Bitlis Eren Üniversitesi Kampüsünde Uygun Rüzgâr Hızı Dağılımı Kullanılarak Küçük Ölçekli Dikey Eksenli Rüzgâr Türbinlerinin Performans Analizi
Yıl 2025,
Cilt: 10 Sayı: 2, 340 - 353, 24.12.2025
Faruk Oral
,
İsmail Ekmekçi
,
Yunus Sayan
Öz
Bu çalışma, Bitlis Eren Üniversitesi yerleşkesinde enerji üretimi amacıyla küçük ölçekli düşey eksenli rüzgâr türbinlerinin verimliliğini incelemektedir. Rüzgâr verilerinin analizi, Weibull ve Rayleigh dağılımları kullanılarak gerçekleştirilmiş ve hata analizi yoluyla en uygun dağılım belirlenmiştir. Aynı üreticiye ait, sırasıyla 600 W, 1000 W ve 3000 W anma gücüne sahip üç farklı düşey eksenli rüzgâr türbini modeli, enerji üretim potansiyeli açısından değerlendirilmiştir. Hata analizi sonuçlarına göre, Weibull dağılımı rüzgâr verileri için en iyi uyumu sağlamıştır. Bu dağılıma dayanarak, yıllık ortalama rüzgâr hızı 3.17 m/s, ortalama güç yoğunluğu ise 45.25 W/m² olarak belirlenmiştir. Sonuçların analizi, değerlendirilen türbin modelleri arasında 1 kW’lık türbinin en uygun kapasite faktörüne sahip olduğunu ve bu durumun, mevcut rüzgâr koşullarında anma gücüne göre daha verimli bir performans sergilediğini ortaya koymaktadır. Buna karşılık, 3 kW’lık türbin, daha düşük bir verimlilik oranına rağmen en yüksek yıllık toplam enerji üretimini sağlamış ve böylece mutlak enerji üretimini maksimize etme potansiyelini öne çıkarmıştır. Bu sonuçlar, küçük ölçekli düşey eksenli rüzgâr türbinlerinin benzer rüzgâr karakteristiklerine sahip bölgelerde çatı üstü kurulumlar için uygulanabilir olduğunu ve kurumsal ya da konut tipi kullanımlar için tamamlayıcı bir enerji kaynağı sunabileceğini göstermektedir. Çalışma, yerel enerji politikalarının şekillendirilmesine katkı sağlayabilecek bulgular sunmakta; özellikle merkezi olmayan yenilenebilir enerji sistemlerinin teşviki ve rüzgâr enerjisi çözümlerinin kentsel altyapıya entegrasyonu konularında yol gösterici niteliktedir.
Kaynakça
-
Shi, H., Dong, Z., Xiao, N., & Huang, Q. (2021). Wind speed distributions used in wind energy assessment: a review. Frontiers in Energy Research, 9, 769920.
-
Türkdoğan, S., Dilber, S., & Çam, B. (2018). Hibrit enerji sistemlerinin şebekeden bağımsız bir çiftlik evinde uygulanabilirliğinin ekonomik ve teknik açıdan incelenmesi. Sinop Üniversitesi Fen Bilimleri Dergisi, 3(2), 52-65.
-
Li, J., Wang, G., Li, Z., Yang, S., Chong, W. T., & Xiang, X. (2020). A review on development of offshore wind energy conversion system. International Journal of Energy Research, 44(12), 9283-9297.
-
Veers, P., Dykes, K., Lantz, E., Barth, S., Bottasso, C. L., Carlson, O., Clifton, A., Green, J., Green, P., Holttinen, H., Laird, D., Lehtomäki, V., Lundquist, J. K., Manwell, J., Marquis, M., Meneveau, C., Moriarty, P., Munduate, X., Muskulus, M., Naughton, J., Pao, L., Paquette, J., Peinke, J., Robertson, A., Sanz Rodrigo, J., Sempreviva, A. M., Smith, J. C., Tuohy, A., & Wiser, R. (2019). Grand challenges in the science of wind energy. Science, 366(6464), eaau2027. https://doi.org/10.1126/science.aau202
-
Maradin, D. (2021). Advantages and disadvantages of renewable energy sources utilization. International Journal of Energy Economics and Policy, 11(3), 176-183.
