Araştırma Makalesi
BibTex RIS Kaynak Göster

Oosit İn Vitro Maturasyonunda Fosfatidilinositol 4,5- Bifosfat (PIP2) Kullanımının Etkisi

Yıl 2020, , 474 - 483, 15.09.2020
https://doi.org/10.31832/smj.728050

Öz

Amaç: Hücresel protein dengesi üzerinde etkili olduğu bilinen fosfatidilinositol 4,5- bifosfat (PIP2)’nin, 8-13 yaş aralığındaki sığır oositlerinin in vitro maturasyon (IVM) sistemine farklı konsantrasyonlarda eklenmesinin, farklı IVM sürelerinde oosit canlılığı ve olgunlaşması üzerindeki etkisinin belirlenmesi amaçlanmıştır.
Gereç ve Yöntemler: Mezbahada kesimi gerçekleşen sığırlardan elde edilen ovaryumlardan aspire edilen kumulus oosit komplekslerinden kumulus hücrelerinin mekanik olarak uzaklaştırılmasıyla soyulan oositler IVM medyumu içerisine alınarak 6 saat ve 24 saat süreyle kültüre edilmiştir. IVM medyumu içerisine 0,1µM (P1), 0,5 µM (P2), 1 µM (P3) ve 5 µM (P4) konsantrasyonlarda PIP2 eklenmiştir. Kültür sürecinin sonunda tüm gruplardaki 1. mayoz bölünmeyi tamamlayabilen olgunlaşmış oositlerin, olgunlaşmamış ancak canlılığını korumuş oositlerin ve ölü oositlerin oranları belirlenmiştir.
Bulgular: 6 saatlik IVM sonrasında en yüksek olgunlaşma oranının P1 grubunda olduğu, ölü oosit oranının ise P4 grubunda en yüksek olduğu belirlenmiştir. 24 saatlik IVM sonrasında da en yüksek olgunlaşma oranı P1 grubunda görülmüş, P4 grubunda ölü oosit oranının en fazla, P1 grubunda ise en düşük düzeyde olduğu saptanmıştır.
Sonuç: PIP2’nin düşük konsantrasyonlarda IVM medyumuna eklenmesi oosit olgunlaşma ve sağ kalım oranlarını artırmaktadır.

Destekleyen Kurum

Tübitak

Proje Numarası

118S772

Teşekkür

Çalışmanın gerçekleşmesi sırasındaki teknik desteklerinden dolayı Narmanlar ET kombinası yetkilisi Yusuf Narman ve veteriner hekim Yılmaz Küçükafacan‘a teşekkür ediyorum.

