Araştırma Makalesi
BibTex RIS Kaynak Göster

H2O2 and NO mitigate salt stress by regulating antioxidant enzymes in in two eggplant (Solanum melongena L.) genotypes

Yıl 2022, Cilt: 11 Sayı: 1, 1 - 6, 27.07.2022
https://doi.org/10.21657/topraksu.977238

Öz

H2O2 and NO are the key molecules of plant signalling and perception. In this study, we aimed at the antioxidant capacity of foliar-applied eggplant genotypes which shows different responses to salinity (Artvin: salt-sensitive; Mardin: salt-tolerant). For this purpose, H2O2 and NO donor (SNP) were sprayed to the leaves of the seedlings for 2 days then exposed to 100 mM NaCl for 10 days. The amount of Malondialdehyde (MDA), which increased with salt application and is the most important indicator of lipid peroxidation, decreased significantly with individual or combined pretreatments of H2O2 and NO donors. SOD and CAT enzyme activities are affected by foliar spraying of donors. While CAT enzyme activity increased significantly with salt application in both genotypes, it showed a significant increase again with individual or combined application of donors. SOD enzyme activity, on the other hand, showed a minor increase in both genotypes with the application of salt stress, while it was significantly increased with the application of donors individually or together.

Kaynakça

  • Belligni, M. V., & Lamattina, L. (2001). Nitric Oxide in plants: the history is just beginning. Plant, Cell and Environment. 24, 267-278. http://dx.doi.org/10.1046/j.1365-3040.2001.00672.x
  • Cakmak, I., & Marschner, H. (1992). Magnesium deficiency and high light intensity enhance activities of superoxide dismutase ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiology 98(4):1222-1227. https://doi.org/101104/pp9841222
  • Chen, V.P., & Li, P. H. (2002). Membrane stabilization by abscisic acid under cold aids proline in allevi alleviating chilling injury in maize (Zea mays L.) cultured cells, Plant, Cell and Environment. 25, 955–962. https://doi.org/10.1046/j.1365-3040.2002.00874.x
  • de Azevedo Neto, A. D., Prisco, J. T., Ene´as-Filho, J., Medeiros, J. V, & Gomes-Filho, E. (2005). Hydrogen peroxide pre-treatment induces salt stress acclimation in maize plants. Journal of Plant Physiology, 162(10), 1114-1122. https://doi.org/10.1016/j.jplph.2005.01.007
  • de Pinto, M. C., Paradiso, A., Leonetti, P., & Gara, L. (2006). Hydrogen peroxide, nitric oxide and cytosolic ascorbate peroxidase at the crossroad between defence and cell death. Plant Journal. 48, 784–795. https://doi.org/10.1111/j.1365-313X.2006.02919.x
  • Fan, H., Guo, S., Jiao, Y., Zhang, R., & Li, J. (2007). Effects of exogenous nitric oxide on growth, active oxygen species metabolism, and photosynthetic characteristics in cucumber seedlings under NaCl stress. Frontiers of Agriculture in China, 1, 308–314. http://dx.doi.org/10.1007/s11703-007-0052-5
  • Furtana Baysal, G., & Tıpırdamaz, R. (2010). Physiological and antioxidant response of three cultivars of cucumber (Cucumis sativus L.) to salinity. Turkish Journal of Biology. 34, 287–296. https://doi.org/10.3906/biy-0812-10
  • Fridovich, I. (1986). Biological effects of the superoxide radical. Archives of Biochemistry and Biophysics. 247(1): 1-11. https://doi.org/10.1016/0003-9861(86)90526-6
  • Gao, J., Thelen, K.D., Min, D.H., Smith, S, Hao, X., & Gehl, R. (2010). Effects of manure and fertilizer applications on canola oil content and fatty acid composition. Agronomy Journal, 102, 790-797. http://dx.doi.org/10.2134/agronj2009.0368
  • Gechev, T.S., & Hille, J. (2005). Hydrogen peroxide as a signal controlling plant programmed cell death. Journal of Cell Biology 168(1):17-20. http://dx.doi.org/10.1083/jcb.200409170
  • Gechev, T., Gadjev, I., Van Breusegem, F., Inzé, D., Dukiandjiev, S., Toneva, V., & Minkov, I. (2002). Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cellular and Molecular Life Sciences. 9, 708-714. http://dx.doi.org/10.1007/s00018-002-8459-x
  • Giannopolitis, C.N., & Ries, S.K. (1977). Superoxide dismutases: I Occurrence in higher plants Plant Physiology. 59(2): 309-314. https://doi.org/10.1104/pp.59.2.309 Gondim, F.A., Gomes-Filho, E., & Costa, J.H. (2012). Catalase plays a key role in salt stress acclimation induced by hydrogen peroxide pretreatment in maize. Plant Physiology and Biochemistry. 56, 62–71. https://doi.org/10.1016/j.plaphy.2012.04.012
  • Gupta, K.J.& Igamberdiev A.U (2015). Compartmentalization of Reactive Oxygen Species and Nitric Oxide Production in Plant Cells: An Overview. In Gupta, K.J.& Igamberdiev A.U. (Eds.) Reactive Oxygen and Nitrogen Species Signaling and Communication in Plants, Signaling and Communication in Plants. (1nd Ed., pp: 1-14). https://doi.org/10.1007/978-3-319-10079-1
  • Güler, N.S., & Pehlivan, N. (2016). Exogenous low-dose hydrogen peroxide enhances drought tolerance of soybean (Glycine max L.) through inducing antioxidant system. Acta biologica Hungarica. 67, 169-183. https://doi.org/10.1556/018.67.2016.2.5
  • Hajihashemi, S., Skalicky, M., Brestic, M., & Pavla, V. (2020). Cross-talk between nitric oxide, hydrogen peroxide and calcium in salt-stressed Chenopodium quinoa Willd. At seed germination stage. Plant Physiology and Biochemistry. 154:657-664. https://doi.10.1016/j.plaphy.2020.07.022.
  • Hasanuzzaman, M., Nahar K., Hossain, M.S., Mahmud, J.A., Rahman, A., Inafuku, M., Oku, H., & Fujita, M. (2017). Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. International Journal of Molecular Science. 18, 200-213. https://doi.org/10.3390/ijms18010200
