Benney–Luke Denkleminde Doğrusal Olmayanlık ve Dağılımı Yakalamak için Modifiye Edilmiş Bir Genişleme Yaklaşımı
Yıl 2025,
Cilt: 10 Sayı: 2, 410 - 428, 24.12.2025
Dilara Altan Koç
Öz
Bu çalışma, sığ su dalga yayılımını modelleyen daha yüksek mertebeden bir dispersif model olan Benney–Luke denkleminin hareketli dalga çözümlerini incelemektedir. Açık biçimli analitik çözümler elde etmek için yardımcı fonksiyon yaklaşımı ile Jacobi eliptik fonksiyonlarını birleştiren değiştirilmiş bir genişletme yöntemi önerilmiştir. Elde edilen çözümler, parametrelere bağlı olarak çeşitli dalga formları göstermekte olup, doğrulukları sayısal simülasyonlarla desteklenmiştir. Sonuçlar, yöntemin doğrusal olmayanlık ve dispersiyon etkilerini başarıyla yakaladığını göstermektedir.
Kaynakça
-
Benney, D., & Luke, J. (1964). On the interactions of permanent waves of finite amplitude. Journal of Mathematics and Physics, 43(1–4), 309–313. https://doi.org/10.1002/sapm1964431309
-
Pandir, Y., & Ekin, A. (2023). New solitary wave solutions of the Korteweg–de Vries (KdV) equation by new version of the trial equation method. Electron J Appl Math, 1(1), 101–113. https://doi.org/10.61383/ejam.20231130
-
Bulut, H., Pandir, Y., & Demiray, S. T. (2014). Exact solutions of time-fractional KdV equations by using generalized Kudryashov method. International Journal of Modeling and Optimization, 4(4), 315. https://doi.org/10.7763/IJMO.2014.V4.392
-
Pandir, Y., & Yildirim, A. (2018). Analytical approach for the fractional differential equations by using the extended tanh method. Waves in Random and Complex Media, 28(3), 399–410. https://doi.org/10.1080/17455030.2017.1356490
-
Pandir, Y., Gurefe, Y., & Misirli, E. (2013). New exact solutions of the time-fractional nonlinear dispersive KdV equation. International Journal of Modeling and Optimization, 3(4), 349. https://doi.org/10.7763/IJMO.2013.V3.296
-
Demiray, S. T., Pandir, Y., & Bulut, H. (2015). New solitary wave solutions of Maccari system. Ocean Engineering, 103, 153–159. https://doi.org/10.1016/j.oceaneng.2015.04.037
-
Demiray, S. T., Pandir, Y., &Bulut, H. (2016). All exact travelling wave solutions of Hirota equation and Hirota–Maccari system. Optik, 127(4), 1848–1859. https://doi.org/10.1016/j.ijleo.2015.10.235
-
Altan Koç, D., Kılbitmez, S., & Bulut, H. (2024). The new complex travelling wave solutions of the simplified modified Camassa–Holm equation. Optical and Quantum Electronics, 56(2), 215. https://doi.org/10.1007/s11082-023-05743-3
-
Yokuş, A., Durur, H., Nofal, T. A., Abu-Zinadah, H., Tuz, M., & Ahmad, H. (2020). Study on the applications of two analytical methods for the construction of traveling wave solutions of the modified equal width equation. Open Physics, 18(1), 1003–1010. https://doi.org/10.1515/phys-2020-0207
-
Koç, D. A., Gasimov, Y. S., & Bulut, H. (2024). A study on the investigation of the traveling wave solutions of the mathematical models in physics via (m+(1/G’))-expansion method. Adv Math Models Appl, 9(1), 5–13. https://doi.org/10.62476/amma9105
-
Gündogdu, H., & Gözükızıl, O. (2021). On the new type of solutions to Benney–Luke equation. Boletim Da Sociedade Paranaense de Matemática, 39(5), 103-111. https://doi.org/10.5269/bspm.41244
-
Tuan, N. M., Koonprasert, S., Sirisubtawee, S., Meesad, P., & Khansai, N. (2024). New solutions of Benney–Luke equation using the (G’/G, 1/G) method. WSEAS Transactions on Mathematics, 23, 267–275. https://doi.org/10.37394/23206.2024.23.29
-
Kalyakin, L. A. (2022). Perturbation of a simple wave in a system with dissipation. Mathematical Notes, 112(3), 549–560. https://doi.org/10.1134/S0001434622090243
-
Kuila, S., Zeidan, D., & Raja Sekhar, T. (2022). Weak shock wave interactions in isentropic Cargo–Leroux model of flux perturbation. Mathematical Methods in the Applied Sciences, 45(12), 7526–7537. https://doi.org/10.1002/mma.8257
-
Asghar, S., Haider, J. A., & Muhammad, N. (2022). The modified KdV equation for a nonlinear evolution problem with perturbation technique. International Journal of Modern Physics B, 36(24), 2250160. https://doi.org/10.1142/S0217979222501600
-
