Meme Kanserinde Tamoksifen Direncinde IL-6/STAT3 Yolağı Temelli EMT Mekanizmasının Rolünün Araştırılması
Yıl 2022,
Cilt: 12 Sayı: 1, 52 - 57, 18.03.2022
Ahmet Yasir Men
,
Erhan Bezdegümeli
,
Gamze Güney Eskiler
,
Merve Nur İnce
,
Asuman Deveci Özkan
Öz
Amaç: Tamoksifen östrojen reseptörlerine seçici bir şekilde bağlanarak anti-östrojenik etki gösteren ve östrojen reseptörü pozitif (ER+) meme kanseri hastalarının endokrin tedavisinde kullanılan bir ajandır. Epitelyal mezenkimal transizyon (EMT) mekanizmasının ER+ meme kanserinde ilaç direnci gelişiminde kritik bir rol oynadığı bilinmektedir. Bu kapsamda mevcut çalışmada ilk kez iki farklı şekilde geliştirilen tamoksifen dirençli meme kanseri hücre gruplarında (R1 ve R2) parental MCF-7 hücreleri ile karşılaştırılarak IL-6/STAT3 temelli EMT aktivitesinin gen ekspresyon düzeyinde araştırılması amaçlanmıştır.
Gereç ve Yöntemler: Mevcut çalışmada MCF7 ve dirençli R1 ve R2 hücrelerinde tamoksifenin sitotoksik etkisi WST-1 analizi ile belirlendikten sonra, her bir hücre grubunda IL-6, STAT3 ve E-Kaderin genlerinin ekspresyon düzeylerindeki değişimler RT-PCR ile analiz edilmiştir.
Bulgular: WST-1 analizi sonucuna göre 48 saat boyunca 1 µM tamoksifen uygulanan MCF-7, R1 ve R2 hücrelerinde canlılık oranlarının sırasıyla %32.0, %119.7 ve %91.9 olarak belirlenmiştir ve R1 ve R2 hücrelerinin sırasıyla 1 µM tamoksifene karşı 3.7 ve 2.9-kat dirençli olduğu tespit edilmiştir. Gelişen tamoksifen direncine bağlı olarak MCF-7 hücrelerine kıyasla E-Kaderin ekspresyon düzeylerinin R1 ve R2 hücrelerinde istatistiksel olarak anlamlı bir şekilde azaldığı belirlenmiştir (p<0.01). Ayrıca, artan tamoksifen konsantrasyonuna bağlı olarak R1 hücrelerinde IL-6 ekspresyon düzeyi daha yüksek iken, R2 hücrelerinde STAT3 mRNA düzeyinin daha yüksek olduğu analiz edilmiştir (p<0.01).
Sonuç: R1 hücrelerinde R2 hücrelerine göre E-kaderin ekspresyonunun daha az olduğu ve dolayısıyla EMT aktivitesinin daha yüksek olabileceği belirlenmiştir. Ancak, EMT mekanizmasını düzenleyen ve direnç gelişiminde potansiyel role sahip olabilecek TGFß/SMAD2 veya WNT/GSK3ß/ß-Catenin gibi diğer sinyal yolakların araştırılması ve EMT aktivitesinde değişimlerin aydınlatılmasına yönelik detaylı çalışmaların yapılması gerekmektedir.
Destekleyen Kurum
Scientific and Technological Research Council of Turkey (TÜBİTAK)-2209-A-Research Project Support Programme for Undergraduate Students
Proje Numarası
1919B012000331
Teşekkür
Bu çalışma “1919B012000331” numaralı proje olarak “2209-A-Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı” tarafından maddi olarak desteklediği için Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)’a teşekkür ederiz.
Kaynakça
- Kaynaklar
1. Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin 2019; 69(1): 7‐34.
- 2. Eroğlu A, Çiçek E. Meme kanserinde moleküler alt tiplere göre cerrahi tedavi yaklaşımları. Yeni Tıp Dergisi 2014; 31(2): 83-87.
