Derleme
BibTex RIS Kaynak Göster

THE ROLE, IMPORTANCE AND USE OF PROBIOTICS IN COVID-19 DISEASE

Yıl 2022, Cilt: 12 Sayı: 1, 193 - 201, 18.03.2022
https://doi.org/10.31832/smj.933390

Öz

In December 2019, a pneumonia epidemic of unknown etiology spread to the whole world in Wuhan, China. This epidemic was named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the new type of coronavirus, and the disease was named COVID-19. It has been declared a global pandemic by the World Health Organization (WHO). In COVID-19 disease, symptoms such as fever, cough, croup, shortness of breath, and inability to smell have been reported, as well as symptoms of gastrointestinal system diseases (GIS).
SARS-CoV-2 causes pneumonia by binding to ACE-2 receptors found in alveolar epithelial cells of the lungs. It has also been observed that not only lung cells but also intestinal epithelial cells (especially enterocytes) express ACE-2 receptors. Recently, SARS-CoV-2 RNA has also been isolated in the stool material of COVID-19 patients. This indicates that there may be a relationship between COVID-19 and GIS.
Currently, there are drugs and multiple vaccines used for COVID-19, but alternative treatments are being explored to reduce viral load due to insufficiency in vaccine production, vaccine efficacy, storage conditions and transportation. Probiotics are defined as living microorganisms that, in certain doses, have beneficial effects on human health. Scientific studies have revealed the antiviral properties and general immunity-enhancing effects of probiotics. This review aims to discuss the role of probiotics in COVID-19 disease, the possible relationship between SARS-CoV-2 infection and the microbiota.