-
Kumar, Y., Ringenberg, J., Depuru, S. S., Devabhaktuni, V. K., Lee, J. W., Nikolaidis, E., Andersen, B., & Afjeh, A. (2016). Wind energy: Trends and enabling technologies. Renewable and Sustainable Energy Reviews, 53, 209-224. https://doi.org/10.1016/j.rser.2015.07.200
-
Oral, F. (2023). Use of small-scale wind turbines in road lighting. Light & Engineering, 31(3), 109-117. https://doi.org/10.33383/2022-118.
-
Tummala, A., Velamati, R. K., Sinha, D. K., Indraja, V., & Krishna, V. H. (2016). A review on small scale wind turbines. Renewable and Sustainable Energy Reviews, 56, 1351-1371. https://doi.org/10.1016/j.rser.2015.12.027
-
Çetin, S. K., Genç, M. S., & Daldaban, F. (2019). Dikey eksenli rüzgâr türbinleri-küçük ölçekli uygulamalar. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6(2), 539-551. https://doi.org/10.35193/bseufbd.643828
-
Oral, F. & Ekmekçi İ. (2024, 16 - 19 May). Estimation of Energy Generation in A Vertical Axis Small-Scale Wind Turbine Using Wind Speed Distribution. 12th Global Conference on Global Warming (GCGW-2024), Şanlıurfa, Turkey. file:///C:/Users/PC/Downloads/ie%20fo%20GCGW-2024-Proceedings%20Book.pdf.
-
Yen, J., & Ahmed, N. (2012). Improving safety and performance of small-scale vertical axis wind turbines. Procedia Engineering, 49, 99-106. https://doi.org/10.1016/j.proeng.2012.10.117
-
Kouloumpis, V., Sobolewski, R. A., & Yan, X. (2020). Performance and life cycle assessment of a small-scale vertical axis wind turbine. Journal of Cleaner Production, 247, 119520. https://doi.org/10.1016/j.jclepro.2019.119520
-
Tanürün, H. E. (2024). Improvement of vertical axis wind turbine performance by using the optimized adaptive flap by the Taguchi method. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), 71-90. https://doi.org/10.1080/15567036.2023.2279264
-
Zamani, M., Maghrebi, M. J., & Varedi, S. R. (2016). Starting torque improvement using J-shaped straight-bladed Darrieus vertical axis wind turbine by means of numerical simulation. Renewable Energy, 95, 109-126.
-
Kaya, A. F., Tanürün, H. E., & Acır, A. (2022). Numerical investigation of radius dependent solidity effect on H-type vertical axis wind turbines. Politeknik Dergisi, 25(3), 1007-1019.
-
Celik, Y., Ingham, D., Ma, L., & Pourkashanian, M. (2023). Novel hybrid blade design and its impact on the overall and self-starting performance of a three-dimensional H-type Darrieus wind turbine. Journal of Fluids and Structures, 119, 103876.
-
Celik, Y., Ma, L., Ingham, D., & Pourkashanian, M. (2020). Aerodynamic investigation of the start-up process of H-type vertical axis wind turbines using CFD. Journal of Wind Engineering and Industrial Aerodynamics, 204, 104252.
-
Google Earth, http://earth.google.com. Accessed on January 17, 2025.
-
Oral, F. (2020). Statistical analysis of the wind energy potential of Bitlis province. Dicle University Journal of Engineering, 11(2), 671-678. https://doi.org/10.24012/dumf.655780
-
Oral, F. (2024). Comparative analysis of different methods in estimating wind speed distribution, and evaluation of large‐scale wind turbine performance in Rahva‐Bitlis, Turkey. IET Renewable Power Generation, 18(1), 95-108. https://doi.org/10.1049/rpg2.12898
-
Serban, A., Paraschiv, L. S., & Paraschiv, S. (2020). Assessment of wind energy potential based on Weibull and Rayleigh distribution models. Energy Reports, 6, 250-267. https://doi.org/10.1016/j.egyr.2020.08.048
-
Balpetek, N., & Kavak Akpınar, E. (2019). Statistical analysis of wind speed distribution with Sinop-Turkey Application. Journal of Thermal Engineering, 5(4), 277-292.