Hosseini, K., Sadri, K., Hinçal, E., Sirisubtawee, S., & Mirzazadeh, M. (2023). A generalized nonlinear Schrödinger involving the weak nonlocality: its Jacobi elliptic function solutions and modulational instability. Optik, 288, 171176. https://doi.org/10.1016/j.ijleo.2023.171176
-
Fan, E., & Zhang, J. (2002). Applications of the Jacobi elliptic function method to special-type nonlinear equations. Physics Letters A, 305(6), 383–392. https://doi.org/10.1016/S0375-9601(02)01516-5
-
Shehata, A. R., Abdel Basser, F., & Abu-amra, S. S. (2019). Exact Solutions For some nonlinear Partial Differential Equations by A Variation of (G’/G)- Expansion Method. Journal of Modern Research, 1(1), 8–12. https://doi.org/10.21608/jmr.2019.11763.1000
-
Ali, A., Seadawy, A. R., & Lu, D. (2018). Dispersive analytical soliton solutions of some nonlinear waves dynamical models via modified mathematical methods. Advances in Difference Equations, 2018(1), 334. https://doi.org/10.1186/s13662-018-1792-7
-
Zayed, E. M., & Gepreel, K. A. (2009). Some applications of the g’/g-expansion method to nonlinear partial differential equations. Applied Mathematics and Computation, 212(1), 1–13. https://doi.org/10.1016/j.amc.2009.02.009
-
Elzaki, T. M., Chamekh, M., & Ahmed, S. A. (2024). Modified integral transform for solving Benney–Luke and singular pseudo-hyperbolic equations. Acta Mechanica et Automatica, 18(1), 139-143. https://doi.org/10.2478/ama-2024-0018
-
Akter, J., & Akbar, M. A. (2015). Exact solutions to the Benney–Luke equation and the phi-4 equations by using modified simple equation method. Results in Physics, 5, 125–130. https://doi.org/10.1016/j.rinp.2015.01.008
-
Khan, U., Ellahi, R., Khan, R., & Mohyud-Din, S. T. (2017). Extracting new solitary wave solutions of Benney–Luke equation and phi-4 equation of fractional order by using (G’/G)-expansion method. Optical and Quantum Electronics, 49(11), 362. https://doi.org/10.1007/s11082-017-1191-4
-
Hussain, A., Usman, M., Zaman, F., Ibrahim, T., & Dawood, A. (2023). Symmetry analysis, closed-form invariant solutions and dynamical wave structures of the Benney–Luke equation using optimal system of Lie subalgebras. Chinese Journal of Physics, 84, 66–88. https://doi.org/10.1016/j.cjph.2023.04.019
-
Xiao, Y., Xue, H., & Zhang, H. (2012). A new extended Jacobi elliptic function expansion method and its application to the generalized shallow water wave equation. Journal of Applied Mathematics, 2012(1), 896748. https://doi.org/10.1155/2012/896748
-
Kurt, A. (2019). New periodic wave solutions of a time fractional integrable shallow water equation. Applied Ocean Research, 85, 128–135. https://doi.org/10.1016/j.apor.2019.01.029
-
Ablowitz, M. J., & Curtis, C. W. (2011). On the evolution of perturbations to solutions of the Kadomtsev–Petviashvilli equation using the Benney–Luke equation. Journal of Physics A: Mathematical and Theoretical, 44(19), 195202. https://doi.org/10.1088/1751-8113/44/19/195202
-
Quintero, J. R., & Montes, A. M. (2020). On the exact controllability and the stabilization for the Benney–Luke equation. Mathematical Control & Related Fields, 10(2), 275–304. https://doi.org/10.3934/mcrf.2019039
-
Paumond, L. (2005). Towards a rigorous derivation of the fifth order KP equation. Mathematics and Computers in Simulation, 69(5–6), 477–491. https://doi.org/10.1016/j.matcom.2005.03.012
-
Khater, M. M. (2025). Computational and numerical solutions to the Benney–Luke equation: Insights into nonlinear long wave dynamics in dispersive media. Alexandria Engineering Journal, 110, 53–63. https://doi.org/10.1016/j.aej.2024.09.110428
A Modified Expansion Approach for Capturing Nonlinearity and Dispersion in the Benney–Luke Equation
Yıl 2025,
Cilt: 10 Sayı: 2, 410 - 428, 24.12.2025
Dilara Altan Koç
Öz
This study investigates traveling wave solutions of the Benney–Luke equation, a higher-order dispersive model for shallow-water wave propagation. A modified expansion method combining an auxiliary function approach with Jacobi elliptic functions is proposed to obtain explicit analytical solutions. The derived solutions exhibit various wave forms depending on key parameters, and their accuracy is supported by numerical simulations. The results confirm the method’s effectiveness in capturing nonlinear and dispersive effects in shallow-water wave dynamics.