Kaynakça

  • 1. Ozdemir O, Pala A. Çocuklarda COVID-19 Enfeksiyonunun Tanısı, Tedavisi ve Korunma Yolları. JOURNAL OF BIOTECHNOLOGY AND STRATEGIC HEALTH RESEARCH. 2020.
  • 2. The Johns Hopkins University School of Medicine CRC. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). 2021 [cited 2021 April 25].
  • 3. Baud D, Dimopoulou Agri V, Gibson GR, Reid G, Giannoni E. Using Probiotics to Flatten the Curve of Coronavirus Disease COVID-2019 Pandemic. Front Public Health. 2020; 8: 186.
  • 4. Chen ZL, Zhang C, Yin J, Xin X, Li HM, Wang YP, et al. Challenges and opportunities for ovarian cancer management in the epidemic of Covid-19: lessons learned from Wuhan, China. Journal of Ovarian Research. 2021; 14(1).
  • 5. Sadiq FA. Is it time for microbiome-based therapies in viral infections? Virus Research. 2021; 291: 198203.
  • 6. Antunes AEC, Vinderola G, Xavier-Santos D, Sivieri K. Potential contribution of beneficial microbes to face the COVID-19 pandemic. Food Res Int. 2020; 136: 109577.
  • 7. Muñoz-Carrillo JL, Contreras-Cordero J, Gutierrez O, Villalobos-Gutiérrez P, Ramos-Gracia L, Hernández-Reyes V. Cytokine Profiling Plays a Crucial Role in Activating Immune System to Clear Infectious Pathogens. 2018.
  • 8. Cytokines in the balance. Nature Immunology. 2019; 20(12): 1557-1557.
  • 9. Hassan SA, Sheikh FN, Jamal S, Ezeh JK, Akhtar A. Coronavirus (COVID-19): A Review of Clinical Features, Diagnosis, and Treatment. Cureus. 2020; 12(3).
  • 10. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. Journal of Virology. 2020; 94(7).
  • 11. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respiratory Medicine. 2020; 8(4): 420-422.
  • 12. Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine & Growth Factor Reviews. 2020; 53: 25-32.
  • 13. Zuo T, Zhang F, Lui GCY, Yeoh YK, Li AYL, Zhan H, et al. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology. 2020; 159(3): 944-+.
  • 14. Jin X, Lian J-S, Hu J-H, Gao J, Zheng L, Zhang Y-M, et al. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut. 2020; 69(6): 1002-1009.
  • 15. Dhar D, Mohanty A. Gut microbiota and Covid-19- possible link and implications. Virus Res. 2020; 285: 198018.
  • 16. Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006; 312(5778): 1355-1359.
  • 17. Villanueva-Millan MJ, Perez-Matute P, Oteo JA. Gut microbiota: a key player in health and disease. A review focused on obesity. Journal of Physiology and Biochemistry. 2015; 71(3): 509-525.
  • 18. Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nature Reviews Immunology. 2016; 16(6): 341-352.
  • 19. Khan I, Ullah N, Zha L, Bai Y, Khan A, Zhao T, et al. Alteration of Gut Microbiota in Inflammatory Bowel Disease (IBD): Cause or Consequence? IBD Treatment Targeting the Gut Microbiome. Pathogens. 2019; 8(3).
  • 20. Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, et al. Role of gut microbiota in type 2 diabetes pathophysiology. Ebiomedicine. 2020; 51.
  • 21. Bingula R, Filaire M, Radosevic-Robin N, Bey M, Berthon J-Y, Bernalier-Donadille A, et al. Desired Turbulence? Gut-Lung Axis, Immunity, and Lung Cancer. Journal of Oncology. 2017; 2017.
  • 22. Zhang Q, Li X, Liu X, Dong M, Xiao J, Wang J, et al. Association between maternal antimony exposure and risk of gestational diabetes mellitus: a birth cohort study. Chemosphere. 2020; 246.
  • 23. Keely S, Talley NJ, Hansbro PM. Pulmonary-intestinal cross-talk in mucosal inflammatory disease. Mucosal Immunology. 2012; 5(1): 7-18.
  • 24. Dumas A, Bernard L, Poquet Y, Lugo-Villarino G, Neyrolles O. The role of the lung microbiota and the gut-lung axis in respiratory infectious diseases. Cellular Microbiology. 2018; 20(12).
  • 25. Fanos V, Pintus MC, Pintus R, Marcialis MA. Lung microbiota in the acute respiratory disease: from coronavirus to metabolomics. Journal of Pediatric and Neonatal Individualized Medicine. 2020; 9(1).
  • 26. Sundararaman A, Ray M, Ravindra PV, Halami PM. Role of probiotics to combat viral infections with emphasis on COVID-19. Applied Microbiology and Biotechnology. 2020; 104(19): 8089-8104.
  • 27. Fontana L, Bermudez-Brito M, Plaza-Diaz J, Munoz-Quezada S, Gil A. Sources, isolation, characterisation and evaluation of probiotics. British Journal of Nutrition. 2013; 109: S35-S50.
  • 28. Plaza-Diaz J, Javier Ruiz-Ojeda F, Gil-Campos M, Gil A. Mechanisms of Action of Probiotics. Advances in Nutrition. 2019; 10: S49-S66.
  • 29. Ouwehand AC, Salminen S, Isolauri E. Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology. 2002; 82(1-4): 279-289.
  • 30. Park DM, Bae J-H, Kim MS, Kim H, Kang SD, Shim S, et al. Suitability of Lactobacillus plantarum SPC-SNU 72-2 as a Probiotic Starter for Sourdough Fermentation. Journal of Microbiology and Biotechnology. 2019; 29(11): 1729-1738.
  • 31. Ren D, Li C, Qin Y, Yin R, Du S, Liu H, et al. Evaluation of immunomodulatory activity of two potential probiotic Lactobacillus strains by in vivo tests. Anaerobe. 2015; 35: 22-27.
