Seasonal Variation in the Terpene Composition of Pinus pinea L. (Pinaceae) Needles Collected from Two Distinct Regions
Yıl 2025,
Cilt: 10 Sayı: 2, 583 - 594, 24.12.2025
Merve Kaya
,
Gürkan Semiz
,
Batıkan Günal
,
Gürçay Kıvanç Akyıldız
Öz
This research aims to investigate the effect of temporal changes on the terpene concentration in the needles of P. pinea from two different regions. The study focused on pine trees ($P.$ $pinea$) located in Kozak Plateau (Bergama/Izmir) and the Pamukkale University (Kınıklı/Denizli) campus. Needle samples from randomly marked trees were collected monthly throughout the year, generally on the same dates. The terpene content of the needle leaves was analyzed using GC-MS. The differences in terpene amounts obtained from the trees were statistically evaluated using the R statistical program. As a result of the analysis, 19 terpene-derived compounds were identified from the Kozak Plateau samples and 12 from the Pamukkale University samples. When examining the fluctuations of the compounds in different months, it was determined that α-pinene, camphene, β-pinene, linalool, trans-β-caryophyllene, β-selinene, guaiol, α-eudesmol, and manoyloxide showed statistically significant differences. Additionally, the Pearson correlation analysis results indicated a positive relationship among almost all compounds.
Proje Numarası
2019FEBE049
Kaynakça
-
Turlings, T. C., & Wäckers, F. (2004). Recruitment of predators and parasitoids by herbivore-injured plants. In R. T. Carde, J. G. Millar, (Eds), Advances in Insect Chemical Ecology, (pp. 21-75). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511542664.003
-
Kocabıyık, K., Erbilgin, N., & Semiz, G. (2024). Volatile terpene profiles of needle and phloem tissues of healthy and Tomicus destruens-infested Pinus brutia trees. Journal of Chemical Ecology 50, 529–535. https://doi.org/10.1007/s10886-024-01541-7
-
Pichersky, E., & Raguso, R. A. (2018). Why do plants produce so many terpenoid compounds?. New Phytologist, 220(3), 692-702. https://doi.org/10.1111/nph.14178
-
Michelozzi, M. (1999). Defensive roles of terpenoid mixtures in conifers. Acta Botanica Gallica, 146(1), 73-84. http://dx.doi.org/10.1080/12538078.1999.10515803
-
Ghosh, S. K., Ishangulyyeva, G., Erbilgin, N., & Bonello, P. (2024) Terpenoids are involved in the expression of systemic-induced resistance in Austrian pine. Plant Cell & Environment, 47(6), 2206–2227. https://doi.org/10.1111/pce.14875
-
Kansu, İ. A., (2005). Böcek Çevrebilimi, Ankara Üniversitesi Ziraat Fakültesi Yayınları.
-
Mageroy, M. H., Nagy, N.E., Steffenrem, A., Krokene, P., & Hietala, A.M. (2023) Conifer defences against pathogens and pests—mechanisms, breeding, and management. Current Forestry Reports 9, 429–443. https://doi.org/10.1007/s40725-023-00201-5
-
Farjon, A. (2018). Phylogeny and classification of the genus Pinus. In A. Farjon, (Eds), Pines: Drawings and Descriptions of the genus Pinus, (pp. 218-224). Leiden-Boston: Brill Academic Publishers. https://doi.org/10.1163/9789047415169
-
Coode, M. J. E, & Cullen, J. (1984). Pinus L., In P. H. Davis, (Ed), Flora of Turkey and the East Aegean Islands, Vol. 1, (pp. 72-76). Edinburgh: Edinburgh University Press.
-
Demirci, F., Bayramiç, P., Göger, G., Demirci, B., & Başer, K. (2015). Characterization and antimicrobial evaluation of the essential oil of Pinus pinea L. from Turkey. Natural Volatiles and Essential Oils, 2(2), 39-44.
-
Yaltırık, F. (1988). Gymnospermae (Açık Tohumlular). Istanbul University Publishing.