Etik Beyan
The work does not require ethics committee approval and any private permission.
Destekleyen Kurum
The author have no received any financial support for the research, authorship, or publication of this study.
Kaynakça
-
Benney, D., & Luke, J. (1964). On the interactions of permanent waves of finite amplitude. Journal of Mathematics and Physics, 43(1–4), 309–313. https://doi.org/10.1002/sapm1964431309
-
Pandir, Y., & Ekin, A. (2023). New solitary wave solutions of the Korteweg–de Vries (KdV) equation by new version of the trial equation method. Electron J Appl Math, 1(1), 101–113. https://doi.org/10.61383/ejam.20231130
-
Bulut, H., Pandir, Y., & Demiray, S. T. (2014). Exact solutions of time-fractional KdV equations by using generalized Kudryashov method. International Journal of Modeling and Optimization, 4(4), 315. https://doi.org/10.7763/IJMO.2014.V4.392
-
Pandir, Y., & Yildirim, A. (2018). Analytical approach for the fractional differential equations by using the extended tanh method. Waves in Random and Complex Media, 28(3), 399–410. https://doi.org/10.1080/17455030.2017.1356490
-
Pandir, Y., Gurefe, Y., & Misirli, E. (2013). New exact solutions of the time-fractional nonlinear dispersive KdV equation. International Journal of Modeling and Optimization, 3(4), 349. https://doi.org/10.7763/IJMO.2013.V3.296
-
Demiray, S. T., Pandir, Y., & Bulut, H. (2015). New solitary wave solutions of Maccari system. Ocean Engineering, 103, 153–159. https://doi.org/10.1016/j.oceaneng.2015.04.037
-
Demiray, S. T., Pandir, Y., &Bulut, H. (2016). All exact travelling wave solutions of Hirota equation and Hirota–Maccari system. Optik, 127(4), 1848–1859. https://doi.org/10.1016/j.ijleo.2015.10.235
-
Altan Koç, D., Kılbitmez, S., & Bulut, H. (2024). The new complex travelling wave solutions of the simplified modified Camassa–Holm equation. Optical and Quantum Electronics, 56(2), 215. https://doi.org/10.1007/s11082-023-05743-3
-
Yokuş, A., Durur, H., Nofal, T. A., Abu-Zinadah, H., Tuz, M., & Ahmad, H. (2020). Study on the applications of two analytical methods for the construction of traveling wave solutions of the modified equal width equation. Open Physics, 18(1), 1003–1010. https://doi.org/10.1515/phys-2020-0207
-
Koç, D. A., Gasimov, Y. S., & Bulut, H. (2024). A study on the investigation of the traveling wave solutions of the mathematical models in physics via (m+(1/G’))-expansion method. Adv Math Models Appl, 9(1), 5–13. https://doi.org/10.62476/amma9105
-
Gündogdu, H., & Gözükızıl, O. (2021). On the new type of solutions to Benney–Luke equation. Boletim Da Sociedade Paranaense de Matemática, 39(5), 103-111. https://doi.org/10.5269/bspm.41244
-
Tuan, N. M., Koonprasert, S., Sirisubtawee, S., Meesad, P., & Khansai, N. (2024). New solutions of Benney–Luke equation using the (G’/G, 1/G) method. WSEAS Transactions on Mathematics, 23, 267–275. https://doi.org/10.37394/23206.2024.23.29
-
Kalyakin, L. A. (2022). Perturbation of a simple wave in a system with dissipation. Mathematical Notes, 112(3), 549–560. https://doi.org/10.1134/S0001434622090243
-
Kuila, S., Zeidan, D., & Raja Sekhar, T. (2022). Weak shock wave interactions in isentropic Cargo–Leroux model of flux perturbation. Mathematical Methods in the Applied Sciences, 45(12), 7526–7537. https://doi.org/10.1002/mma.8257
-
Asghar, S., Haider, J. A., & Muhammad, N. (2022). The modified KdV equation for a nonlinear evolution problem with perturbation technique. International Journal of Modern Physics B, 36(24), 2250160. https://doi.org/10.1142/S0217979222501600
-