  • 32. Seddik HA, Bendali F, Gancel F, Fliss I, Spano G, Drider D. Lactobacillus plantarum and Its Probiotic and Food Potentialities. Probiotics and Antimicrobial Proteins. 2017; 9(2): 111-122.
  • 33. Ren D-Y, Li C, Qin Y-Q, Yin R-L, Du S-W, Ye F, et al. Lactobacilli Reduce Chemokine IL-8 Production in Response to TNF-alpha and Salmonella Challenge of Caco-2 Cells. Biomed Research International. 2013; 2013.
  • 34. Hardy H, Harris J, Lyon E, Beal J, Foey AD. Probiotics, Prebiotics and Immunomodulation of Gut Mucosal Defences: Homeostasis and Immunopathology. Nutrients. 2013; 5(6): 1869-1912.
  • 35. Starosila D, Rybalko S, Varbanetz L, Ivanskaya N, Sorokulova I. Anti-influenza Activity of a Bacillus subtilis Probiotic Strain. Antimicrobial Agents and Chemotherapy. 2017; 61(7).
  • 36. Mahooti M, Abdolalipour E, Salehzadeh A, Mohebbi SR, Gorji A, Ghaemi A. Immunomodulatory and prophylactic effects of Bifidobacterium bifidum probiotic strain on influenza infection in mice. World Journal of Microbiology & Biotechnology. 2019; 35(6).
  • 37. Lehtoranta L, Pitkaranta A, Korpela R. Probiotics in respiratory virus infections. European Journal of Clinical Microbiology & Infectious Diseases. 2014; 33(8): 1289-1302.
  • 38. Bermudez-Brito M, Plaza-Diaz J, Munoz-Quezada S, Gomez-Llorente C, Gil A. Probiotic Mechanisms of Action. Annals of Nutrition and Metabolism. 2012; 61(2): 160-174.
  • 39. Mastromarino P, Cacciotti F, Masci A, Mosca L. Antiviral activity of Lactobacillus brevis towards herpes simplex virus type 2: Role of cell wall associated components. Anaerobe. 2011; 17(6): 334-336.
  • 40. An HM, Lee DK, Kim JR, Lee SW, Cha MK, Lee KO, et al. Antiviral activity of Bifidobacterium adolescentis SPM 0214 against herpes simplex virus type 1. Archives of Pharmacal Research. 2012; 35(9): 1665-1671.
  • 41. Chen CC, Baylor M, Bass DM. MURINE INTESTINAL MUCINS INHIBIT ROTAVIRUS INFECTION. Gastroenterology. 1993; 105(1): 84-92.
  • 42. Kim JJ, Khan WI. Goblet cells and mucins: role in innate defense in enteric infections. Pathogens. 2013; 2(1): 55-70.
  • 43. Luoto R, Ruuskanen O, Waris M, Kalliomaki M, Salminen S, Isolauri E. Prebiotic and probiotic supplementation prevents rhinovirus infections in preterm infants: A randomized, placebo-controlled trial. Journal of Allergy and Clinical Immunology. 2014; 133(2): 405- 413.
  • 44. Turner RB, Woodfolk JA, Borish L, Steinke JW, Patrie JT, Muehling LM, et al. Effect of probiotic on innate inflammatory response and viral shedding in experimental rhinovirus infection - a randomised controlled trial. Beneficial Microbes. 2017; 8(2): 207-215.
  • 45. Dongarra ML, Rizzello V, Muccio L, Fries W, Cascio A, Bonaccorsi I, et al. Mucosal Immunology and Probiotics. Current Allergy and Asthma Reports. 2013; 13(1): 19-26.
  • 46. Jiang T, Zhang H, Xu X, Li H, Yang J. Mixed probiotics decrease the incidence of stage II-III necrotizing enterocolitis and death: A systematic review and meta-analysis. Microbial Pathogenesis. 2020; 138.
  • 47. Lurie N, Saville M, Hatchett R, Halton J. Developing Covid-19 Vaccines at Pandemic Speed. New England Journal of Medicine. 2020; 382(21): 1969-1973.
  • 48. Villena J, Guadalupe Vizoso-Pinto M, Kitazawa H. Intestinal Innate Antiviral Immunity and Immunobiotics: Beneficial Effects against Rotavirus Infection. Frontiers in Immunology. 2016; 7.
  • 49. Grizotte-Lake M, Zhong G, Duncan K, Kirkwood J, Iyer N, Smolenski I, et al. Commensals Suppress Intestinal Epithelial Cell Retinoic Acid Synthesis to Regulate Interleukin-22 Activity and Prevent Microbial Dysbiosis. Immunity. 2018; 49(6): 1103-+.
  • 50. Dermyshi E, Wang Y, Yan C, Hong W, Qiu G, Gong X, et al. The "Golden Age" of Probiotics: A Systematic Review and Meta-Analysis of Randomized and Observational Studies in Preterm Infants. Neonatology. 2017; 112(1): 9-23.
  • 51. de Vrese M, Winkler P, Rautenberg P, Harder T, Noah C, Laue C, et al. Effect of Lactobacillus gasseri PA 16/8, Bifidobacterium longum SP 07/3, B-bifidum MF 20/5 on common cold episodes: A double blind, randomized, controlled trial. Clinical Nutrition. 2005; 24(4): 481-491.
  • 52. Waki N, Matsumoto M, Fukui Y, Suganuma H. Effects of probiotic Lactobacillus brevis KB290 on incidence of influenza infection among schoolchildren: an open-label pilot study. Letters in Applied Microbiology. 2014; 59(6): 565-571.
  • 53. Su M, Jia Y, Li Y, Zhou D, Jia J. Probiotics for the Prevention of Ventilator-Associated Pneumonia: A Meta-Analysis of Randomized Controlled Trials. Respiratory Care. 2020; 65(5): 673-685.
  • 54. Veckman V, Miettinen M, Pirhonen J, Siren J, Matikainen S, Julkunen I. Streptococcus pyogenes and Lactobacillus rhamnosus differentially induce maturation and production of Th1-type cytokines and chemokines in human monocyte-derived dendritic cells. Journal of Leukocyte Biology. 2004; 75(5): 764-771.
