (2020). Performance evaluation of asphalt concrete mixes having copper industry waste as filler. Transportation Research Procedia, 48, 3656–3667. https://doi.org/10.1016/J.TRPRO.2020.08.083
  • Avirneni, D., Peddinti, P. R. T., & Saride, S. (2016). Durability and long term performance of geopolymer stabilized reclaimed asphalt pavement base courses. Construction and Building Materials, 121, 198–209. https://doi.org/10.1016/J.CONBUILDMAT.2016.05.162
  • Al-Mufti, R. L., & Fried, A. N. (2017). Improving the strength properties of recycled asphalt aggregate concrete. Construction and Building Materials, 149, 45–52. https://doi.org/10.1016/j.conbuildmat.2017.05.056
  • Mengilli, G. (2022). Asfalt atığının alkali aktivasyonlu harçların fiziksel ve mekanik özelliklerine etkisinin incelenmesi. (Tez no. 729719) [Yüksel Lisans Tezi, Osmaniye Korkut Ata Üniversitesi].
  • Fidan, O. (2022). Beton ve asfalt atığı içeren kolemanit katkılı harçların mekanik ve fiziksel özelliklerinin incelenmesi. (Tez no. 726373) [Yüksel Lisans Tezi, Osmaniye Korkut Ata Üniversitesi].
  • Karcı, T. C. (2022). Betonda cam elyaf ve kazınmış asfalt atığı kullanımının donatı korozyonu üzerine etkisinin araştırılması. (Tez no. 792042) [Yüksel Lisans Tezi, Osmaniye Korkut Ata Üniversitesi].
  • Çınar Resuloğulları, E., Uygunoğlu, T., & Dündar, B. (2022). Investigation of physical and mechanical properties of mortars produced with recycled asphalt waste under the influence of high temperature. Journal of Material Cycles and Waste Management, 24(2), 743–750. https://doi.org/10.1007/s10163-022-01354-4
  • Santha Kumar, G., & Minocha, A. K. (2018). Studies on thermo-chemical treatment of recycled concrete fine aggregates for use in concrete. Journal of Material Cycles and Waste Management, 20(1), 469-480. https://doi.org/10.1007/s10163-017-0604-6.
  • Askarian, M., Fakhretaha Aval, S., & Joshaghani, A. (2018). A comprehensive experimental study on the performance of pumice powder in self-compacting concrete (SCC). Journal of Sustainable Cement-Based Materials, 7(6), 340–356. https://doi.org/10.1080/21650373.2018.1511486
  • Zeyad, A. M., Khan, A. H., & Tayeh, B. A. (2020). Durability and strength characteristics of high-strength concrete incorporated with volcanic pumice powder and polypropylene fibers. Journal of Materials Research and Technology, 9(1), 806–813. https://doi.org/10.1016/j.jmrt.2019.11.021
  • Ulusu, H., Aruntaş, H. Y., Gültekin, A. B., Dayı, M., Çavuş, M., & Kaplan, G. (2023). Mechanical, durability and microstructural characteristics of Portland pozzolan cement (PPC) produced with high volume pumice: Green, cleaner and sustainable cement development. Construction and Building Materials, 378, 131070. https://doi.org/10.1016/j.conbuildmat.2023.131070
  • Kayıhan, M. R., Dündar, B., & Çınar Resuloğulları, E. (2022). Öğütülmüş pomza tozlu harçların hidroklorik asit direncinin incelenmesi. Sürdürülebilir Mühendislik Uygulamaları ve Teknolojik Gelişmeler Dergisi, 5(2), 160–170. https://doi.org/10.51764/smutgd.1199413
  • American Concrete Institute. (2013). Guide to selecting protective treatments for concrete (ACI 515.2R-13). American Concrete Institute.
  • O’Connell, M., McNally, C., & Richardson, M. G. (2012). Performance of concrete incorporating GGBS in aggressive wastewater environments. Construction and Building Materials, 27(1), 368–374. https://doi.org/10.1016/j.conbuildmat.2011.07.036
  • Irassar, E. F., Bonavetti, V. L., & González, M. (2003). Microstructural study of sulfate attack on ordinary and limestone Portland cements at ambient temperature. Cement and Concrete Research, 33(1), 31-41.