- 3. Maughan KL, Lutterbie MA, Ham PS. Treatment of breast cancer. Am Fam Physician 2010; 81(11): 1339-46.
- 4. Buckley M, Goa K. Tamoxifen. Drugs 1989; 37(4): 451-490.
- 5. Binkhorst L, van Gelder T, Mathijssen RH. Individualization of tamoxifen treatment for breast carcinoma. Clin Pharmacol Ther 2012; 92(4): 431-3.
- 6. Cengiz B, Demirel C, Kurtay G. Selektif Östrojen Reseptör Modülatörlerinin Klinik Kullanımı. J Clin Obstet Gynecol 2002; 12(1): 1-7.
- 7. Ali S, Rasool M, Chaoudhry H. Molecular mechanisms and mode of tamoxifen resistance in breast cancer. Bioinformation 2016; 12(3): 135‐139.
- 8. Chang M. Tamoxifen resistance in breast cancer. Biomol Ther (Seoul) 2012; 20(3): 256‐267.
- 9. Ramaswamy B, Lu Y, Teng K. Hedgehog Signaling Is a Novel Therapeutic Target in Tamoxifen-Resistant Breast Cancer Aberrantly Activated by PI3K/AKT Pathway. Cancer Res 2012; 72(19): 5048-5059
- 10. Lehnert M. Chemotherapy resistance in breast cancer. Anticancer Res 1998; 18(3C): 2225-2226.
- 11. Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol 2017; 14(10): 611‐629.
- 12. Musgrove EA, Sutherland RL. Biological determinants of endocrine resistance in breast cancer. Nat Rev Clin Oncol 2009; 9: 631–643.
- 13. Gee JM, Robertson JF, Ellis IO. Phosphorylation of ERK1/2 mitogen-activated protein kinase is associated with poor response to anti-hormonal therapy and decreased patient survival in clinical breast cancer. Int J Cancer 2001; 95(4): 247-54.
- 14. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 2014; 15: 178–196.
- 15. Huang J, Li H, Ren G. Epithelial-mesenchymal transition and drug resistance in breast cancer (Review). Int J Oncol 2015; 47: 840-848.
- 16. Ham IH, Oh HJ, Jin H. Targeting interleukin-6 as a strategy to overcome stroma-induced resistance to chemotherapy in gastric cancer. Mol Cancer 2019; 18(1): 68.
- 17. Cathcart JM, Banach A, Liu A, Chen J, et.al. Interleukin-6 increases matrix metalloproteinase-14 (MMP-14) levels via down-regulation of p53 to drive cancer progression. Oncotarget 2016; 7(38): 61107‐61120.
- 18. Zhang F, Duan S, Tsai Y, Keng PC, et.al. Cisplatin treatment increases stemness through upregulation of hypoxia-inducible factors by interleukin-6 in non-small cell lung cancer. Cancer Sci 2016; 107(6): 746-54.
- 19. Johnson DE, O'Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol 2018; 15(4): 234-248.
- 20. Sullivan NJ, Sasser AK, Axel AE, Vesuna F, et.al. Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene 2009; 28(33): 2940-7.
- 21. Yang L, Han S, Sun Y. An IL6-STAT3 loop mediates resistance to PI3K inhibitors by inducing epithelial-mesenchymal transition and cancer stem cell expansion in human breast cancer cells. Biochem Biophys Res Commun 2014; 453(3): 582-7.
- 22. Wang X. STAT3 mediates resistance of CD44 CD24-/low breast cancer stem cells to tamoxifen in vitro. J Biomed Res 2012; 26(5): 325-335.
- 23. Li X, Lewis MT, Huang J, Gutierrez C, et.al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 2008; 100(9): 672–9.
- 24. Guney Eskiler G, Cecener G, Tunca B, Egeli U. An in vitro model for the development of acquired tamoxifen resistance. Cell Biol Toxicol 2016; 32(6): 563-581.
- 25. Gao Y, Li X, Zeng C, Liu C, et.al. CD63+ Cancer‐Associated Fibroblast Confer Tamoxifen Resistance to Breast Cancer Cells through Exosomal miR‐22. Adv Sci 2020; 7: 2002518.