  • 55. Abt MC, Osborne LC, Monticelli LA, Doering TA, Alenghat T, Sonnenberg GF, et al. Commensal Bacteria Calibrate the Activation Threshold of Innate Antiviral Immunity. Immunity. 2012; 37(1): 158-170.
  • 56. Namba K, Hatano M, Yaeshima T, Takase M, Suzuki K. Effects of Bifidobacterium longum BB536 Administration on Influenza Infection, Influenza Vaccine Antibody Titer, and Cell-Mediated Immunity in the Elderly. Bioscience Biotechnology and Biochemistry. 2010; 74(5): 939-945.
  • 57. Chong H-X, Yusoff NAA, Hor Y-Y, Lew L-C, Jaafar MH, Choi S-B, et al. Lactobacillus plantarum DR7 improved upper respiratory tract infections via enhancing immune and inflammatory parameters: A randomized, double-blind, placebo-controlled study. Journal of Dairy Science. 2019; 102(6): 4783-4797.
  • 58. Anwar F, Altayb HN, Al-Abbasi FA, Al-Malki AL, Kamal MA, Kumar V. Antiviral effects of probiotic metabolites on COVID-19. Journal of Biomolecular Structure & Dynamics. 2020.
  • 59. Din AU, Hassan A, Zhu Y, Yin T, Gregersen H, Wang G. Amelioration of TMAO through probiotics and its potential role in atherosclerosis. Applied Microbiology and Biotechnology. 2019; 103(23-24): 9217-9228.
  • 60. Manichanh C, Borruel N, Casellas F, Guarner F. The gut microbiota in IBD. Nature Reviews Gastroenterology & Hepatology. 2012; 9(10): 599-608.
  • 61. Eguchi K, Fujitani N, Nakagawa H, Miyazaki T. Prevention of respiratory syncytial virus infection with probiotic lactic acid bacterium Lactobacillus gasseri SBT2055. Scientific Reports. 2019; 9.
  • 62. Rautava S, Salminen S, Isolauri E. Specific probiotics in reducing the risk of acute infections in infancy - a randomised, double-blind, placebo-controlled study. British Journal of Nutrition. 2009; 101(11): 1722-1726.
  • 63. Smith TJ, Rigassio-Radler D, Denmark R, Haley T, Touger-Decker R. Effect of Lactobacillus rhamnosus LGG (R) and Bifidobacterium animalis ssp lactis BB-12 (R) on health-related quality of life in college students affected by upper respiratory infections. British Journal of Nutrition. 2013; 109(11): 1999-2007.
  • 64. Zhang H, Yeh C, Jin Z, Ding L, Liu BY, Zhang L, et al. Prospective study of probiotic supplementation results in immune stimulation and improvement of upper respiratory infection rate. Synthetic and Systems Biotechnology. 2018; 3(2): 113-120.
  • 65. Oliva S, Di Nardo G, Ferrari F, Mallardo S, Rossi P, Patrizi G, et al. Randomised clinical trial: the effectiveness of Lactobacillus reuteri ATCC 55730 rectal enema in children with active distal ulcerative colitis. Alimentary Pharmacology & Therapeutics. 2012; 35(3): 327-334.
  • 66. Chen MF, Weng KF, Huang SY, Liu YC, Tseng SN, Ojcius DM, et al. Pretreatment with a heat-killed probiotic modulates monocyte chemoattractant protein-1 and reduces the pathogenicity of influenza and enterovirus 71 infections. Mucosal Immunology. 2017; 10(1): 215-227.
  • 67. Yan F, Cao H, Cover TL, Washington MK, Shi Y, Liu L, et al. Colon-specific delivery of a probiotic-derived soluble protein ameliorates intestinal inflammation in mice through an EGFR-dependent mechanism. Journal of Clinical Investigation. 2011; 121(6): 2242-2253.
  • 68. Wypych TP, Wickramasinghe LC, Marsland BJ. The influence of the microbiome on respiratory health. Nature Immunology. 2019; 20(10): 1279-1290.
  • 69. Forsythe P. Probiotics and Lung Diseases. Chest. 2011; 139(4): 901-908.
  • 70. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. Jama-Journal of the American Medical Association. 2020; 323(11): 1061-1069.
  • 71. Song Y, Liu P, Shi XL, Chu YL, Zhang J, Xia J, et al. SARS-CoV-2 induced diarrhoea as onset symptom in patient with COVID-19. Gut. 2020; 69(6): 1143-+.
  • 72. Saavedra JM, Bauman NA, Oung I, Perman JA, Yolken RH. FEEDING OF BIFIDOBACTERIUM-BIFIDUM AND STREPTOCOCCUS-THERMOPHILUS TO INFANTS IN-HOSPITAL FOR PREVENTION OF DIARRHEA AND SHEDDING OF ROTAVIRUS. Lancet. 1994; 344(8929): 1046-1049.
  • 73. Habib AMG, Ali MAE, Zouaoui BR, Taha MAH, Mohammed BS, Saquib N. Clinical outcomes among hospital patients with Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Bmc Infectious Diseases. 2019; 19(1).
  • 74. Zhang Y, Lu Z, Wang B, Cang J, Ma Y. Gastrointestinal tract symptoms in coronavirus disease 2019: Analysis of clinical symptoms in adult patients. medRxiv. 2020: 2020.03.23.20040279.
  • 75. Barlow A, Landolf KM, Barlow B, Yeung SYA, Heavner JJ, Claassen CW, et al. Review of Emerging Pharmacotherapy for the Treatment of Coronavirus Disease 2019. Pharmacotherapy. 2020; 40(5): 416-437.
  • 76. Kalantar-Zadeh K, Ward SA, Kalantar-Zadeh K, El-Omar EM. Considering the Effects of Microbiome and Diet on SARS-CoV-2 Infection: Nanotechnology Roles. Acs Nano. 2020; 14(5): 5179-5182.
  • 77. Gareau MG, Sherman PM, Walker WA. Probiotics and the gut microbiota in intestinal health and disease. Nature Reviews Gastroenterology & Hepatology. 2010; 7(9): 503-514.
  • 78. Lourens-Hattingh A, Viljoen BC. Yogurt as probiotic carrier food. International Dairy Journal. 2001; 11(1-2): 1-17.

COVID-19 Hastalığında Probiyotiklerin Rolü, Önemi ve Kullanımı

Yıl 2022, Cilt: 12 Sayı: 1, 193 - 201, 18.03.2022
https://doi.org/10.31832/smj.933390

Öz

Aralık 2019 yılında Çin’in Wuhan şehrinde etiyolojisi bilinmeyen bir pnömoni salgını tüm dünyaya yayıldı. Bu salgın yeni tip koronavirüs olan Şiddetli Akut Solunum Sendromu Coronavirus 2 (SARS-CoV-2) olarak adlandırıldı ve hastalığa COVID-19 adı verildi. Dünya Sağlık Örgütü (DSÖ) tarafından global pandemi ilan edildi. COVID -19 hastalığında ateş, öksürük, krup, nefes darlığı, koku alamama gibi semptomların yanında gastrointestinal sistem hastalıkların (GİS) semptomları da bildirilmiştir.
SARS-CoV-2, akciğerlerin alveolar epitel hücrelerinde bulunan ACE-2 reseptörlerine bağlanarak pnömoniye neden olur. Ayrıca sadece akciğer hücreleri değil bağırsak epitel hücrelerinin (özellikle enterositler) de ACE-2 reseptörlerini eksprese ettiği gözlenmiştir. Son zamanlarda COVID-19 hastalarının dışkı materyalinde de SARS-CoV-2 RNA izole edilmiştir. Bu durum COVID-19 ve GİS arasında bir ilişki olabileceğini göstermektedir.
Şu anda, COVID-19 için kullanılan ilaç ve birden fazla aşı mevcuttur ancak aşı üretimi, aşının etkinliği, saklama koşulları ve taşınmasındaki aksaklıklardan dolayı viral yükü azaltmak için alternatif tedaviler araştırılmaktadır. Probiyotikler, belirli dozlarda insan sağlığı üzerine faydalı etkileri olan canlı mikroorganizmalar olarak tanımlanmaktadır. Bilimsel çalışmalar probiyotiklerin antiviral özelliğini ve genel bağışıklığı güçlendirici etkisini ortaya koymuştur. Bu derleme probiyotiklerin COVID-19 hastalığındaki rolünü, SARS-CoV-2 enfeksiyonu ve mikrobiyota arasındaki olası ilişkiyi tartışmayı amaçlamaktadır.