Kaynakça

  • 1. Hunter RH, Cook B, Baker TG. Dissociation of response to injected gonadotropin between the Graafian follicle and oocyte in pigs. Nature 1976; 260:156-158.
  • 2. Walls ML, Hunter T, Ryan JP, Keelan JA, Nathan E, Hart RJ. In vitro maturation as an alternative to standard in vitro fertilization for patients diagnosed with polycystic ovaries: a comparative analysis of fresh, frozen and cumulative cycle outcomes. Hum Reprod 2015; 30:88-96.
  • 3. Edwards RG. Are minimal stimulation IVF and IVM set to replace routine IVF? Reprod Biomed Online 2007; 14:267-270.
  • 4. Smitz JE, Thompson JG, Gilchrist RB. The promise of in vitro maturation in assisted reproduction and fertility preservation. Semin Reprod Med 2011; 29:24-37.
  • 5. Nogueira D, Sadeu JC, Montagut J. In vitro oocyte maturation: current status. Semin Reprod Med 2012; 30:199-213.
  • 6. Wiser A, Son WY, Shalom-Paz E, Reinblatt SL, Tulandi T, Holzer H. How old is too old for in vitro maturation (IVM) treatment? Eur J Obstet Gynecol Reprod Biol 2011; 159:381-383.
  • 7. Qiao J, Wang ZB, Feng HL, Miao YL, Wang Q, Yu Y, et al. The root of reduced fertility in aged women and possible therapentic options: current status and future perspects. Mol Aspects Med 2014; 38:54-85.
  • 8. Faddy MJ. Follicle dynamics during ovarian ageing. Mol Cell Endocrinol 2000; 163:43-48.
  • 9. Cheng EH, Chen SU, Lee TH, Pai YP, Huang LS, Huang CC, et al. Evaluation of telomere length in cumulus cells as a potential biomarker of oocyte and embryo quality. Hum Reprod 2013; 28:929-936.
  • 10. Kujjo LL, Acton BM, Perkins GA, Ellisman MH, D'Estaing SG, Casper RF, et al. Ceramide and its transport protein (CERT) contribute to deterioration of mitochondrial structure and function in aging oocytes. Mech Ageing Dev 2013; 134:43-52.
  • 11. Tilly JL, Sinclair DA. Germline energetics, aging, and female infertility. Cell Metab 2013; 17:838-850.
  • 12. Kaganovich D, Kopito R, Frydman J. Misfolded proteins partition between two distinct quality control compartments. Nature 2008; 454:1088-1095.
  • 13. Tyedmers J, Mogk A, Bukau B. Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol 2010; 11:777-788.
  • 14. Chen B, Retzlaff M, Roos T, Frydman J. Cellular strategies of protein quality control. Cold Spring Harb Perspect Biol 2011; 3:a004374.
  • 15. Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 2004; 431:805-810.
  • 16. Wolfe KJ, Ren HY, Trepte P, Cyr DM. The Hsp70/90 cochaperone, Sti1, suppresses proteotoxicity by regulating spatial quality control of amyloid-like proteins. Mol Biol Cell 2013; 24:3588-3602.
  • 17. Bohnert KA, Kenyon C. A lysosomal switch triggers proteostasis renewal in the immortal C. elegans germ lineage. Nature 2017; 551:629-633.
  • 18. Ohkuma S, Moriyama Y, Takano T. Identification and characterization of a proton pump on lysosomes by fluorescein-isothiocyanate-dextran fluorescence. Proc Natl Acad Sci U S A 1982; 79:2758-2762.
  • 19. Rothenberger F, Velic A, Stehberger PA, Kovacikova J, Wagner CA. Angiotensin II stimulates vacuolar H+ -ATPase activity in renal acid-secretory intercalated cells from the outer medullary collecting duct. J Am Soc Nephrol 2007; 18:2085-2093.
  • 20. Breton S, Brown D. Regulation of luminal acidification by the V-ATPase. Physiology (Bethesda) 2013; 28:318-329.
  • 21. Li SC, Diakov TT, Xu T, Tarsio M, Zhu W, Couoh-Cardel S, et al. The signaling lipid PI(3,5)P(2) stabilizes V(1)-V(o) sector interactions and activates the V-ATPase. Mol Biol Cell 2014; 25:1251-1262.
  • 22. Erickson BH, Reynolds RA, Murphree RL. Ovarian characteristics and reproductive performance of the aged cow. Biol Reprod 1976; 15:555-560.
  • 23. Baerwald AR, Adams GP, Pierson RA. Characterization of ovarian follicular wave dynamics in women. Biol Reprod 2003; 69:1023-1031.