  • Hasanuzzaman, M., & Fujita, M. (2012). Selenium and plant health: the physiological role of selenium. In: Aomori C, Hokkaido M (eds). Selenium: sources, functions and health effects. New York: Nova Publishers, 12-96. https://dx.doi.org/10.3923/jps.2010.354.375
  • Hayat, S., Yadav, S., Alyemeni, M.N, Irfan, M., Wan, A.Si & Ahmad, A. (2013) Alleviation of Salinity Stress With Sodium Nitroprusside in Tomato,International Journal of Vegetable Science, 19(2), 164-176. https://doi.org/10.1080/19315260.2012.697107
  • Hung, S., Yu, C., & Lin, C. (2005). Hydrogen peroxide functions as a stress signal in plants. Botanical Bulletin of Academia Sinica, 46, 1-10. https://doi.org/10.7016/BBAS.200501.0001
  • Kim, Y. H., Latif Khan, A., & Waqas, M. (2013). Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress. Journal of Plant Growth Regulation, 20, 154-158. https://doi.org/10.1007/s00344-013-9356-2
  • Li, J. T., Qiu, Z. B., Zhang, X. W., & Wang, L. S. (2011). Exogenous hydrogen peroxide can enhance tolerance of wheat seedlings to salt stress. Acta Physiol. Plant. 33, 835–842. http://dx.doi.org/10.1007/s11738-010-0608-5
  • Li, Q. Y., Niu, H. B., Yin, J., Wang, M. B., Shao, H. B., Deng, D. Z., Chen, X. X., Ren, J. P., & Li, Y.C. (2008). Protective role of exogenous nitric oxide against oxidative-stress induced by salt stress in barley (Hordeum vulgare). Colloids and Surfaces Biointerfaces, 65, 220-225. https://doi.org/10.1016/j.colsurfb.2008.04.007
  • Lutts, S., Kinet, J.M., and Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance, Annals of Botany, 78, 389–398. https://doi.org/10.1006/ANBO.1996.0134
  • Mhamdi, A., Queval, G., Chaouch, S., Vanderauwera, F., Van Breusegem, F. & Noctor, G. (2010). Catalase function in plants: A focus on Arabidopsis mutants as stress-mimic models. Journal of Experimental Botany. 61, 4197-4220. http://dx.doi.org/10.1093/jxb/erq282
  • Mishra, A., & Choudhuri, M.A., (1999). Effects of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice. Biologia Plantarum. 42, 409–415. https://doi.org/10.1023/A%3A1002469303670
  • Munns, R, & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Reviews of Plant Biology 59, 651–681. http://dx.doi.org/10.1146/annurev.arplant.59.032607.092911
  • Neill, J. S., Desikan, R., Clarke, A., Hurst, R. D., & Hanckok, J. T. (2002). Hydrogen peroxide and nitric oxide as signaling molecules in plants. Journal of Experimental Botany, 53, 1237- 1247. http://dx.doi.org/10.1093/jexbot/53.372.1237
  • Nohar, S. D., Keshaw, P. R., Ankit, Y., Shobhana, R., Bharat Lal, S., & Khageshwar, S. P. (2015). Fluoride Contamination of Groundwater and Health Hazard in Central India, Journal of Water Resource and Protection. 7, 1416-1428. http://dx.doi.org/10.4236/jwarp.2015.717115
  • Qiao, W. H., Xiao, S. H., Yu, L., and Fan, L. M. (2009). Expression of a rice gene OsNOA1 re-establishes nitric oxide synthesis and stress-related gene expression for salttolerance in Arabidopsis nitric oxide-associated 1 mutant Atnoa1. Environmental and Experimental Botany. 65, 90–98. https://doi.org/10.1016/J.ENVEXPBOT.2008.06.002
  • Quan, L. J., Zhang, B., Shi, W. W., & Li, H. Y. (2008). Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. Journal of integrative plant biology. 50(1), 2–18. https://doi.org/10.1111/j.1744-7909.2007.00599.x
  • Saleh, A.A.H. (2007). Amelioration of chilling injuriesin mung bean (Vigna radiata L.) seedlings by paclobutarazol, abscisik acid and hydrogen peroxide. American Journal of Physiology. 2(6), 318-332. https://dx.doi.org/10.3923/ajpp.2007.318.332
  • Sathiyaraj, G., Srinivasan, S., Kim, Y.J., Lee, O.R., Parvin, S., Balusamy, S.R., Khorolragchaa, A., & Yang, D.C. (2014). Acclimation of hydrogen peroxide enhances salt tolerance by activating defense-related proteins in Panax ginseng C.A. Meyer. Netherlands Molecular Biology Reports. 41, 3761-3771. https://doi.org/10.1007/s11033-014-3241-3
  • Tanou, G., Molassiotis, A., & Diamantidis, G. (2009a). Hydrogen peroxide- and nitric oxide-induced systemic antioxidant prime-like activity under NaCl-stress and stress-free conditions in citrus plants. Journal of Plant Physiology. 166, 1904-1913. https://doi.org/10.1016/j.jplph.2009.06.012
  • Tanou, G., Molassiotis, A., & Diamantidis, G. (2009b). Induction of reactive oxygen species and necrotic death like destruction in strawberry leaves by salinity. Environmental and Experimental Botany, 65, 270–281. http://dx.doi.org/10.1016/j.envexpbot.2008.09.005
  • Uchida, A., Jagendorf, A. T., Hibino, T., & Takabe, T. (2002). Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science. 163, 515–523. http://dx.doi.org/10.1016/S0168-9452(02)00159-0
  • Wahid, I., Rani, P., Kumari, S., Ahmad, R., Hussain, S.J., Alamri, S., Tripathy, N., M. Iqbal, R., Khan, M.I.R. (2022). Biosynthesized gold nanoparticles maintained nitrogen metabolism, nitric oxide synthesis, ions balance, and stabilizes the defense systems to improve salt stress tolerance in wheat. Chemosphere. 287(2), 132-142. https://doi.org/10.1016/j.chemosphere.2021.132142
  • Yaşar, F., (2003). Tuz stresi altındaki patlıcan genotiplerinde bazı antioksidant enzim aktivitelerinin in vitro ve in vivo olarak incelenmesi, Doktora Tezi, Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü, Van, 15-36.
  • Zhang, F., Wang, Y., Yang, Y., Wu, H., Wang, D., & Liu, J. (2007). İnvolvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses of Populus euphratica. Plant, Cell and Environment, 30, 775-785. https://doi.org/10.1111/j.1365-3040.2007.01667.x
Yıl 2022, Cilt: 11 Sayı: 1, 1 - 6, 27.07.2022
https://doi.org/10.21657/topraksu.977238