Kaynakça

  • 1. Ozdemir O, Pala A. Çocuklarda COVID-19 Enfeksiyonunun Tanısı, Tedavisi ve Korunma Yolları. JOURNAL OF BIOTECHNOLOGY AND STRATEGIC HEALTH RESEARCH. 2020.
  • 2. The Johns Hopkins University School of Medicine CRC. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). 2021 [cited 2021 April 25].
  • 3. Baud D, Dimopoulou Agri V, Gibson GR, Reid G, Giannoni E. Using Probiotics to Flatten the Curve of Coronavirus Disease COVID-2019 Pandemic. Front Public Health. 2020; 8: 186.
  • 4. Chen ZL, Zhang C, Yin J, Xin X, Li HM, Wang YP, et al. Challenges and opportunities for ovarian cancer management in the epidemic of Covid-19: lessons learned from Wuhan, China. Journal of Ovarian Research. 2021; 14(1).
  • 5. Sadiq FA. Is it time for microbiome-based therapies in viral infections? Virus Research. 2021; 291: 198203.
  • 6. Antunes AEC, Vinderola G, Xavier-Santos D, Sivieri K. Potential contribution of beneficial microbes to face the COVID-19 pandemic. Food Res Int. 2020; 136: 109577.
  • 7. Muñoz-Carrillo JL, Contreras-Cordero J, Gutierrez O, Villalobos-Gutiérrez P, Ramos-Gracia L, Hernández-Reyes V. Cytokine Profiling Plays a Crucial Role in Activating Immune System to Clear Infectious Pathogens. 2018.
  • 8. Cytokines in the balance. Nature Immunology. 2019; 20(12): 1557-1557.
  • 9. Hassan SA, Sheikh FN, Jamal S, Ezeh JK, Akhtar A. Coronavirus (COVID-19): A Review of Clinical Features, Diagnosis, and Treatment. Cureus. 2020; 12(3).
  • 10. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. Journal of Virology. 2020; 94(7).
  • 11. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respiratory Medicine. 2020; 8(4): 420-422.
  • 12. Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine & Growth Factor Reviews. 2020; 53: 25-32.
  • 13. Zuo T, Zhang F, Lui GCY, Yeoh YK, Li AYL, Zhan H, et al. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology. 2020; 159(3): 944-+.
  • 14. Jin X, Lian J-S, Hu J-H, Gao J, Zheng L, Zhang Y-M, et al. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut. 2020; 69(6): 1002-1009.
  • 15. Dhar D, Mohanty A. Gut microbiota and Covid-19- possible link and implications. Virus Res. 2020; 285: 198018.
  • 16. Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006; 312(5778): 1355-1359.
  • 17. Villanueva-Millan MJ, Perez-Matute P, Oteo JA. Gut microbiota: a key player in health and disease. A review focused on obesity. Journal of Physiology and Biochemistry. 2015; 71(3): 509-525.
  • 18. Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nature Reviews Immunology. 2016; 16(6): 341-352.
  • 19. Khan I, Ullah N, Zha L, Bai Y, Khan A, Zhao T, et al. Alteration of Gut Microbiota in Inflammatory Bowel Disease (IBD): Cause or Consequence? IBD Treatment Targeting the Gut Microbiome. Pathogens. 2019; 8(3).
  • 20. Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, et al. Role of gut microbiota in type 2 diabetes pathophysiology. Ebiomedicine. 2020; 51.
  • 21. Bingula R, Filaire M, Radosevic-Robin N, Bey M, Berthon J-Y, Bernalier-Donadille A, et al. Desired Turbulence? Gut-Lung Axis, Immunity, and Lung Cancer. Journal of Oncology. 2017; 2017.
  • 22. Zhang Q, Li X, Liu X, Dong M, Xiao J, Wang J, et al. Association between maternal antimony exposure and risk of gestational diabetes mellitus: a birth cohort study. Chemosphere. 2020; 246.
  • 23. Keely S, Talley NJ, Hansbro PM. Pulmonary-intestinal cross-talk in mucosal inflammatory disease. Mucosal Immunology. 2012; 5(1): 7-18.
  • 24. Dumas A, Bernard L, Poquet Y, Lugo-Villarino G, Neyrolles O. The role of the lung microbiota and the gut-lung axis in respiratory infectious diseases. Cellular Microbiology. 2018; 20(12).
  • 25. Fanos V, Pintus MC, Pintus R, Marcialis MA. Lung microbiota in the acute respiratory disease: from coronavirus to metabolomics. Journal of Pediatric and Neonatal Individualized Medicine. 2020; 9(1).
  • 26. Sundararaman A, Ray M, Ravindra PV, Halami PM. Role of probiotics to combat viral infections with emphasis on COVID-19. Applied Microbiology and Biotechnology. 2020; 104(19): 8089-8104.
  • 27. Fontana L, Bermudez-Brito M, Plaza-Diaz J, Munoz-Quezada S, Gil A. Sources, isolation, characterisation and evaluation of probiotics. British Journal of Nutrition. 2013; 109: S35-S50.
  • 28. Plaza-Diaz J, Javier Ruiz-Ojeda F, Gil-Campos M, Gil A. Mechanisms of Action of Probiotics. Advances in Nutrition. 2019; 10: S49-S66.
  • 29. Ouwehand AC, Salminen S, Isolauri E. Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology. 2002; 82(1-4): 279-289.
  • 30. Park DM, Bae J-H, Kim MS, Kim H, Kang SD, Shim S, et al. Suitability of Lactobacillus plantarum SPC-SNU 72-2 as a Probiotic Starter for Sourdough Fermentation. Journal of Microbiology and Biotechnology. 2019; 29(11): 1729-1738.
  • 31. Ren D, Li C, Qin Y, Yin R, Du S, Liu H, et al. Evaluation of immunomodulatory activity of two potential probiotic Lactobacillus strains by in vivo tests. Anaerobe. 2015; 35: 22-27.
  • 32. Seddik HA, Bendali F, Gancel F, Fliss I, Spano G, Drider D. Lactobacillus plantarum and Its Probiotic and Food Potentialities. Probiotics and Antimicrobial Proteins. 2017; 9(2): 111-122.