-
Batur, M. (2015). Kozak Yöresi Fıstıkçamı (Pinus pinea L.) ormanlarında fıstık verimi ile artım ve bazı meteorolojik olaylar arasındaki ilişkiler. Ormancılık Araştırma Dergisi, 1(2), 29-34. https://doi.org/10.17568/oad.89717
-
Akyol, A., & Örücü, Ö. K. (2020). Investigation and evaluation of stone pine (Pinus pinea L.) current and future potential distribution under climate change in Turkey. Cerne, 25(4), 415-423. https://doi.org/10.1590/01047760201925042643
-
Blanch, J. S., Penuelas, J., Sardans, J., & Llusia, J. (2009). Drought, warming and soil fertilization effects on leaf volatile terpene concentrations in Pinus halepensis and Quercus ilex. Acta Physiologiae Plantarum, 31(1), 207-218. https://doi.org/10.1007/s11738-008-0221-z
-
Stierle, A. A., & Stierle, D. B. (2015). Bioactive secondary metabolites produced by the fungal endophytes of conifers. Natural Product Communications, 10(10), 1671-1682.
-
Li, B., Shen, Y. H., He, Y. R., & Zhang, W. D. (2013). Chemical constituents and biological activities of Pinus species. Chemistry & Biodiversity, 10(12), 2133-2160. https://doi.org/10.1002/cbdv.201100373
-
Xiao, Y. C., Ye, L., Zhao, M. X., Yan, C. Q., Wang, W., Huang, Q. S., Liang, K., Meng, B. H., & Ke, X. (2017). Two new sesquiterpene glycosides isolated from the fresh needles of Pinus massoniana Lamb. Natural Product Research, 31(3), 341-346. https://doi.org/10.1080/14786419.2016.1239089
-
Gaspar, M. J., Nunes, J., Rodrigues, M., & Ferreira, L. (2023). Chemotaxonomic differentiation of Pinus species based on n-alkane and long-chain alcohol profiles of needle cuticular waxes. Chemistry & Biodiversity, 20(5), e202300043. https://doi.org/10.1002/cbdv.202300043
-
Wilson, T. M., Rotter, M. C., Ziebarth, E. A., & Carlson, R. E. (2023). Volatile compound chemistry and insect herbivory: Pinus edulis Engelm. (Pinaceae) seed cone resin. Forests 14(9), 1862. https://doi.org/10.3390/f14091862
-
Gershenzon, J., & Dudareva, N. (2007). The function of terpene natural products in the natural world. Nature Chemical Biology 3(7):408-414. https://doi.org/10.1038/nchembio.2007.5
-
Loreto, F., & Schnitzler, J. P. (2010). Abiotic stresses and induced BVOCs. Trends in Plant Science, 15(3),154-166. https://doi.org/10.1016/j.tplants.2009.12.006
-
Blanch, J. S., Peñuelas, J., Sardans, J., & Llusià, J. (2009). Drought, warming and soil fertilization effects on leaf volatile terpene concentrations in Pinus halepensis and Quercus ilex. Acta Physiologiae Plantarum 31, 207-218. https://doi.org/10.1007/s11738-008-0221-z
-
Niinemets, Ü., Arneth, A., Kuhn, U., Monson, R. K., Peñuelas, J., & Staudt, M. (2010). The emission factor of volatile isoprenoids: stress, acclimation, and developmental responses, Biogeosciences, 7, 2203-2223. https://doi.org/10.5194/bg-7-2203-2010
-
Aprotosoaie, A. C., Hăncianu, M., Costache, II., & Miron, A. (2014). Linalool: a review on a key odorant molecule with valuable biological properties. Flavour Fragrance Journal, 29(4),193-219. https://doi.org/10.1002/ffj.3197
-
Maffei, M. (2010). Sites of synthesis, biochemistry and functional role of plant volatiles. South African Journal of Botany, 76(4), 612–631. https://doi.org/10.1016/j.sajb.2010.03.003
-
Manninen, A. M., Tarhanen, S., Vuorinen, M., & Kainulainen, P. (2002). Comparing the variation of needle and wood terpenoids in Scots pine provenances. Journal of Chemical Ecology, 28(1), 211-228. https://doi.org/10.1023/A:1013579222600
-
R Core Team (2020). A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
-
Pianka, E. R. (1988). Evolutionary Ecology, Harper & Row, New York.
-
Mayr, E. (2001). What evolution is. Basic Books, New York.