- 26. Hui W, Fan Y, Shuya L, Ke M, et.al. A mutual activation loop between the Ca2+-activated chloride channel TMEM16A and EGFR/STAT3 signaling promotes breast cancer tumorigenesis. Cancer Lett 2019; 455: 48-59.
- 27. Sansone P, Ceccarelli C, Berishaj M, Chang Q, et.al. Self-renewal of CD133(hi) cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer. Nat Commun 2016; 7: 10442.
- 28. Xing J, Li J, Fu L, Gai J, et.al. SIRT4 enhances the sensitivity of ER-positive breast cancer to tamoxifen by inhibiting the IL-6/STAT3 signal pathway. Cancer Med 2019; 8(16): 7086-7097.
Investigating the Role of IL-6/STAT3 Pathway Mediated EMT Mechanism in Tamoxifen Resistance of Breast Cancer
Yıl 2022,
Cilt: 12 Sayı: 1, 52 - 57, 18.03.2022
Ahmet Yasir Men
,
Erhan Bezdegümeli
,
Gamze Güney Eskiler
,
Merve Nur İnce
,
Asuman Deveci Özkan
Öz
Objective: Tamoxifen is a selective estrogen receptor modulator used as an antiestrogen endocrine therapy agent in the treatment of estrogen-receptor-positive (ER+) breast cancer patients. Epithelial mesenchymal transition (EMT) mechanism plays a crucial role in the development of drug resistance in ER + breast cancer. In this context, the aim of the current study was to identify IL -6/STAT3-mediated EMT activity in two different groups of tamoxifen-resistant breast cancer cells (R1 and R2) and parental MCF -7 cells.
Materials and Methods: The cytotoxic effect of tamoxifen on MCF-7 and R1 and R2 resistant cells was analyzed by WST-1 analysis. Changes in the expression levels of IL -6, STAT3, and E-cadherin genes were determined by RT-PCR.
Results WST-1 analysis results showed that the viability rates of MCF -7, R1, and R2 cells treated with 1 µM tamoxifen for 48 h were 32.0%, 119.7%, and 91.9%, respectively and 3.7- and 2.9-fold resistant to 1 µM tamoxifen was detected in R1 and R2 cells, respectively. E-cadherin expression levels in R1 and R2 cells significantly decreased (p<0.01). Moreover, IL -6 expression level was higher in R1 cells, whereas STAT3 mRNA level was higher in R2 cells (p< 0.01).
Conclusion It was determined that the expression of E-cadherin was lower in R1 cells compared to R2 cells and therefore EMT activity may be higher in R1 cells. However, further studies are required to investigate signaling pathways such as TGF-β/ SMAD2 or WNT/GSK3-β/β-catenin that regulate the EMT mechanism and play a role in resistance development.
Proje Numarası
1919B012000331
Kaynakça
- Kaynaklar
1. Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin 2019; 69(1): 7‐34.
- 2. Eroğlu A, Çiçek E. Meme kanserinde moleküler alt tiplere göre cerrahi tedavi yaklaşımları. Yeni Tıp Dergisi 2014; 31(2): 83-87.
- 3. Maughan KL, Lutterbie MA, Ham PS. Treatment of breast cancer. Am Fam Physician 2010; 81(11): 1339-46.
- 4. Buckley M, Goa K. Tamoxifen. Drugs 1989; 37(4): 451-490.
- 5. Binkhorst L, van Gelder T, Mathijssen RH. Individualization of tamoxifen treatment for breast carcinoma. Clin Pharmacol Ther 2012; 92(4): 431-3.
- 6. Cengiz B, Demirel C, Kurtay G. Selektif Östrojen Reseptör Modülatörlerinin Klinik Kullanımı. J Clin Obstet Gynecol 2002; 12(1): 1-7.
- 7. Ali S, Rasool M, Chaoudhry H. Molecular mechanisms and mode of tamoxifen resistance in breast cancer. Bioinformation 2016; 12(3): 135‐139.
