Derleme
BibTex RIS Kaynak Göster

Mitokondriyal Disfonksiyon ve Otizm

Yıl 2020, , 171 - 182, 16.03.2020
https://doi.org/10.31832/smj.618624

Öz

Otizm, sinir sisteminin gelişimsel
bozukluğundan kaynaklanan ve buna bağlı olarak; tekrarlayıcı ve sınırlı
davranış bulguları ile kendini gösteren sosyal ilişki ve iletişim
yetersizliğidir. Klinik ve genetik heterojeniteye sahip olan bu gruptaki
hastalıklar “Otizm Spektrum Bozuklukları” (OSB) başlığı altında toplanmaktadır.
Son zamanlarda yapılan çalışmalarda ortaya çıkan kanıtlar otizm teşhisi konmuş
bireylerin önemli bir çoğunluğunun mitokondriyal hastalık ve enerji
üretimindeki anormallikler gibi eşlik eden hastalıklara da sahip olduğunu
ortaya koymuştur. Bundan dolayı, otizmin mitokondriyal işlev bozukluğu ile
bağlantılı olabileceği hipotezinin oluşmasına yol açmıştır. Yapılan çalışmaların
çoğunda otizmli bireylerde mitokondriyal elektron taşıma sistem (ETS)
komplekslerinin aktivitesindeki azalma ile mitokondriyal genlerin
ekspresyonunda azalma olduğu bildirilmiştir. Genel olarak, ortaya çıkan
bulgular OSB'nin bozulmuş mitokondriyal fonksiyonla bir ilişkisi olduğu
hipotezini desteklemektedir. Bununla beraber, çalışmaların çoğu küçük bir
grupla yapılmış ve kullanılan tekniklerde değişkenlik göstermiştir. Daha
sağlıklı bir araştırma için ve otizm ile mitokondriyal disfonksiyon arasındaki
bağlantıyı daha iyi kurmak için, sitokrom c oksidaz gibi nöronal aktivite için
önemli bir proteinin ölçümünün yapılması hayati önem arz etmektedir. Yapılacak
bu çalışmalarla şu an için tedavisi olmayan otizmin gelecekte görülme sıklığını
azaltmada önemli aşama kaydedileceği aşikârdır. Bu derleme çalışmasında otizm
ve mitokondriyal disfonksiyon arasındaki bağlantı tartışılmıştır. 