-
Dudareva N., Negre, F., Nagegowda, D. A., & Orlova I. (2006). Plant volatiles: recent advances and future perspectives. Critical Reviews in Plant Sciences, 25(5), 417–440. https://doi.org/10.1080/07352680600899973
-
Tobolski, J. J., & Honover, J. W. (1971). Genetic variation in monoterpenes of Scotch pine. Forest Science, 17(3), 293-299.
-
Nerg, A., Kainulainen, P., Vuorinen, M., Hanso, M., Holopainen, J. K., & Kurkela, T. (1994). Seasonal and geographical variation of terpenes, resin acids and total phenolics in nursery grown seedlings of Scots pine (Pinus sylvestris L.). New Phytologist, 128(4), 703-713. https://doi.org/10.1111/j.1469-8137.1994.tb04034.x
-
Williams, R. S., Lincoln, D. E., & Thomas, R. B. (1994). Loblolly pine grown under elevated CO2 affects eary instar pine sawfly performance. Oecologia, 98, 64–71. https://doi.org/10.1007/BF00326091
-
Baradat P. H., Marpeau, A., & Walter, J. (1991). Terpene markers. In G. Muller-Starck, M. Ziehe, (Eds), Genetic variation in European populations of forest trees, (pp. 44-66). Frankfurt am Main: Sauerlander’s Verlag.
-
Nasri, N., Tlili, N., Triki, S., Elfalleh, W., Chéraif, I., & Khaldi, A. (2011). Volatile constituents of Pinus pinea L. needles. Journal of Essential Oil Research, 23(2), 15-19. https://doi.org/10.1080/10412905.2011.9700441
-
Hmamouchi, M., Hamamouchi, J., Zouhdi, M., & Bessiere, J. M. (2001). Chemical and antimicrobial properties of essential oils of five Moroccan Pinaceae. Journal of Essential Oil Research, 13(4), 298-302. https://doi.org/10.1080/10412905.2001.9699699
-
Tahar, D., Berramdane, T., Dahmane, D., & Chelghoum, C. (2005). Volatile oil from Pinus pinea leaves cultivated in Algeria. Rivista Italiana Eppos, 39, 9-13.
-
Roussis, V., Petrakis, P. V., Ortiz, A., & Mazomenos, B. E. (1995). Volatile constituents of needles of five Pinus species grown in Greece. Phytochemistry, 39(2), 357-361. https://doi.org/10.1016/0031-9422(94)00885-W
-
Macchioni, F., Cioni, P. L., Flamini, G., Morelli, I., Maccioni, S., & Ansaldi, M. (2003). Chemical composition of essential oils from needles, branches and cones of Pinus pinea, P. halepensis, P. pinaster and P. nigra from central ltaly. Flavour and Fragrance Journal, 18(2), 139-143. https://doi.org/10.1002/ffj.1178
-
Santos, A. M., Vasconcelos, T., Mateus, E., Farrall, M. H., da Silva, M. G., Paiva, M. R., & Branco, M. (2006). Characterization of the volatile fraction emitted by phloems of four Pinus species by solid-phase microextraction and gas chromatography–mass spectrometry. Journal of Chromatography A, 1105(1-2), 191-198. https://doi.org/10.1016/j.chroma.2005.10.049
-
Schönwitz, R., Lohwasser, K., Kloos, M., & Ziegler, H. (1990). Seasonal variation in the monoterpenes in needles of Picea abies (L.) Karst. Trees, 4, 34-40. https://doi.org/10.1007/BF00226238
-
Rudloff, E. V. (1972). Seasonal variation in the composition of the volatile oil of the leaves, buds, and twigs of white spruce (Picea glauca). Canadian Journal of Botany, 50(7), 1595-1603. https://doi.org/10.1139/b72-195
-
Rudloff, E. V. (1975). Seasonal variation in the terpenes of the foliage of black spruce. Phytochemistry, 14(8), 1695-1699. https://doi.org/10.1016/0031-9422(75)85276-9
-
Kelsey, R. G., & Locken, L. J. (1987). Phytotoxic properties of cnicin, a sesquiterpene lactone from Centaurea maculosa (spotted knapweed). Journal of Chemical Ecology, 13, 19-33. https://doi.org/10.1007/BF01020348
