Araştırma Makalesi
BibTex RIS Kaynak Göster

A New Generalization of Injective Modules

Yıl 2019, Cilt: 4 Sayı: 2, 122 - 129, 18.12.2019
https://doi.org/10.33484/sinopfbd.570134

Öz

    In this paper, as a generalization of injective modules, we define two different modules: modules that have the property (δ-SE) and modules that have the property (δ-SSE), and we investigate basic properties of them. Namely, modules that have a δ-supplement that is a direct summand in its every extension and modules that have a strong δ-supplement in its every extension are tackled here. Particularly, it is proved that a ring whose modules have the property (δ-SE) is δ-semiperfect. Let R be a ring, M be an R-module with IM=0  for an ideal of R. It is shown that if the R-module M has the property (δ-SE), then so does ¯R-module M, under a special condition, where ¯R=R/I. Finally we supply an example showing that a module that has the property (δ-SE) may not have the property (δ-SSE).

Kaynakça

  • [1] Clark J, Lomp C, Vajana N, Wisbauer R, 2006. Frontiers in Mathematics, Lifting Modules, Supplements and Projectivity in Nodule Theory, Birkhauser, Basel.
  • [2] Keskin D, Smith PF, Xue W, 1999. Rings whose modules are ⊕-supplemented, Journal of Algebra, 218, 470-487.
  • [3] Wisbauer R, 1991. Foundations of Modules and Rings, Gordon and Breach Science Publishers, Dusseldorff, 616p.
  • [4] Goodearl KR, 1976. Pure and Applied Mathematics, A series of Monographs and Textbooks, Ring Theory, Nonsingular rings and modules, Marcel Dekker, Inc., New York and Basel.
  • [5] Zhou Y, 2000. Generalizations of perfect, semiperfect, and semiregular rings, Algebra Colloq., 7(3), 305-318.
  • [6] Koşan MT, 2007. lifting and supplemented modules, Algebra Colloq., 14(1), 53 - 60.
  • [7] Al-Takhman K, 2007. Cofinitely δ-supplemented and cofinitely δ-semiperfect modules, 1(12), 601-613.
  • [8] Ungör B, Halıcıoğlu S, Harmancı A, 2014. On a class of supplemented modules, Bull. Malays. Math. Sci. Soc., 37(3), 703-717.
  • [9] Sharpe DW, Vamos P, 1972. Vamos P, Injective modules, Cambridge University Press.
  • [10] Zöschinger H, 1974. Moduln die in jeder Erweiterung ein Komplement haben, Math. Scand. 35, 267-287.
  • [11] Çalışıcı H, Türkmen E, 2012. Modules that have a supplement in every cofinite extension, Georgian Math. J., 19, 209-216.
  • [12] Sözen EÖ, Eryılmaz F, Eren Ş, 2017. Modules that have a weak δ-supplement in every torsion extension, Journal of Science and Arts, 17, 2(39), 3.
  • [13] Türkmen BN, 2016. On generalizations of injective modules, Publications De L’institut Mathematique, 99(113), 249-255.
  • [14] Sözen EÖ, Eren Ş, 2017. Modules that have a supplement in every extension, Eur. J. Pure App. Math.,10(4), 70-738.
  • [15] Talebi Y, Hamzekolaei A, 2009. Closed weak δ-supplemented modules, JP Journal of Algebra, Number Theory and Applications, 13(2), 193-208.[16] Talebi Y, Talaee B, 2009. On generalized supplemented modules, Vietnam J. Math. Math., 37(4), 515-525.
  • [17] Puninski G, 2001. Serial Rings, Kluwer, Dordrecht, Boston, London.
  • [18] Tribak R, 2015. When finitely generated supplemented modules are supplemented, Algebra Colloq., 22(1), 119-130.

İnjektif Modüllerin Yeni Bir Genelleştirmesi

Yıl 2019, Cilt: 4 Sayı: 2, 122 - 129, 18.12.2019
https://doi.org/10.33484/sinopfbd.570134

Öz

    Bu çalışmada, injektif modüllerin yeni bir genelleştirmesi olarak iki farklı modül tanımlanmakta ve bunların temel özellikleri incelenmektedir. Bunlardan birincisi (δ-SE) özelliğine sahip modüller, yani her genişlemesinde direkt toplam terimi olacak şekilde bir δ-tümleyene sahip olan modüller; ikincisi ise (δ-SSE) özelliğine sahip modüller, yani her genişlemesinde güçlü δ-tümleyene sahip olan modüllerdir. Özel olarak, tüm modülleri (δ-SE) özelliğine sahip olan halkaların δ-yarı mükemmel olduğu ispatlanmıştır. Ayrıca R bir halka, M bir R-modül ve R nin IM=0 koşulunu sağlayan  I ideali için ¯R=R/I olmak üzere, özel bir şart altında R-modül olarak (δ-SE) özelliğine sahip M  modülünün ¯R-modül olarak da  (δ-SE) özelliğine sahip olduğu gösterilmiştir. Çalışmanın sonunda (δ-SE) özelliğine sahip fakat (δ-SSE) özelliğine sahip omayan modüle bir örnek verilmiştir.

Kaynakça

  • [1] Clark J, Lomp C, Vajana N, Wisbauer R, 2006. Frontiers in Mathematics, Lifting Modules, Supplements and Projectivity in Nodule Theory, Birkhauser, Basel.
  • [2] Keskin D, Smith PF, Xue W, 1999. Rings whose modules are ⊕-supplemented, Journal of Algebra, 218, 470-487.
  • [3] Wisbauer R, 1991. Foundations of Modules and Rings, Gordon and Breach Science Publishers, Dusseldorff, 616p.
  • [4] Goodearl KR, 1976. Pure and Applied Mathematics, A series of Monographs and Textbooks, Ring Theory, Nonsingular rings and modules, Marcel Dekker, Inc., New York and Basel.
  • [5] Zhou Y, 2000. Generalizations of perfect, semiperfect, and semiregular rings, Algebra Colloq., 7(3), 305-318.
  • [6] Koşan MT, 2007. lifting and supplemented modules, Algebra Colloq., 14(1), 53 - 60.
  • [7] Al-Takhman K, 2007. Cofinitely δ-supplemented and cofinitely δ-semiperfect modules, 1(12), 601-613.
  • [8] Ungör B, Halıcıoğlu S, Harmancı A, 2014. On a class of supplemented modules, Bull. Malays. Math. Sci. Soc., 37(3), 703-717.
  • [9] Sharpe DW, Vamos P, 1972. Vamos P, Injective modules, Cambridge University Press.
  • [10] Zöschinger H, 1974. Moduln die in jeder Erweiterung ein Komplement haben, Math. Scand. 35, 267-287.
  • [11] Çalışıcı H, Türkmen E, 2012. Modules that have a supplement in every cofinite extension, Georgian Math. J., 19, 209-216.
  • [12] Sözen EÖ, Eryılmaz F, Eren Ş, 2017. Modules that have a weak δ-supplement in every torsion extension, Journal of Science and Arts, 17, 2(39), 3.
  • [13] Türkmen BN, 2016. On generalizations of injective modules, Publications De L’institut Mathematique, 99(113), 249-255.
  • [14] Sözen EÖ, Eren Ş, 2017. Modules that have a supplement in every extension, Eur. J. Pure App. Math.,10(4), 70-738.
  • [15] Talebi Y, Hamzekolaei A, 2009. Closed weak δ-supplemented modules, JP Journal of Algebra, Number Theory and Applications, 13(2), 193-208.[16] Talebi Y, Talaee B, 2009. On generalized supplemented modules, Vietnam J. Math. Math., 37(4), 515-525.
  • [17] Puninski G, 2001. Serial Rings, Kluwer, Dordrecht, Boston, London.
  • [18] Tribak R, 2015. When finitely generated supplemented modules are supplemented, Algebra Colloq., 22(1), 119-130.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Esra Öztürk Sözen 0000-0002-2632-2193

Yayımlanma Tarihi 18 Aralık 2019
Gönderilme Tarihi 25 Mayıs 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 4 Sayı: 2

Kaynak Göster

APA Öztürk Sözen, E. (2019). A New Generalization of Injective Modules. Sinop Üniversitesi Fen Bilimleri Dergisi, 4(2), 122-129. https://doi.org/10.33484/sinopfbd.570134


Sinopfbd' de yayınlanan makaleler CC BY-NC 4.0 ile lisanslanmıştır.