  • Bertron, A., Duchesne, J., & Escadeillas, G. (2005). Attack of cement pastes exposed to organic acids in manure. Cement and Concrete Composites, 27(9–10), 898–909. https://doi.org/10.1016/j.cemconcomp.2005.06.003
  • Gutberlet, T., Hilbig, H., & Beddoe, R. E. (2015). Acid attack on hydrated cement - Effect of mineral acids on the degradation process. Cement and Concrete Research, 74, 35–43. https://doi.org/10.1016/j.cemconres.2015.03.011
  • Alexander, M., Bertron, A., & De Belie, N. (2013). Performance of Cement-Based Materials in Aggressive Aqueous Environments. Dordrecht, The Netherlands, Springer.
  • Aguiar, J. B., Camões, A., & Moreira, P. M. (2008). Coatings for concrete protection against aggressive environments. Journal of Advanced Concrete Technology, 6(1), 243-250. https://doi.org/10.3151/jact.6.243
  • Neville, A. (2004). The confused world of sulfate attack on concrete. Cement and Concrete Research, 34(8), 1275–1296. https://doi.org/10.1016/j.cemconres.2004.04.004
  • Kantarcı, F. (2021). Lif boyunun ve içeriğinin geopolimer betonların asit direncine etkisi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(2), 424-437. https://doi.org/10.17714/gumusfenbil.866094
  • Karademir, C., Ghilan, D. M. A., & Teomete, E. (2019). Atık polipropilen liflerin harcın mekanik özelliklerine etkisi. Hazır Beton Dergisi, 152, 74–78.
  • Alakara, E. H. (2022). Geri dönüştürülmüş asfalt tozunun alkali aktifleştirilmiş cüruf harçları üzerindeki etkisi. International Journal of Engineering Research and Development, 14(3), 362-368. https://doi.org/10.29137/umagd.1207073
  • Turkish Standards Institution. (2012). TS EN 197-1: Cement – Part 1: General cements – Composition, specifications, and conformity criteria. Turkish Standards Institution.
  • Turkish Standards Institution. (2009). TS 706 EN 12620+A1: Aggregates for concrete. Turkish Standards Institution.
  • Turkish Standards Institution. (2003). TS EN 1008: Mixing water for concrete – Specification for sampling, testing, and assessing the suitability of water, including water recovered from processes in the concrete industry, as mixing water for concrete. Turkish Standards Institution.
  • Turkish Standards Institution. (2017). TS EN ISO 9001: Quality management systems – Requirements. Turkish Standards Institution.
  • Turkish Standards Institution. (2000). TS EN 1015-3: Methods of test for mortar – Determination of fresh mortar consistency. Turkish Standards Institution.
  • Turkish Standards Institution. (2016). TS EN 196-1: Methods of testing cement – Part 1: Determination of strength. Turkish Standards Institution.
  • ASTM International. (2019). ASTM C618: Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete (Standard No. C618-19). ASTM International. https://doi.org/10.1520/C0618-19
  • Bani Ardalan, R., Joshaghani, A., & Hooton, R. D. (2017). Workability retention and compressive strength of self-compacting concrete incorporating pumice powder and silica fume. Construction and Building Materials, 134, 116–122. https://doi.org/10.1016/j.conbuildmat.2016.12.090
  • Ayele, G. (2021). The effect of ground pumice on the strength of normal concrete. [Master’s Thesis, Addis Ababa University]
  • Zeyad, A. M., Khan, A. H., & Tayeh, B. A. (2020). Durability and strength characteristics of high-strength concrete incorporated with volcanic pumice powder and polypropylene fibers. Journal of Materials Research and Technology, 9(1), 806–813. https://doi.org/10.1016/j.jmrt.2019.11.021
  • Kwasny, J., Aiken, T. A., Soutsos, M. N., McIntosh, J. A., & Cleland, D. J. (2018). Sulfate and acid resistance of lithomarge-based geopolymer mortars. Construction and Building Materials, 166, 537–553. https://doi.org/10.1016/j.conbuildmat.2018.01.129