-
Threlfall, D., & Whitehead, I. M. (1991). Terpenoid phytoalexins: aspects of biosynthesis, catabolism, and regulation. In J. B. Harborne, F. A. Tomas-Barberan, Ecological Chemistry and Biochemistry of Plant Terpenoids, Oxford Science Publications, Oxford, (pp. 159–208). https://www.gbv.de/dms/bs/toc/01603936X.pdf
-
Steele, C. L., Katoh, S., Bohlmann, J., & Croteau, R. (1998). Regulation of oleoresinosis in grand fir (Abies grandis) differential transcriptional control of monoterpene, sesquiterpene, and diterpene synthase genes in response to wounding. Plant Physiology, 116(4), 1497-1504. https://doi.org/10.1104/pp.116.4.1497
-
Semiz, G., Erbilgin, N., & Holopainen, J. K. (2017). Hylobius abietis L. feeding on the novel host Pinus brutia Ten. increases emission of volatile organic compounds, Journal of Applied Entomology, 141: 133–140. https://doi.org/10.1111/jen.12310
-
Semiz, G., Blande, J., Heijari, J., Isik, K., Niinemets, Ü., & Holopainen, J. K. (2011). Manipulation of VOC emissions with methyl jasmonate and carrageenan in evergreen conifer Pinus sylvestris and evergreen broadleaf Quercus ilex. Plant Biology, 14 (Suppl. 1): 57-65. https://doi.org/10.1111/j.1438-8677.2011.00485.x
İki Farklı Bölgedeki $Pinus$ $pinea$ L. (Pinaceae) İğne Yapraklarındaki Terpen Bileşiminin Mevsimsel Değişimi
Yıl 2025,
Cilt: 10 Sayı: 2, 583 - 594, 24.12.2025
Merve Kaya
,
Gürkan Semiz
,
Batıkan Günal
,
Gürçay Kıvanç Akyıldız
Öz
Bu araştırmanın amacı zamansal değişimlerin $P.$ $pinea$ iğne yapraklarındaki terpen konsantrasyonuna etkisinin iki farklı bölgede araştırılmasıdır. Çalışma alanı ve materyali olarak, Kozak Yaylası (Bergama/İzmir) ve Pamukkale Üniversitesi (Kınıklı/Denizli) Kampüsü içerisindeki fıstıkçamı ağaçları ($P.$ $pinea$) seçilmiştir. Rastgele olarak işaretlenmiş ağaçlara ait iğne yaprak örneklemeleri tüm yılı kapsayacak şekilde her ay genelde aynı tarihlerde gerçekleştirilmiştir. İğne yaprakların içerdiği terpen miktarı GC-MS analizleri ile incelenmiştir. Ağaçlara ait elde edilen terpen miktarlarındaki farklılıkları istatistiksel olarak değerlendirmek için R istatistik programı kullanılmıştır. Analiz sonucunda Kozak Yaylası örneklerinden 19, Pamukkale Üniversitesi örneklerinden ise 12 terpen türevli bileşen (mono- ve seskuiterpen) belirlenmiştir. Bileşiklerin farklı aylardaki dalgalanmaları incelendiğinde α-pinene, camphene, β-pinene, linalool, trans-β-caryophyllene, β-selinene, guaiol, α-eudesmol ve manoyloxide'in istatistiksel olarak anlamlı farklılıklar gösterdiği belirlenmiştir. Ayrıca, Pearson korelasyon analizi sonuçlarına göre hemen hemen tüm bileşikler arasında pozitif yönde bir ilişkinin varlığı da ortaya konulmuştur.
Etik Beyan
Bu çalışmada, “Yükseköğretim Kurumları Bilimsel Araştırma ve Yayın Etiği Yönergesi” kapsamında uyulması gerekli tüm kurallara uyulduğunu, bahsi geçen yönergenin “Bilimsel Araştırma ve Yayın Etiğine Aykırı Eylemler” başlığı altında belirtilen eylemlerden hiçbirinin gerçekleştirilmediğini taahhüt ederiz.
Destekleyen Kurum
Bu çalışma Pamukkale Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından 2019FEBE049 nolu proje ile desteklenmiştir.
Proje Numarası
2019FEBE049
Teşekkür
Bu çalışmada sunulan veriler birinci yazarın yüksek lisans tez çalışmasından elde edilmiştir.