Öz

Kaynakça

  • Belligni, M. V., & Lamattina, L. (2001). Nitric Oxide in plants: the history is just beginning. Plant, Cell and Environment. 24, 267-278. http://dx.doi.org/10.1046/j.1365-3040.2001.00672.x
  • Cakmak, I., & Marschner, H. (1992). Magnesium deficiency and high light intensity enhance activities of superoxide dismutase ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiology 98(4):1222-1227. https://doi.org/101104/pp9841222
  • Chen, V.P., & Li, P. H. (2002). Membrane stabilization by abscisic acid under cold aids proline in allevi alleviating chilling injury in maize (Zea mays L.) cultured cells, Plant, Cell and Environment. 25, 955–962. https://doi.org/10.1046/j.1365-3040.2002.00874.x
  • de Azevedo Neto, A. D., Prisco, J. T., Ene´as-Filho, J., Medeiros, J. V, & Gomes-Filho, E. (2005). Hydrogen peroxide pre-treatment induces salt stress acclimation in maize plants. Journal of Plant Physiology, 162(10), 1114-1122. https://doi.org/10.1016/j.jplph.2005.01.007
  • de Pinto, M. C., Paradiso, A., Leonetti, P., & Gara, L. (2006). Hydrogen peroxide, nitric oxide and cytosolic ascorbate peroxidase at the crossroad between defence and cell death. Plant Journal. 48, 784–795. https://doi.org/10.1111/j.1365-313X.2006.02919.x
  • Fan, H., Guo, S., Jiao, Y., