Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of Complaints About Wood Composite Materials Using Data Mining Methods

Yıl 2021, Cilt: 6 Sayı: 2, 95 - 114, 29.12.2021
https://doi.org/10.33484/sinopfbd.938500

Öz

Particleboard, MDF and plywood, known as wood composite materials, can be used in many industries, especially the furniture industry. These products are alternative products to natural wood materials. Due to the high prices of massive materials, wood composites can be used instead of these, which we can add the desired features. Although furniture products made of wood composite materials are preferred by consumers, there are many complaints about both the product and the service provided. Web pages and social media, especially twitter, are places where we can reach these complaints. Data mining methods allow us to extract meaningful data from many web pages and twitter data. In this study, complaints about wood composite materials were evaluated using data mining methods using web pages and twitter data. As a result of the evaluation made, it was determined that the most complaints were about the fiberboard composite material, followed by the MDF and plywood products. Thanks to the data mining models used in this study, comprehensive information about consumer behavior has been obtained.

Kaynakça

  • Güler, B., (2001). Odun kompozitleri. Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi, 2, 135-160.
  • Bardak, S. (2014). Kokar ağaç (Ailanthus altissima (Mill.) Swingle) odununun yongalevha endüstrisinde değerlendirilebilme imkânları. (Tez no. 360814) [Doktora Tezi, Karadeniz Teknik Üniversitesi].
  • Bardak, S. & Bardak, T. (2018, 30 November-2 December). Odun kökenli levhalar ve kullanım alanları [Conference presentation]. 2th International Symposium on Innovative Approaches in Scientific Studies (ISAS 2018-Winter), Turkey. www.isassymposium.org
  • Çoşlu E, 2013. Veri madenciliği, XV. Akademik Bilişim Konferansı, Antalya, Türkiye, 615-619.
  • Gibert, K., Izquierdo ,J., Sanchze Marre, M., Hamilton, S.H., Rodriguez-Roda, I., & Holmez, G. (2018). Which method to use? an assessment of data mining methods in environmental data science. Environmental Modelling & Software, 110, 3–27. https://doi.org/10.1016/j.envsoft.2018.09.021
  • Bardak, T & Bardak, S. (2019 11-13 June). Veri madenciliğine dayalı olarak sanal ve geleneksel mağaza memnuniyetinin değerlendirilmesi [Conference presentation]. 8th International Vocational Schools Symposium, Turkey. https://www.umyos.org/
  • Thorleuchter, D., & Poel, D.V. (2013). Web mining based extraction of problem solution ideas. Expert Systems with Applications, 40(10), 3961–3969. https://doi.org/10.1016/j.eswa.2013.01.013
  • Mobasher, B., Cooley, R., & Srivastava, J. (2000). Automatic personalization based on web usage mining. Communications of the ACM, 43(8), 142-151. https://doi.org/10.1145/345124.345169
  • Bardak, S., & Bardak, T. (2019, November 22-24). Mobilya ürünlerine olan talebin web madenciliği ile değerlendirilmesi [Conference presentation]. 4th International Symposium on Innovative Approaches in Engineering and Natural Sciences (ISAS WINTER-2019), Turkey. http://www.isassymposium.org/
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
  • Mitchell, T.M. (1999). Machine learning and data mining. Communications of the ACM, 42(11), 4-9. https://doi.org/10.1145/319382.319388
  • Ankaralı, E., & Külcü, Ö. (2020). Rapidminer ile twitter verilerinin konu modellemesi, Bilgi Yönetimi Dergisi, 3(1), 1-10. https://doi.org/10.33721/by.641878
  • Bifet, A., & Frank, E. (2010, October 6-8). Sentiment knowledge discovery in twitter streaming data [Conference presentation]. In International Conference On Discovery Science. Australia.
  • Bardak, S., & Bardak, T. (2019, November 22-24). Twitter verilerine dayalı olarak üniversite algısının değerlendirilmesi [Conference presentation]. 4th International Symposium on Innovative Approaches in Engineering and Natural Sciences (ISAS WINTER-2019), Turkey. http://www.isassymposium.org/
  • Bardak, S., & Bardak, T. (2018, 30 November-2 December). Üniversite öğrencilerinin mobilya tasarımında geometrik form tercihlerinin veri analizi ile değerlendirilmesi: Sinop Üniversitesi örneği [Conference presentation]. 2th International Symposium on Innovative Approaches in Scientific Studies (ISAS 2018- Winter), Turkey. www.isassymposium.org
  • Kaur, K. (06 Mayıs 2021). Data mining tools. http://www.e2matrix.com/blog/2017/10/14/data-mining-tools/
  • Cuesta, H.A., Coffman, D.L., Branas, C., & Murphy, H.M. (2019). Using decision trees to understand the ınfluence of ındividual- and neighborhood-level factors on urban diabetes and asthma. Health & Place 58, 1-9. https://doi.org/10.1016/j.healthplace.2019.04.009
  • Naik, A., & Saman,t L. (2016). Correlation review of classification algorithm using data mining tool: weka, rapidminer, tanagra, orange and knime. Procedia Computer Science, 85, 662–668, 2016. https://doi.org/10.1016/j.procs.2016.05.251
  • Rasjid, Z.E., & Setiawan, R. (2017). Performance comparison and optimization of text document classification using k-nn and naïve bayes classification techniques. Procedia Computer Science 116, 107–112. https://doi.org/10.1016/j.procs.2017.10.017
  • Ristoski, P., Bizer, C., & Paulheim, H. (2015). Mining the web of linked data with RapidMiner. Journal of Web Semantics, 35 (3), 142–51. https://doi.org/10.1016/j.websem.2015.06.004

Odun Kompozit Malzemelerle İlgili Şikayetlerin Veri Madenciliği Yöntemleriyle Değerlendirilmesi

Yıl 2021, Cilt: 6 Sayı: 2, 95 - 114, 29.12.2021
https://doi.org/10.33484/sinopfbd.938500

Öz

Odun kompozit malzemeler olarak bilinen sunta, MDF ve kontrplak günümüzde mobilya endüstrisi başta olmak üzere birçok endüstride kullanılabilmektedir. Bu ürünler doğal ahşap malzemeye alternatif ürünlerdir. Masif malzeme fiyatlarının yüksekliği nedeniyle artık bunların yerine odun kompozitler kullanılabilmektedir. Odun kompozit malzemelerden üretilen mobilya ürünleri tüketiciler tarafından tercih edilmesine rağmen hem ürün hem de verilen hizmet ile ilgili çok sayıda şikayet yapılmaktadır. Web sayfaları ve sosyal medya özellikle de twitter bu şikayetlere ulaşabildiğimiz yerlerdir. Veri madenciliği yöntemleri çok sayıda bulunan web sayfaları ve twitter verilerinden anlamlı veriler çıkarmamızı sağlamaktadır. Yapılan bu çalışmada odun kompozit malzemeler ile ilgili şikayetlerin web sayfaları ve twitter verileri kullanılarak veri madenciliği yöntemleriyle değerlendirilmesi yapılmıştır. Yapılan değerlendirilme sonucu en fazla şikayetlerin sunta kompozit malzemesinde olduğunu, bunu mdf ve kontrplak ürünlerinin takip ettiği tespit edilmiştir. Bu çalışmada kullanılan veri madenciliği modelleri sayesinde tüketici davranışlarıyla ilgili geniş kapsamlı bilgilere ulaşılmıştır.

Kaynakça

  • Güler, B., (2001). Odun kompozitleri. Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi, 2, 135-160.
  • Bardak, S. (2014). Kokar ağaç (Ailanthus altissima (Mill.) Swingle) odununun yongalevha endüstrisinde değerlendirilebilme imkânları. (Tez no. 360814) [Doktora Tezi, Karadeniz Teknik Üniversitesi].
  • Bardak, S. & Bardak, T. (2018, 30 November-2 December). Odun kökenli levhalar ve kullanım alanları [Conference presentation]. 2th International Symposium on Innovative Approaches in Scientific Studies (ISAS 2018-Winter), Turkey. www.isassymposium.org
  • Çoşlu E, 2013. Veri madenciliği, XV. Akademik Bilişim Konferansı, Antalya, Türkiye, 615-619.
  • Gibert, K., Izquierdo ,J., Sanchze Marre, M., Hamilton, S.H., Rodriguez-Roda, I., & Holmez, G. (2018). Which method to use? an assessment of data mining methods in environmental data science. Environmental Modelling & Software, 110, 3–27. https://doi.org/10.1016/j.envsoft.2018.09.021
  • Bardak, T & Bardak, S. (2019 11-13 June). Veri madenciliğine dayalı olarak sanal ve geleneksel mağaza memnuniyetinin değerlendirilmesi [Conference presentation]. 8th International Vocational Schools Symposium, Turkey. https://www.umyos.org/
  • Thorleuchter, D., & Poel, D.V. (2013). Web mining based extraction of problem solution ideas. Expert Systems with Applications, 40(10), 3961–3969. https://doi.org/10.1016/j.eswa.2013.01.013
  • Mobasher, B., Cooley, R., & Srivastava, J. (2000). Automatic personalization based on web usage mining. Communications of the ACM, 43(8), 142-151. https://doi.org/10.1145/345124.345169
  • Bardak, S., & Bardak, T. (2019, November 22-24). Mobilya ürünlerine olan talebin web madenciliği ile değerlendirilmesi [Conference presentation]. 4th International Symposium on Innovative Approaches in Engineering and Natural Sciences (ISAS WINTER-2019), Turkey. http://www.isassymposium.org/
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
  • Mitchell, T.M. (1999). Machine learning and data mining. Communications of the ACM, 42(11), 4-9. https://doi.org/10.1145/319382.319388
  • Ankaralı, E., & Külcü, Ö. (2020). Rapidminer ile twitter verilerinin konu modellemesi, Bilgi Yönetimi Dergisi, 3(1), 1-10. https://doi.org/10.33721/by.641878
  • Bifet, A., & Frank, E. (2010, October 6-8). Sentiment knowledge discovery in twitter streaming data [Conference presentation]. In International Conference On Discovery Science. Australia.
  • Bardak, S., & Bardak, T. (2019, November 22-24). Twitter verilerine dayalı olarak üniversite algısının değerlendirilmesi [Conference presentation]. 4th International Symposium on Innovative Approaches in Engineering and Natural Sciences (ISAS WINTER-2019), Turkey. http://www.isassymposium.org/
  • Bardak, S., & Bardak, T. (2018, 30 November-2 December). Üniversite öğrencilerinin mobilya tasarımında geometrik form tercihlerinin veri analizi ile değerlendirilmesi: Sinop Üniversitesi örneği [Conference presentation]. 2th International Symposium on Innovative Approaches in Scientific Studies (ISAS 2018- Winter), Turkey. www.isassymposium.org
  • Kaur, K. (06 Mayıs 2021). Data mining tools. http://www.e2matrix.com/blog/2017/10/14/data-mining-tools/
  • Cuesta, H.A., Coffman, D.L., Branas, C., & Murphy, H.M. (2019). Using decision trees to understand the ınfluence of ındividual- and neighborhood-level factors on urban diabetes and asthma. Health & Place 58, 1-9. https://doi.org/10.1016/j.healthplace.2019.04.009
  • Naik, A., & Saman,t L. (2016). Correlation review of classification algorithm using data mining tool: weka, rapidminer, tanagra, orange and knime. Procedia Computer Science, 85, 662–668, 2016. https://doi.org/10.1016/j.procs.2016.05.251
  • Rasjid, Z.E., & Setiawan, R. (2017). Performance comparison and optimization of text document classification using k-nn and naïve bayes classification techniques. Procedia Computer Science 116, 107–112. https://doi.org/10.1016/j.procs.2017.10.017
  • Ristoski, P., Bizer, C., & Paulheim, H. (2015). Mining the web of linked data with RapidMiner. Journal of Web Semantics, 35 (3), 142–51. https://doi.org/10.1016/j.websem.2015.06.004
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Selahattin Bardak 0000-0001-9724-4762

Yayımlanma Tarihi 29 Aralık 2021
Gönderilme Tarihi 17 Mayıs 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 6 Sayı: 2

Kaynak Göster

APA Bardak, S. (2021). Odun Kompozit Malzemelerle İlgili Şikayetlerin Veri Madenciliği Yöntemleriyle Değerlendirilmesi. Sinop Üniversitesi Fen Bilimleri Dergisi, 6(2), 95-114. https://doi.org/10.33484/sinopfbd.938500


Sinopfbd' de yayınlanan makaleler CC BY-NC 4.0 ile lisanslanmıştır.