Kaynakça
-
Turlings, T. C., & Wäckers, F. (2004). Recruitment of predators and parasitoids by herbivore-injured plants. In R. T. Carde, J. G. Millar, (Eds), Advances in Insect Chemical Ecology, (pp. 21-75). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511542664.003
-
Kocabıyık, K., Erbilgin, N., & Semiz, G. (2024). Volatile terpene profiles of needle and phloem tissues of healthy and Tomicus destruens-infested Pinus brutia trees. Journal of Chemical Ecology 50, 529–535. https://doi.org/10.1007/s10886-024-01541-7
-
Pichersky, E., & Raguso, R. A. (2018). Why do plants produce so many terpenoid compounds?. New Phytologist, 220(3), 692-702. https://doi.org/10.1111/nph.14178
-
Michelozzi, M. (1999). Defensive roles of terpenoid mixtures in conifers. Acta Botanica Gallica, 146(1), 73-84. http://dx.doi.org/10.1080/12538078.1999.10515803
-
Ghosh, S. K., Ishangulyyeva, G., Erbilgin, N., & Bonello, P. (2024) Terpenoids are involved in the expression of systemic-induced resistance in Austrian pine. Plant Cell & Environment, 47(6), 2206–2227. https://doi.org/10.1111/pce.14875
-
Kansu, İ. A., (2005). Böcek Çevrebilimi, Ankara Üniversitesi Ziraat Fakültesi Yayınları.
-
Mageroy, M. H., Nagy, N.E., Steffenrem, A., Krokene, P., & Hietala, A.M. (2023) Conifer defences against pathogens and pests—mechanisms, breeding, and management. Current Forestry Reports 9, 429–443. https://doi.org/10.1007/s40725-023-00201-5
-
Farjon, A. (2018). Phylogeny and classification of the genus Pinus. In A. Farjon, (Eds), Pines: Drawings and Descriptions of the genus Pinus, (pp. 218-224). Leiden-Boston: Brill Academic Publishers. https://doi.org/10.1163/9789047415169
-
Coode, M. J. E, & Cullen, J. (1984). Pinus L., In P. H. Davis, (Ed), Flora of Turkey and the East Aegean Islands, Vol. 1, (pp. 72-76). Edinburgh: Edinburgh University Press.
-
Demirci, F., Bayramiç, P., Göger, G., Demirci, B., & Başer, K. (2015). Characterization and antimicrobial evaluation of the essential oil of Pinus pinea L. from Turkey. Natural Volatiles and Essential Oils, 2(2), 39-44.
-
Yaltırık, F. (1988). Gymnospermae (Açık Tohumlular). Istanbul University Publishing.
-
Batur, M. (2015). Kozak Yöresi Fıstıkçamı (Pinus pinea L.) ormanlarında fıstık verimi ile artım ve bazı meteorolojik olaylar arasındaki ilişkiler. Ormancılık Araştırma Dergisi, 1(2), 29-34. https://doi.org/10.17568/oad.89717
-
Akyol, A., & Örücü, Ö. K. (2020). Investigation and evaluation of stone pine (Pinus pinea L.) current and future potential distribution under climate change in Turkey. Cerne, 25(4), 415-423. https://doi.org/10.1590/01047760201925042643
-
Blanch, J. S., Penuelas, J., Sardans, J., & Llusia, J. (2009). Drought, warming and soil fertilization effects on leaf volatile terpene concentrations in Pinus halepensis and Quercus ilex. Acta Physiologiae Plantarum, 31(1), 207-218. https://doi.org/10.1007/s11738-008-0221-z
-
Stierle, A. A., & Stierle, D. B. (2015). Bioactive secondary metabolites produced by the fungal endophytes of conifers. Natural Product Communications, 10(10), 1671-1682.