  • 33. Ren D-Y, Li C, Qin Y-Q, Yin R-L, Du S-W, Ye F, et al. Lactobacilli Reduce Chemokine IL-8 Production in Response to TNF-alpha and Salmonella Challenge of Caco-2 Cells. Biomed Research International. 2013; 2013.
  • 34. Hardy H, Harris J, Lyon E, Beal J, Foey AD. Probiotics, Prebiotics and Immunomodulation of Gut Mucosal Defences: Homeostasis and Immunopathology. Nutrients. 2013; 5(6): 1869-1912.
  • 35. Starosila D, Rybalko S, Varbanetz L, Ivanskaya N, Sorokulova I. Anti-influenza Activity of a Bacillus subtilis Probiotic Strain. Antimicrobial Agents and Chemotherapy. 2017; 61(7).
  • 36. Mahooti M, Abdolalipour E, Salehzadeh A, Mohebbi SR, Gorji A, Ghaemi A. Immunomodulatory and prophylactic effects of Bifidobacterium bifidum probiotic strain on influenza infection in mice. World Journal of Microbiology & Biotechnology. 2019; 35(6).
  • 37. Lehtoranta L, Pitkaranta A, Korpela R. Probiotics in respiratory virus infections. European Journal of Clinical Microbiology & Infectious Diseases. 2014; 33(8): 1289-1302.
  • 38. Bermudez-Brito M, Plaza-Diaz J, Munoz-Quezada S, Gomez-Llorente C, Gil A. Probiotic Mechanisms of Action. Annals of Nutrition and Metabolism. 2012; 61(2): 160-174.
  • 39. Mastromarino P, Cacciotti F, Masci A, Mosca L. Antiviral activity of Lactobacillus brevis towards herpes simplex virus type 2: Role of cell wall associated components. Anaerobe. 2011; 17(6): 334-336.
  • 40. An HM, Lee DK, Kim JR, Lee SW, Cha MK, Lee KO, et al. Antiviral activity of Bifidobacterium adolescentis SPM 0214 against herpes simplex virus type 1. Archives of Pharmacal Research. 2012; 35(9): 1665-1671.
  • 41. Chen CC, Baylor M, Bass DM. MURINE INTESTINAL MUCINS INHIBIT ROTAVIRUS INFECTION. Gastroenterology. 1993; 105(1): 84-92.
  • 42. Kim JJ, Khan WI. Goblet cells and mucins: role in innate defense in enteric infections. Pathogens. 2013; 2(1): 55-70.
  • 43. Luoto R, Ruuskanen O, Waris M, Kalliomaki M, Salminen S, Isolauri E. Prebiotic and probiotic supplementation prevents rhinovirus infections in preterm infants: A randomized, placebo-controlled trial. Journal of Allergy and Clinical Immunology. 2014; 133(2): 405- 413.
  • 44. Turner RB, Woodfolk JA, Borish L, Steinke JW, Patrie JT, Muehling LM, et al. Effect of probiotic on innate inflammatory response and viral shedding in experimental rhinovirus infection - a randomised controlled trial. Beneficial Microbes. 2017; 8(2): 207-215.
  • 45. Dongarra ML, Rizzello V, Muccio L, Fries W, Cascio A, Bonaccorsi I, et al. Mucosal Immunology and Probiotics. Current Allergy and Asthma Reports. 2013; 13(1): 19-26.
  • 46. Jiang T, Zhang H, Xu X, Li H, Yang J. Mixed probiotics decrease the incidence of stage II-III necrotizing enterocolitis and death: A systematic review and meta-analysis. Microbial Pathogenesis. 2020; 138.
  • 47. Lurie N, Saville M, Hatchett R, Halton J. Developing Covid-19 Vaccines at Pandemic Speed. New England Journal of Medicine. 2020; 382(21): 1969-1973.
  • 48. Villena J, Guadalupe Vizoso-Pinto M, Kitazawa H. Intestinal Innate Antiviral Immunity and Immunobiotics: Beneficial Effects against Rotavirus Infection. Frontiers in Immunology. 2016; 7.
  • 49. Grizotte-Lake M, Zhong G, Duncan K, Kirkwood J, Iyer N, Smolenski I, et al. Commensals Suppress Intestinal Epithelial Cell Retinoic Acid Synthesis to Regulate Interleukin-22 Activity and Prevent Microbial Dysbiosis. Immunity. 2018; 49(6): 1103-+.
  • 50. Dermyshi E, Wang Y, Yan C, Hong W, Qiu G, Gong X, et al. The "Golden Age" of Probiotics: A Systematic Review and Meta-Analysis of Randomized and Observational Studies in Preterm Infants. Neonatology. 2017; 112(1): 9-23.
  • 51. de Vrese M, Winkler P, Rautenberg P, Harder T, Noah C, Laue C, et al. Effect of Lactobacillus gasseri PA 16/8, Bifidobacterium longum SP 07/3, B-bifidum MF 20/5 on common cold episodes: A double blind, randomized, controlled trial. Clinical Nutrition. 2005; 24(4): 481-491.
  • 52. Waki N, Matsumoto M, Fukui Y, Suganuma H. Effects of probiotic Lactobacillus brevis KB290 on incidence of influenza infection among schoolchildren: an open-label pilot study. Letters in Applied Microbiology. 2014; 59(6): 565-571.
  • 53. Su M, Jia Y, Li Y, Zhou D, Jia J. Probiotics for the Prevention of Ventilator-Associated Pneumonia: A Meta-Analysis of Randomized Controlled Trials. Respiratory Care. 2020; 65(5): 673-685.
  • 54. Veckman V, Miettinen M, Pirhonen J, Siren J, Matikainen S, Julkunen I. Streptococcus pyogenes and Lactobacillus rhamnosus differentially induce maturation and production of Th1-type cytokines and chemokines in human monocyte-derived dendritic cells. Journal of Leukocyte Biology. 2004; 75(5): 764-771.
  • 55. Abt MC, Osborne LC, Monticelli LA, Doering TA, Alenghat T, Sonnenberg GF, et al. Commensal Bacteria Calibrate the Activation Threshold of Innate Antiviral Immunity. Immunity. 2012; 37(1): 158-170.
  • 56. Namba K, Hatano M, Yaeshima T, Takase M, Suzuki K. Effects of Bifidobacterium longum BB536 Administration on Influenza Infection, Influenza Vaccine Antibody Titer, and Cell-Mediated Immunity in the Elderly. Bioscience Biotechnology and Biochemistry. 2010; 74(5): 939-945.