-
Bidaoui, H., El Abbassi, I., El Bouardi, A., & Darcherif, A. (2019). Wind speed data analysis using Weibull and Rayleigh distribution functions, case study: five cities northern Morocco. Procedia Manufacturing, 32, 786-793. https://doi.org/10.1016/j.promfg.2019.02.286
-
Aslan, A. (2018). Balıkesir rüzgar enerjisi potansiyelinin araştırılması ve türbinlerin ekonomik analiz kapsamında karşılaştırılması. Isı Bilimi ve Tekniği Dergisi, 38(1), 25-41.
-
Guesmi, T., Farah, A., Marouani, I., Alshammari, B., & Abdallah, H. H. (2022). Chaotic sine–cosine algorithm for chance‐constrained economic emission dispatch problem including wind energy. IET Renewable Power Generation, 14(10), 1808–1821. https://doi.org/10.1049/iet-rpg.2019.1081
-
Costa Rocha, P. A., de Sousa, R. C., de Andrade, C. F., & da Silva, M. E. V. (2012). Comparison of seven numerical methods for determining Weibull parameters for wind energy generation in the northeast region of Brazil. Applied Energy, 89(1), 395–400. https://doi.org/10.1016/j.apenergy.2011.08.003
-
Celik, A. N. (2003). A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey. Renewable Energy, 29(4), 593–604. https://doi.org/10.1016/j.renene.2003.07.002
-
Eskin, N., Artar, H., & Tolun, S. (2008). Wind energy potential of Gokceada Island in Turkey. Renewable and Sustainable Energy Reviews, 12(3), 839–851. https://doi.org/10.1016/j.rser.2006.05.016
-
Çakmakçı, B., & Hüner, E. (2022). Evaluation of wind energy potential: a case study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(1), 834-852. https://doi.org/10.1080/15567036.2020.1811810
-
Oral, F., Ekmekçi, İ., & Onat, N. (2015). Weibull distribution for determination of wind analysis and energy production. World Journal of Engineering, 12(3): 215-220. https://doi.org/10.1260/1708-5284.12.3.215
-
Arslan, O. (2010). Technoeconomic analysis of electricity generation from wind energy in Kutahya, Turkey. Energy, 35(1), 120-131. https://doi.org/10.1016/j.energy.2009.09.002
-
Aeolos-V 1kW vertical wind turbine. January 17, 2025. https://www.windturbinestar.com/1kwv-v-aeolos-wind-turbine.html.
-
Aeolos-V 600W rooftop wind turbine. January 17, 2025. https://www.windturbinestar.com/600wv-v-aeolos-wind-turbine.html.
-
Aeolos-V 3kW vertical wind turbine. January 17, 2025. https://www.windturbinestar.com/3kwv-v-aeolos-wind-turbine.html.
Performance Analysis of Small-Scale Vertical Axis Wind Turbines Using Suitable Wind Speed Distribution at Bitlis Eren University Campus
Yıl 2025,
Cilt: 10 Sayı: 2, 340 - 353, 24.12.2025
Faruk Oral
,
İsmail Ekmekçi
,
Yunus Sayan
Öz
This research examines the efficiency of small-scale vertical axis wind turbines for energy generation on the Bitlis Eren University campus. Wind data analysis was conducted using Weibull and Rayleigh distributions, with the most suitable distribution identified through error analysis. Three vertical axis wind turbine models from the same manufacturer, with rated capacities of 600W, 1000W, and 3000W, were assessed for energy production potential. Error analysis results indicated that the Weibull distribution provided the best fit for the wind data. Based on this distribution, the annual mean wind speed was found to be 3.17 m/s, while the average power density reached 45.25 W/m². Analysis of the results indicated that, among the evaluated models, the 1 kW turbine exhibited the most favorable capacity factor, suggesting a more efficient performance relative to its rated capacity under the given wind conditions. In contrast, the 3 kW turbine yielded the highest total annual energy output, highlighting its potential for maximizing absolute energy generation despite having a lower efficiency ratio. These results suggest that small-scale VAWTs can be viable for rooftop installation in regions with similar wind characteristics, offering a supplementary energy source for institutional or residential use. The study provided insights that could inform local energy policy, particularly in promoting decentralized renewable energy systems and integrating wind energy solutions into urban infrastructure.
Etik Beyan
The work does not require ethics committee approval and any private permission.
Destekleyen Kurum
The authors have no received any financial support for the research, authorship, or publication of this study.