-
Li, B., Shen, Y. H., He, Y. R., & Zhang, W. D. (2013). Chemical constituents and biological activities of Pinus species. Chemistry & Biodiversity, 10(12), 2133-2160. https://doi.org/10.1002/cbdv.201100373
-
Xiao, Y. C., Ye, L., Zhao, M. X., Yan, C. Q., Wang, W., Huang, Q. S., Liang, K., Meng, B. H., & Ke, X. (2017). Two new sesquiterpene glycosides isolated from the fresh needles of Pinus massoniana Lamb. Natural Product Research, 31(3), 341-346. https://doi.org/10.1080/14786419.2016.1239089
-
Gaspar, M. J., Nunes, J., Rodrigues, M., & Ferreira, L. (2023). Chemotaxonomic differentiation of Pinus species based on n-alkane and long-chain alcohol profiles of needle cuticular waxes. Chemistry & Biodiversity, 20(5), e202300043. https://doi.org/10.1002/cbdv.202300043
-
Wilson, T. M., Rotter, M. C., Ziebarth, E. A., & Carlson, R. E. (2023). Volatile compound chemistry and insect herbivory: Pinus edulis Engelm. (Pinaceae) seed cone resin. Forests 14(9), 1862. https://doi.org/10.3390/f14091862
-
Gershenzon, J., & Dudareva, N. (2007). The function of terpene natural products in the natural world. Nature Chemical Biology 3(7):408-414. https://doi.org/10.1038/nchembio.2007.5
-
Loreto, F., & Schnitzler, J. P. (2010). Abiotic stresses and induced BVOCs. Trends in Plant Science, 15(3),154-166. https://doi.org/10.1016/j.tplants.2009.12.006
-
Blanch, J. S., Peñuelas, J., Sardans, J., & Llusià, J. (2009). Drought, warming and soil fertilization effects on leaf volatile terpene concentrations in Pinus halepensis and Quercus ilex. Acta Physiologiae Plantarum 31, 207-218. https://doi.org/10.1007/s11738-008-0221-z
-
Niinemets, Ü., Arneth, A., Kuhn, U., Monson, R. K., Peñuelas, J., & Staudt, M. (2010). The emission factor of volatile isoprenoids: stress, acclimation, and developmental responses, Biogeosciences, 7, 2203-2223. https://doi.org/10.5194/bg-7-2203-2010
-
Aprotosoaie, A. C., Hăncianu, M., Costache, II., & Miron, A. (2014). Linalool: a review on a key odorant molecule with valuable biological properties. Flavour Fragrance Journal, 29(4),193-219. https://doi.org/10.1002/ffj.3197
-
Maffei, M. (2010). Sites of synthesis, biochemistry and functional role of plant volatiles. South African Journal of Botany, 76(4), 612–631. https://doi.org/10.1016/j.sajb.2010.03.003
-
Manninen, A. M., Tarhanen, S., Vuorinen, M., & Kainulainen, P. (2002). Comparing the variation of needle and wood terpenoids in Scots pine provenances. Journal of Chemical Ecology, 28(1), 211-228. https://doi.org/10.1023/A:1013579222600
-
R Core Team (2020). A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
-
Pianka, E. R. (1988). Evolutionary Ecology, Harper & Row, New York.
-
Mayr, E. (2001). What evolution is. Basic Books, New York.
-
Dudareva N., Negre, F., Nagegowda, D. A., & Orlova I. (2006). Plant volatiles: recent advances and future perspectives. Critical Reviews in Plant Sciences, 25(5), 417–440. https://doi.org/10.1080/07352680600899973
-
Tobolski, J. J., & Honover, J. W. (1971). Genetic variation in monoterpenes of Scotch pine. Forest Science, 17(3), 293-299.
-
Nerg, A., Kainulainen, P., Vuorinen, M., Hanso, M., Holopainen, J. K., & Kurkela, T. (1994). Seasonal and geographical variation of terpenes, resin acids and total phenolics in nursery grown seedlings of Scots pine (Pinus sylvestris L.). New Phytologist, 128(4), 703-713. https://doi.org/10.1111/j.1469-8137.1994.tb04034.x
-
Williams, R. S., Lincoln, D. E., & Thomas, R. B. (1994). Loblolly pine grown under elevated CO2 affects eary instar pine sawfly performance. Oecologia, 98, 64–71. https://doi.org/10.1007/BF00326091
-
Baradat P. H., Marpeau, A., & Walter, J. (1991). Terpene markers. In G. Muller-Starck, M. Ziehe, (Eds), Genetic variation in European populations of forest trees, (pp. 44-66). Frankfurt am Main: Sauerlander’s Verlag.