  • Fan, C. C., Huang, R., Hwang, H., & Chao, S. J. (2016). Properties of concrete incorporating fine recycled aggregates from crushed concrete wastes. Construction and Building Materials, 112, 708–715. https://doi.org/10.1016/j.conbuildmat.2016.02.154
  • Kayıhan, M. R., Dündar, B., & Çınar, E. R. (2022, June 28-30). Geri Dönüştürülmüş Asfalt Atığı İle Üretilen Öğütülmüş Pomza Tozu Katkılı Harçların Mühendislik Özelliklerinin Araştırılması. [Conference presentation]. International Korkut Ata Scientific Researches Conference, Osmaniye, Türkiye.
  • Liu, K., Yu, R., Shui, Z., Li, X., Ling, X., He, W., Yi, S., & Wu, S. (2018). Effects of pumice-based porous material on hydration characteristics and persistent shrinkage of Ultra-High Performance Concrete (UHPC). Materials, 12(1). https://doi.org/10.3390/ma12010011
  • Hossain, M. U., Dong, Y., & Ng, S. T. (2021). Influence of supplementary cementitious materials in sustainability performance of concrete industry: A case study in Hong Kong. Case Studies in Construction Materials, 15. https://doi.org/10.1016/j.cscm.2021.e00659
  • Benaicha, M., Jalbaud, O., Alaoui, A. H., & Burtschell, Y. (2015). Correlation between the mechanical behavior and the ultrasonic velocity of fiber-reinforced concrete. Construction and Building Materials, 101, 702-709. https://doi.org/10.1016/j.conbuildmat.2015.10.047
  • Shariq, M., Prasad, J., & Masood, A. (2013). Studies in ultrasonic pulse velocity of concrete containing GGBFS. Construction and Building Materials, 40, 944–950. https://doi.org/10.1016/j.conbuildmat.2012.11.070
  • Rajeswari, S., & George, S. (2016). Experimental study of lightweight concrete by partial replacement of coarse aggregate using pumice aggregate. International Journal of Scientific Engineering and Research (IJSER), 4(5), 50-53. https://www.ijser.in/abstract.php?paperid=IJSER15801
  • Rahmani, H., & Ramazanianpour, A. A. (2008). Effect of binary cement replacement materials on sulfuric acid resistance of dense concretes. Magazine of Concrete Research, 60(2), 145–155. https://doi.org/10.1680/macr.2008.60.2.145
  • Hossain, K. M. A. (2003). Blended cement using volcanic ash and pumice. Cement and Concrete Research, 33(10), 1601–1605. https://doi.org/10.1016/S0008-8846(03)00127-3
  • Abubakar, Y., Muazu, U., & Attah, M. U. (2020). Effect of hydrochloric acid (HCl) on the compressive strength of concrete at early ages. Journal of Scientific and Engineering Research, 7(1), 207–210.
  • Hasyim, S., Nurjannah, S. A., Usman, A. P., Putra, F. S., & Hashim, M. F. A. (2021, July 21). The durability of lightweight concrete against 5% hydrochloric acid solution with various size of expanded polystyrene. AIP Conference Proceedings 2347 (1): 020227. https://doi.org/10.1063/5.0051716
  • Janowska-Renkas, E., Kaliciak, A., Janus, G., & Kowalska, J. (2021). Durability of cement and ash mortars with fluidized and siliceous fly ashes exposed to HCl acid environment over a period of 2 years. Materials, 14(12), 3229. https://doi.org/10.3390/ma14123229
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Meryem Rumeysa Kayıhan 0000-0002-7244-3551

Behcet Dündar 0000-0003-0724-9469

Emriye Çınar Resuloğulları 0000-0002-9435-2968

Gönderilme Tarihi 16 Aralık 2024
Kabul Tarihi 13 Ekim 2025
Yayımlanma Tarihi 24 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 10 Sayı: 2

Kaynak Göster

APA Kayıhan, M. R., Dündar, B., & Çınar Resuloğulları, E. (2025). Investigation of the Engineering Properties of Mortars Produced Using Recycled Asphalt Pavements and Pumice Powder under the Effect of Acid. Sinop Üniversitesi Fen Bilimleri Dergisi, 10(2), 513-529. https://doi.org/10.33484/sinopfbd.1602495


Sinopfbd' de yayınlanan makaleler CC BY-NC 4.0 ile lisanslanmıştır.