Teşekkür
Part of this study was presented as a paper at the following conference:12th Global Conference on Global Warming (GCGW-2024) May 16-19, 2024, Şanlıurfa, Türkiye
Kaynakça
-
Shi, H., Dong, Z., Xiao, N., & Huang, Q. (2021). Wind speed distributions used in wind energy assessment: a review. Frontiers in Energy Research, 9, 769920.
-
Türkdoğan, S., Dilber, S., & Çam, B. (2018). Hibrit enerji sistemlerinin şebekeden bağımsız bir çiftlik evinde uygulanabilirliğinin ekonomik ve teknik açıdan incelenmesi. Sinop Üniversitesi Fen Bilimleri Dergisi, 3(2), 52-65.
-
Li, J., Wang, G., Li, Z., Yang, S., Chong, W. T., & Xiang, X. (2020). A review on development of offshore wind energy conversion system. International Journal of Energy Research, 44(12), 9283-9297.
-
Veers, P., Dykes, K., Lantz, E., Barth, S., Bottasso, C. L., Carlson, O., Clifton, A., Green, J., Green, P., Holttinen, H., Laird, D., Lehtomäki, V., Lundquist, J. K., Manwell, J., Marquis, M., Meneveau, C., Moriarty, P., Munduate, X., Muskulus, M., Naughton, J., Pao, L., Paquette, J., Peinke, J., Robertson, A., Sanz Rodrigo, J., Sempreviva, A. M., Smith, J. C., Tuohy, A., & Wiser, R. (2019). Grand challenges in the science of wind energy. Science, 366(6464), eaau2027. https://doi.org/10.1126/science.aau202
-
Maradin, D. (2021). Advantages and disadvantages of renewable energy sources utilization. International Journal of Energy Economics and Policy, 11(3), 176-183.
-
Kumar, Y., Ringenberg, J., Depuru, S. S., Devabhaktuni, V. K., Lee, J. W., Nikolaidis, E., Andersen, B., & Afjeh, A. (2016). Wind energy: Trends and enabling technologies. Renewable and Sustainable Energy Reviews, 53, 209-224. https://doi.org/10.1016/j.rser.2015.07.200
-
Oral, F. (2023). Use of small-scale wind turbines in road lighting. Light & Engineering, 31(3), 109-117. https://doi.org/10.33383/2022-118.
-
Tummala, A., Velamati, R. K., Sinha, D. K., Indraja, V., & Krishna, V. H. (2016). A review on small scale wind turbines. Renewable and Sustainable Energy Reviews, 56, 1351-1371. https://doi.org/10.1016/j.rser.2015.12.027
-
Çetin, S. K., Genç, M. S., & Daldaban, F. (2019). Dikey eksenli rüzgâr türbinleri-küçük ölçekli uygulamalar. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6(2), 539-551. https://doi.org/10.35193/bseufbd.643828
-
Oral, F. & Ekmekçi İ. (2024, 16 - 19 May). Estimation of Energy Generation in A Vertical Axis Small-Scale Wind Turbine Using Wind Speed Distribution. 12th Global Conference on Global Warming (GCGW-2024), Şanlıurfa, Turkey. file:///C:/Users/PC/Downloads/ie%20fo%20GCGW-2024-Proceedings%20Book.pdf.
-
Yen, J., & Ahmed, N. (2012). Improving safety and performance of small-scale vertical axis wind turbines. Procedia Engineering, 49, 99-106. https://doi.org/10.1016/j.proeng.2012.10.117
-
Kouloumpis, V., Sobolewski, R. A., & Yan, X. (2020). Performance and life cycle assessment of a small-scale vertical axis wind turbine. Journal of Cleaner Production, 247, 119520. https://doi.org/10.1016/j.jclepro.2019.119520
-
Tanürün, H. E. (2024). Improvement of vertical axis wind turbine performance by using the optimized adaptive flap by the Taguchi method. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), 71-90. https://doi.org/10.1080/15567036.2023.2279264
-
Zamani, M., Maghrebi, M. J., & Varedi, S. R. (2016). Starting torque improvement using J-shaped straight-bladed Darrieus vertical axis wind turbine by means of numerical simulation. Renewable Energy, 95, 109-126.
-
Kaya, A. F., Tanürün, H. E., & Acır, A. (2022). Numerical investigation of radius dependent solidity effect on H-type vertical axis wind turbines. Politeknik Dergisi, 25(3), 1007-1019.