  • 24. Adams GP, Jaiswal R, Singh J, Malhi P. Progress in understanding ovarian follicular dynamics in cattle. Theriogenology 2008; 69:72-80.
  • 25. Broekmans FJ, Soules MR, Fauser BC. Ovarian aging: mechanisms and clinical consequences. Endocr Rev 2009; 30:465-493.
  • 26. Li XH, Chen SU, Zhang X, Tang M, Kui YR, Wu X, et al. Cryopreserved oocytes of infertile couples undergoing assisted reproductive technology could be an important source of oocyte donation: a clinical report of successful pregnancies. Hum Reprod 2005; 20:3390-3394.
  • 27. Banwell KM, Thompson JG. In vitro maturation of Mammalian oocytes: outcomes and consequences. Semin Reprod Med 2008; 26:162-174.
  • 28. Malhi PS, Adams GP, Singh J. Bovine model for the study of reproductive aging in women: follicular, luteal, and endocrine characteristics. Biol Reprod 2005; 73:45-53.
  • 29. Iwata H, Goto H, Tanaka H, Sakaguchi Y, Kimura K, Kuwayama T, et al. Effect of maternal age on mitochondrial DNA copy number, ATP content and IVF outcome of bovine oocytes. Reprod Fertil Dev 2011; 23:424-432.
  • 30. Takeo S, Kawahara-Miki R, Goto H, Cao F, Kimura K, Monji Y, et al. Age-associated changes in gene expression and developmental competence of bovine oocytes, and a possible countermeasure against age-associated events. Mol Reprod Dev 2013; 80:508-521.
  • 31. Kansaku K, Takeo S, Itami N, Kin A, Shirasuna K, Kuwayama T, et al. Maternal aging affects oocyte resilience to carbonyl cyanide-m-chlorophenylhydrazone -induced mitochondrial dysfunction in cows. PLoS One 2017; 12:e0188099.
  • 32. Yamamoto T, Iwata H, Goto H, Shiratuki S, Tanaka H, Monji Y, et al. Effect of maternal age on the developmental competence and progression of nuclear maturation in bovine oocytes. Mol Reprod Dev 2010; 77:595-604.
  • 33. Slepchenko BM, Terasaki M. Cyclin aggregation and robustness of bio-switching. Mol Biol Cell 2003; 14:4695-4706.
  • 34. Korovila I, Hugo M, Castro JP, Weber D, Hohn A, Grune T, et al. Proteostasis, oxidative stress and aging. Redox Biol 2017; 13:550-567.
  • 35. Wang T, Babayev E, Jiang Z, Li G, Zhang M, Esencan E, et al. Mitochondrial unfolded protein response gene Clpp is required to maintain ovarian follicular reserve during aging, for oocyte competence, and development of pre-implantation embryos. Aging Cell 2018; 17:e12784.
  • 36. Park YS, Kim SS, Kim JM, Park HD, Byun MD. The effects of duration of in vitro maturation of bovine oocytes on subsequent development, quality and transfer of embryos. Theriogenology 2005; 64:123-134.
  • 37. Lin T, Lee JE, Kang JW, Shin HY, Lee JB, Jin DI. Endoplasmic Reticulum (ER) Stress and Unfolded Protein Response (UPR) in Mammalian Oocyte Maturation and Preimplantation Embryo Development. Int J Mol Sci 2019; 20:
  • 38. Kwak SS, Yoon JD, Cheong SA, Jeon Y, Lee E, Hyun SH. The new system of shorter porcine oocyte in vitro maturation (18 hours) using >/=8 mm follicles derived from cumulus-oocyte complexes. Theriogenology 2014; 81:291-301.
  • 39. You J, Kim J, Lim J, Lee E. Anthocyanin stimulates in vitro development of cloned pig embryos by increasing the intracellular glutathione level and inhibiting reactive oxygen species. Theriogenology 2010; 74:777-785.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Makaleler
Yazarlar

Filiz Tepekoy 0000-0003-1901-3787

Proje Numarası 118S772
Yayımlanma Tarihi 15 Eylül 2020
Gönderilme Tarihi 27 Nisan 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

AMA Tepekoy F. Oosit İn Vitro Maturasyonunda Fosfatidilinositol 4,5- Bifosfat (PIP2) Kullanımının Etkisi. Sakarya Tıp Dergisi. Eylül 2020;10(3):474-483. doi:10.31832/smj.728050

30703

SMJ'de yayınlanan makaleler, Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı kapsamında lisanslanır