Hosseini, K., Sadri, K., Hinçal, E., Sirisubtawee, S., & Mirzazadeh, M. (2023). A generalized nonlinear Schrödinger involving the weak nonlocality: its Jacobi elliptic function solutions and modulational instability. Optik, 288, 171176. https://doi.org/10.1016/j.ijleo.2023.171176
-
Fan, E., & Zhang, J. (2002). Applications of the Jacobi elliptic function method to special-type nonlinear equations. Physics Letters A, 305(6), 383–392. https://doi.org/10.1016/S0375-9601(02)01516-5
-
Shehata, A. R., Abdel Basser, F., & Abu-amra, S. S. (2019). Exact Solutions For some nonlinear Partial Differential Equations by A Variation of (G’/G)- Expansion Method. Journal of Modern Research, 1(1), 8–12. https://doi.org/10.21608/jmr.2019.11763.1000
-
Ali, A., Seadawy, A. R., & Lu, D. (2018). Dispersive analytical soliton solutions of some nonlinear waves dynamical models via modified mathematical methods. Advances in Difference Equations, 2018(1), 334. https://doi.org/10.1186/s13662-018-1792-7
-
Zayed, E. M., & Gepreel, K. A. (2009). Some applications of the g’/g-expansion method to nonlinear partial differential equations. Applied Mathematics and Computation, 212(1), 1–13. https://doi.org/10.1016/j.amc.2009.02.009
-
Elzaki, T. M., Chamekh, M., & Ahmed, S. A. (2024). Modified integral transform for solving Benney–Luke and singular pseudo-hyperbolic equations. Acta Mechanica et Automatica, 18(1), 139-143. https://doi.org/10.2478/ama-2024-0018
-
Akter, J., & Akbar, M. A. (2015). Exact solutions to the Benney–Luke equation and the phi-4 equations by using modified simple equation method. Results in Physics, 5, 125–130. https://doi.org/10.1016/j.rinp.2015.01.008
-
Khan, U., Ellahi, R., Khan, R., & Mohyud-Din, S. T. (2017). Extracting new solitary wave solutions of Benney–Luke equation and phi-4 equation of fractional order by using (G’/G)-expansion method. Optical and Quantum Electronics, 49(11), 362. https://doi.org/10.1007/s11082-017-1191-4
-
Hussain, A., Usman, M., Zaman, F., Ibrahim, T., & Dawood, A. (2023). Symmetry analysis, closed-form invariant solutions and dynamical wave structures of the Benney–Luke equation using optimal system of Lie subalgebras. Chinese Journal of Physics, 84, 66–88. https://doi.org/10.1016/j.cjph.2023.04.019
-
Xiao, Y., Xue, H., & Zhang, H. (2012). A new extended Jacobi elliptic function expansion method and its application to the generalized shallow water wave equation. Journal of Applied Mathematics, 2012(1), 896748. https://doi.org/10.1155/2012/896748
-
Kurt, A. (2019). New periodic wave solutions of a time fractional integrable shallow water equation. Applied Ocean Research, 85, 128–135. https://doi.org/10.1016/j.apor.2019.01.029
-
Ablowitz, M. J., & Curtis, C. W. (2011). On the evolution of perturbations to solutions of the Kadomtsev–Petviashvilli equation using the Benney–Luke equation. Journal of Physics A: Mathematical and Theoretical, 44(19), 195202. https://doi.org/10.1088/1751-8113/44/19/195202
-
Quintero, J. R., & Montes, A. M. (2020). On the exact controllability and the stabilization for the Benney–Luke equation. Mathematical Control & Related Fields, 10(2), 275–304. https://doi.org/10.3934/mcrf.2019039
-
Paumond, L. (2005). Towards a rigorous derivation of the fifth order KP equation. Mathematics and Computers in Simulation, 69(5–6), 477–491. https://doi.org/10.1016/j.matcom.2005.03.012
-
Khater, M. M. (2025). Computational and numerical solutions to the Benney–Luke equation: Insights into nonlinear long wave dynamics in dispersive media. Alexandria Engineering Journal, 110, 53–63. https://doi.org/10.1016/j.aej.2024.09.110428