  • 57. Chong H-X, Yusoff NAA, Hor Y-Y, Lew L-C, Jaafar MH, Choi S-B, et al. Lactobacillus plantarum DR7 improved upper respiratory tract infections via enhancing immune and inflammatory parameters: A randomized, double-blind, placebo-controlled study. Journal of Dairy Science. 2019; 102(6): 4783-4797.
  • 58. Anwar F, Altayb HN, Al-Abbasi FA, Al-Malki AL, Kamal MA, Kumar V. Antiviral effects of probiotic metabolites on COVID-19. Journal of Biomolecular Structure & Dynamics. 2020.
  • 59. Din AU, Hassan A, Zhu Y, Yin T, Gregersen H, Wang G. Amelioration of TMAO through probiotics and its potential role in atherosclerosis. Applied Microbiology and Biotechnology. 2019; 103(23-24): 9217-9228.
  • 60. Manichanh C, Borruel N, Casellas F, Guarner F. The gut microbiota in IBD. Nature Reviews Gastroenterology & Hepatology. 2012; 9(10): 599-608.
  • 61. Eguchi K, Fujitani N, Nakagawa H, Miyazaki T. Prevention of respiratory syncytial virus infection with probiotic lactic acid bacterium Lactobacillus gasseri SBT2055. Scientific Reports. 2019; 9.
  • 62. Rautava S, Salminen S, Isolauri E. Specific probiotics in reducing the risk of acute infections in infancy - a randomised, double-blind, placebo-controlled study. British Journal of Nutrition. 2009; 101(11): 1722-1726.
  • 63. Smith TJ, Rigassio-Radler D, Denmark R, Haley T, Touger-Decker R. Effect of Lactobacillus rhamnosus LGG (R) and Bifidobacterium animalis ssp lactis BB-12 (R) on health-related quality of life in college students affected by upper respiratory infections. British Journal of Nutrition. 2013; 109(11): 1999-2007.
  • 64. Zhang H, Yeh C, Jin Z, Ding L, Liu BY, Zhang L, et al. Prospective study of probiotic supplementation results in immune stimulation and improvement of upper respiratory infection rate. Synthetic and Systems Biotechnology. 2018; 3(2): 113-120.
  • 65. Oliva S, Di Nardo G, Ferrari F, Mallardo S, Rossi P, Patrizi G, et al. Randomised clinical trial: the effectiveness of Lactobacillus reuteri ATCC 55730 rectal enema in children with active distal ulcerative colitis. Alimentary Pharmacology & Therapeutics. 2012; 35(3): 327-334.
  • 66. Chen MF, Weng KF, Huang SY, Liu YC, Tseng SN, Ojcius DM, et al. Pretreatment with a heat-killed probiotic modulates monocyte chemoattractant protein-1 and reduces the pathogenicity of influenza and enterovirus 71 infections. Mucosal Immunology. 2017; 10(1): 215-227.
  • 67. Yan F, Cao H, Cover TL, Washington MK, Shi Y, Liu L, et al. Colon-specific delivery of a probiotic-derived soluble protein ameliorates intestinal inflammation in mice through an EGFR-dependent mechanism. Journal of Clinical Investigation. 2011; 121(6): 2242-2253.
  • 68. Wypych TP, Wickramasinghe LC, Marsland BJ. The influence of the microbiome on respiratory health. Nature Immunology. 2019; 20(10): 1279-1290.
  • 69. Forsythe P. Probiotics and Lung Diseases. Chest. 2011; 139(4): 901-908.
  • 70. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. Jama-Journal of the American Medical Association. 2020; 323(11): 1061-1069.
  • 71. Song Y, Liu P, Shi XL, Chu YL, Zhang J, Xia J, et al. SARS-CoV-2 induced diarrhoea as onset symptom in patient with COVID-19. Gut. 2020; 69(6): 1143-+.
  • 72. Saavedra JM, Bauman NA, Oung I, Perman JA, Yolken RH. FEEDING OF BIFIDOBACTERIUM-BIFIDUM AND STREPTOCOCCUS-THERMOPHILUS TO INFANTS IN-HOSPITAL FOR PREVENTION OF DIARRHEA AND SHEDDING OF ROTAVIRUS. Lancet. 1994; 344(8929): 1046-1049.
  • 73. Habib AMG, Ali MAE, Zouaoui BR, Taha MAH, Mohammed BS, Saquib N. Clinical outcomes among hospital patients with Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Bmc Infectious Diseases. 2019; 19(1).
  • 74. Zhang Y, Lu Z, Wang B, Cang J, Ma Y. Gastrointestinal tract symptoms in coronavirus disease 2019: Analysis of clinical symptoms in adult patients. medRxiv. 2020: 2020.03.23.20040279.
  • 75. Barlow A, Landolf KM, Barlow B, Yeung SYA, Heavner JJ, Claassen CW, et al. Review of Emerging Pharmacotherapy for the Treatment of Coronavirus Disease 2019. Pharmacotherapy. 2020; 40(5): 416-437.
  • 76. Kalantar-Zadeh K, Ward SA, Kalantar-Zadeh K, El-Omar EM. Considering the Effects of Microbiome and Diet on SARS-CoV-2 Infection: Nanotechnology Roles. Acs Nano. 2020; 14(5): 5179-5182.
  • 77. Gareau MG, Sherman PM, Walker WA. Probiotics and the gut microbiota in intestinal health and disease. Nature Reviews Gastroenterology & Hepatology. 2010; 7(9): 503-514.
  • 78. Lourens-Hattingh A, Viljoen BC. Yogurt as probiotic carrier food. International Dairy Journal. 2001; 11(1-2): 1-17.
Toplam 78 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Makaleler
Yazarlar

Öner Özdemir 0000-0002-5338-9561

Ayşegül Pala 0000-0001-9056-144X

Yayımlanma Tarihi 18 Mart 2022
Gönderilme Tarihi 5 Mayıs 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 12 Sayı: 1

Kaynak Göster

AMA Özdemir Ö, Pala A. COVID-19 Hastalığında Probiyotiklerin Rolü, Önemi ve Kullanımı. Sakarya Tıp Dergisi. Mart 2022;12(1):193-201. doi:10.31832/smj.933390

30703

SMJ'de yayınlanan makaleler, Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı kapsamında lisanslanır