Kaynakça

  • 1. Siddiqui MF, Elwell C, and Johnson MH. Mitochondrial Dysfunction in Autism Spectrum Disorders. Europe PMC 2016; 6(5): 1000190.2. Griffiths KK and Levy RJ. Evidence of Mitochondrial Dysfunction in Autism: Biochemical Links, Genetic-Based Associations, and Non-Energy- Related Mechanisms. Oxidative Medicine and Cellular Longevity 2017; 2017:1-12.3. Legido A, Jethva R and Goldenthal MJ. Mitochondrial dysfunction in autism, Seminars in Pediatric Neurology 2013; 20(3): 163–175.4. Gu F, Chauhan V and Chauhan A. Impaired synthesis and antioxidant defense of glutathione in the cerebellum of autistic subjects: alterations in the activities and protein expression of glutathione-related enzymes. Free Radical Biology & Medicine 2013; 65: 488–496.5. Tang G, Gutierrez PR, Kuo SH, Akman HO, Rosoklija G, Tanji K, Dwork A, Schon EA, Dimauro S, Goldman J, Sulzer D. Mitochondrial abnormalities in temporal lobe of autistic brain. Neurobiology of Disease 2013; 54: 349–361.6. Anitha A, Nakamura K, Thanseem I, Matsuzaki H, Miyachi T, Tsujii M, Iwata Y, Suzuki K, Sugiyama T, Mori N. Downregulation of the expression of mitochondrial electron transport complex genes in autism brains. Brain Pathology (Zurich, Switzerland) 2013; 23(3): 294–302.7. Ford TC and Crewther DP. A comprehensive review of the (1)H-MRS metabolite Spectrum in autism Spectrum disorder. Frontiers in Molecular Neuroscience 2016; 9:14.8. Corrigan NM, Shaw DW, Estes AM, Richards TL, Munson J, Friedman SD, Dawson G, Artru AA, Dager SR. Atypical developmental patterns of brain chemistry in children with autism spectrum disorder. JAMA Psychiatry 2013; 70(9): 964–974.9. Goji A, Ito H, Mori K, Harada M, Hisaoka S, Toda Y, Mori T, Abe Y, Miyazaki M, Kagami S. Assessment of anterior cingulate cortex (ACC) and left cerebellar metabolism in Asperger's syndrome with proton magnetic resonance spectroscopy (MRS). PloS One 2017; 12(1): e0169288, 2017.10. Goldenthal MJ, Damle S, Sheth S, Shah N, Melvin J, Jethva R, Hardison H, Marks H, Legido A. Mitochondrial enzyme dysfunction in autism spectrum disorders; a novel biomarker revealed from buccal swab analysis. Biomarkers in Medicine 2015; 9(10): 957–965.11. Wallace DC and Chalkia D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harbor Perspectives in Biology 2013; 5(11): a021220.12. Devall M, Roubroeks J, Mill J, Weedon M, Lunnon K. Epigenetic regulation of mitochondrial function in neurodegenerative disease: New insights from advances in genomic technologies. Neurosci Lett. 2016; 625:47–55.13. Rossignol DA and Frye RE. Evidence linking oxidative stress, mitochondrial dysfunction, and inflammation in the brain of individuals with autism. Frontiers in Physiology 2014; 5: 150.14. Wen SL, Zhang F, Fenn S. Decreased copy number of mitochondrial DNA: A potential diagnostic criterion for gastric cancer. Oncol Lett. 2013; 6:1098–1102. 15. Guo C, Sun L, Chen X and Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regeneration Research 2013; 8(21): 2003–2014.16. Zorov DB, Juhaszova M and Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiological Reviews 2014; 94(3): 909–950.17. Chen WW, Zhang X and Huang WJ. Role of neuroinflammation in neurodegenerative diseases (review). Molecular Medicine Reports 2016; 13(4): 3391–3396. 18. Bjorklund G, Saad K, Chirumbolo S, Kern JK, Geier DA, Geier MR, Urbina MA. Immune dysfunction and neuroinflammation in autism spectrum disorder. Acta Neurobiologiae Experimentalis 2016; 76(4): 257–268.19. Abdallah MW, Larsen N, Grove J, Nørgaard-Pedersen B, Thorsen P, Mortensen EL, Hougaard DM. Amniotic fluid inflammatory cytokines: potential markers of immunologic dysfunction in autism spectrum disorders. The World Journal of Biological Psychiatry 2013; 14(7): 528– 538.20. Al-Ayadhi LY and Mostafa GA. Elevated serum levels of macrophage-derived chemokine and thymus and activationregulated chemokine in autistic children. Journal of Neuroinflammation 2013; 10(1): 72.21. Suzuki K, Sugihara G, Ouchi Y, Nakamura K, Futatsubashi M, Takebayashi K, Yoshihara Y, Omata K, Matsumoto K, Tsuchiya KJ, Iwata Y, Tsujii M, Sugiyama T, Mori N. Microglial activation in young adults with autism spectrum disorder. JAMA Psychiatry 2013; 70(1): 49–58.22. Brini M, Calì T, Ottolini D and Carafoli E. Intracellular calcium homeostasis and signaling. Metal Ions in Life Sciences 2013; 12: 119–168.23. Ivannikov MV and Macleod GT. Mitochondrial free ca2(+) levels and their effects on energy metabolism in drosophila motor nerve terminals. Biophysical Journal 2013; 104(11): 2353–2361.24. Lindberg D, Shan D, Ayers-Ringler J, Oliveros A, Benitez J, Prieto M, McCullumsmith R, Choi DS. Purinergic signaling and energy homeostasis in psychiatric disorders. Current Molecular Medicine 2015; 15(3): 275–295.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Makaleler
Yazarlar

Mikail Yeniçeri

Yayımlanma Tarihi 16 Mart 2020
Gönderilme Tarihi 11 Eylül 2019
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

AMA Yeniçeri M. Mitokondriyal Disfonksiyon ve Otizm. Sakarya Tıp Dergisi. Mart 2020;10(1):171-182. doi:10.31832/smj.618624

30703

SMJ'de yayınlanan makaleler, Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı kapsamında lisanslanır