- 8. Chang M. Tamoxifen resistance in breast cancer. Biomol Ther (Seoul) 2012; 20(3): 256‐267.
- 9. Ramaswamy B, Lu Y, Teng K. Hedgehog Signaling Is a Novel Therapeutic Target in Tamoxifen-Resistant Breast Cancer Aberrantly Activated by PI3K/AKT Pathway. Cancer Res 2012; 72(19): 5048-5059
- 10. Lehnert M. Chemotherapy resistance in breast cancer. Anticancer Res 1998; 18(3C): 2225-2226.
- 11. Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol 2017; 14(10): 611‐629.
- 12. Musgrove EA, Sutherland RL. Biological determinants of endocrine resistance in breast cancer. Nat Rev Clin Oncol 2009; 9: 631–643.
- 13. Gee JM, Robertson JF, Ellis IO. Phosphorylation of ERK1/2 mitogen-activated protein kinase is associated with poor response to anti-hormonal therapy and decreased patient survival in clinical breast cancer. Int J Cancer 2001; 95(4): 247-54.
- 14. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 2014; 15: 178–196.
- 15. Huang J, Li H, Ren G. Epithelial-mesenchymal transition and drug resistance in breast cancer (Review). Int J Oncol 2015; 47: 840-848.
- 16. Ham IH, Oh HJ, Jin H. Targeting interleukin-6 as a strategy to overcome stroma-induced resistance to chemotherapy in gastric cancer. Mol Cancer 2019; 18(1): 68.
- 17. Cathcart JM, Banach A, Liu A, Chen J, et.al. Interleukin-6 increases matrix metalloproteinase-14 (MMP-14) levels via down-regulation of p53 to drive cancer progression. Oncotarget 2016; 7(38): 61107‐61120.
- 18. Zhang F, Duan S, Tsai Y, Keng PC, et.al. Cisplatin treatment increases stemness through upregulation of hypoxia-inducible factors by interleukin-6 in non-small cell lung cancer. Cancer Sci 2016; 107(6): 746-54.
- 19. Johnson DE, O'Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol 2018; 15(4): 234-248.
- 20. Sullivan NJ, Sasser AK, Axel AE, Vesuna F, et.al. Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene 2009; 28(33): 2940-7.
- 21. Yang L, Han S, Sun Y. An IL6-STAT3 loop mediates resistance to PI3K inhibitors by inducing epithelial-mesenchymal transition and cancer stem cell expansion in human breast cancer cells. Biochem Biophys Res Commun 2014; 453(3): 582-7.
- 22. Wang X. STAT3 mediates resistance of CD44 CD24-/low breast cancer stem cells to tamoxifen in vitro. J Biomed Res 2012; 26(5): 325-335.
- 23. Li X, Lewis MT, Huang J, Gutierrez C, et.al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 2008; 100(9): 672–9.
- 24. Guney Eskiler G, Cecener G, Tunca B, Egeli U. An in vitro model for the development of acquired tamoxifen resistance. Cell Biol Toxicol 2016; 32(6): 563-581.
- 25. Gao Y, Li X, Zeng C, Liu C, et.al. CD63+ Cancer‐Associated Fibroblast Confer Tamoxifen Resistance to Breast Cancer Cells through Exosomal miR‐22. Adv Sci 2020; 7: 2002518.
- 26. Hui W, Fan Y, Shuya L, Ke M, et.al. A mutual activation loop between the Ca2+-activated chloride channel TMEM16A and EGFR/STAT3 signaling promotes breast cancer tumorigenesis. Cancer Lett 2019; 455: 48-59.
- 27. Sansone P, Ceccarelli C, Berishaj M, Chang Q, et.al. Self-renewal of CD133(hi) cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer. Nat Commun 2016; 7: 10442.
- 28. Xing J, Li J, Fu L, Gai J, et.al. SIRT4 enhances the sensitivity of ER-positive breast cancer to tamoxifen by inhibiting the IL-6/STAT3 signal pathway. Cancer Med 2019; 8(16): 7086-7097.