-
Nasri, N., Tlili, N., Triki, S., Elfalleh, W., Chéraif, I., & Khaldi, A. (2011). Volatile constituents of Pinus pinea L. needles. Journal of Essential Oil Research, 23(2), 15-19. https://doi.org/10.1080/10412905.2011.9700441
-
Hmamouchi, M., Hamamouchi, J., Zouhdi, M., & Bessiere, J. M. (2001). Chemical and antimicrobial properties of essential oils of five Moroccan Pinaceae. Journal of Essential Oil Research, 13(4), 298-302. https://doi.org/10.1080/10412905.2001.9699699
-
Tahar, D., Berramdane, T., Dahmane, D., & Chelghoum, C. (2005). Volatile oil from Pinus pinea leaves cultivated in Algeria. Rivista Italiana Eppos, 39, 9-13.
-
Roussis, V., Petrakis, P. V., Ortiz, A., & Mazomenos, B. E. (1995). Volatile constituents of needles of five Pinus species grown in Greece. Phytochemistry, 39(2), 357-361. https://doi.org/10.1016/0031-9422(94)00885-W
-
Macchioni, F., Cioni, P. L., Flamini, G., Morelli, I., Maccioni, S., & Ansaldi, M. (2003). Chemical composition of essential oils from needles, branches and cones of Pinus pinea, P. halepensis, P. pinaster and P. nigra from central ltaly. Flavour and Fragrance Journal, 18(2), 139-143. https://doi.org/10.1002/ffj.1178
-
Santos, A. M., Vasconcelos, T., Mateus, E., Farrall, M. H., da Silva, M. G., Paiva, M. R., & Branco, M. (2006). Characterization of the volatile fraction emitted by phloems of four Pinus species by solid-phase microextraction and gas chromatography–mass spectrometry. Journal of Chromatography A, 1105(1-2), 191-198. https://doi.org/10.1016/j.chroma.2005.10.049
-
Schönwitz, R., Lohwasser, K., Kloos, M., & Ziegler, H. (1990). Seasonal variation in the monoterpenes in needles of Picea abies (L.) Karst. Trees, 4, 34-40. https://doi.org/10.1007/BF00226238
-
Rudloff, E. V. (1972). Seasonal variation in the composition of the volatile oil of the leaves, buds, and twigs of white spruce (Picea glauca). Canadian Journal of Botany, 50(7), 1595-1603. https://doi.org/10.1139/b72-195
-
Rudloff, E. V. (1975). Seasonal variation in the terpenes of the foliage of black spruce. Phytochemistry, 14(8), 1695-1699. https://doi.org/10.1016/0031-9422(75)85276-9
-
Kelsey, R. G., & Locken, L. J. (1987). Phytotoxic properties of cnicin, a sesquiterpene lactone from Centaurea maculosa (spotted knapweed). Journal of Chemical Ecology, 13, 19-33. https://doi.org/10.1007/BF01020348
-
Threlfall, D., & Whitehead, I. M. (1991). Terpenoid phytoalexins: aspects of biosynthesis, catabolism, and regulation. In J. B. Harborne, F. A. Tomas-Barberan, Ecological Chemistry and Biochemistry of Plant Terpenoids, Oxford Science Publications, Oxford, (pp. 159–208). https://www.gbv.de/dms/bs/toc/01603936X.pdf
-
Steele, C. L., Katoh, S., Bohlmann, J., & Croteau, R. (1998). Regulation of oleoresinosis in grand fir (Abies grandis) differential transcriptional control of monoterpene, sesquiterpene, and diterpene synthase genes in response to wounding. Plant Physiology, 116(4), 1497-1504. https://doi.org/10.1104/pp.116.4.1497
-
Semiz, G., Erbilgin, N., & Holopainen, J. K. (2017). Hylobius abietis L. feeding on the novel host Pinus brutia Ten. increases emission of volatile organic compounds, Journal of Applied Entomology, 141: 133–140. https://doi.org/10.1111/jen.12310
-
Semiz, G., Blande, J., Heijari, J., Isik, K., Niinemets, Ü., & Holopainen, J. K. (2011). Manipulation of VOC emissions with methyl jasmonate and carrageenan in evergreen conifer Pinus sylvestris and evergreen broadleaf Quercus ilex. Plant Biology, 14 (Suppl. 1): 57-65. https://doi.org/10.1111/j.1438-8677.2011.00485.x