-
Celik, Y., Ingham, D., Ma, L., & Pourkashanian, M. (2023). Novel hybrid blade design and its impact on the overall and self-starting performance of a three-dimensional H-type Darrieus wind turbine. Journal of Fluids and Structures, 119, 103876.
-
Celik, Y., Ma, L., Ingham, D., & Pourkashanian, M. (2020). Aerodynamic investigation of the start-up process of H-type vertical axis wind turbines using CFD. Journal of Wind Engineering and Industrial Aerodynamics, 204, 104252.
-
Google Earth, http://earth.google.com. Accessed on January 17, 2025.
-
Oral, F. (2020). Statistical analysis of the wind energy potential of Bitlis province. Dicle University Journal of Engineering, 11(2), 671-678. https://doi.org/10.24012/dumf.655780
-
Oral, F. (2024). Comparative analysis of different methods in estimating wind speed distribution, and evaluation of large‐scale wind turbine performance in Rahva‐Bitlis, Turkey. IET Renewable Power Generation, 18(1), 95-108. https://doi.org/10.1049/rpg2.12898
-
Serban, A., Paraschiv, L. S., & Paraschiv, S. (2020). Assessment of wind energy potential based on Weibull and Rayleigh distribution models. Energy Reports, 6, 250-267. https://doi.org/10.1016/j.egyr.2020.08.048
-
Balpetek, N., & Kavak Akpınar, E. (2019). Statistical analysis of wind speed distribution with Sinop-Turkey Application. Journal of Thermal Engineering, 5(4), 277-292.
-
Bidaoui, H., El Abbassi, I., El Bouardi, A., & Darcherif, A. (2019). Wind speed data analysis using Weibull and Rayleigh distribution functions, case study: five cities northern Morocco. Procedia Manufacturing, 32, 786-793. https://doi.org/10.1016/j.promfg.2019.02.286
-
Aslan, A. (2018). Balıkesir rüzgar enerjisi potansiyelinin araştırılması ve türbinlerin ekonomik analiz kapsamında karşılaştırılması. Isı Bilimi ve Tekniği Dergisi, 38(1), 25-41.
-
Guesmi, T., Farah, A., Marouani, I., Alshammari, B., & Abdallah, H. H. (2022). Chaotic sine–cosine algorithm for chance‐constrained economic emission dispatch problem including wind energy. IET Renewable Power Generation, 14(10), 1808–1821. https://doi.org/10.1049/iet-rpg.2019.1081
-
Costa Rocha, P. A., de Sousa, R. C., de Andrade, C. F., & da Silva, M. E. V. (2012). Comparison of seven numerical methods for determining Weibull parameters for wind energy generation in the northeast region of Brazil. Applied Energy, 89(1), 395–400. https://doi.org/10.1016/j.apenergy.2011.08.003
-
Celik, A. N. (2003). A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey. Renewable Energy, 29(4), 593–604. https://doi.org/10.1016/j.renene.2003.07.002
-
Eskin, N., Artar, H., & Tolun, S. (2008). Wind energy potential of Gokceada Island in Turkey. Renewable and Sustainable Energy Reviews, 12(3), 839–851. https://doi.org/10.1016/j.rser.2006.05.016
-
Çakmakçı, B., & Hüner, E. (2022). Evaluation of wind energy potential: a case study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(1), 834-852. https://doi.org/10.1080/15567036.2020.1811810
-
Oral, F., Ekmekçi, İ., & Onat, N. (2015). Weibull distribution for determination of wind analysis and energy production. World Journal of Engineering, 12(3): 215-220. https://doi.org/10.1260/1708-5284.12.3.215
-
Arslan, O. (2010). Technoeconomic analysis of electricity generation from wind energy in Kutahya, Turkey. Energy, 35(1), 120-131. https://doi.org/10.1016/j.energy.2009.09.002
-
Aeolos-V 1kW vertical wind turbine. January 17, 2025. https://www.windturbinestar.com/1kwv-v-aeolos-wind-turbine.html.
-
Aeolos-V 600W rooftop wind turbine. January 17, 2025. https://www.windturbinestar.com/600wv-v-aeolos-wind-turbine.html.
-
Aeolos-V 3kW vertical wind turbine. January 17, 2025. https://www.windturbinestar.com/3kwv-v-aeolos-wind-turbine.html.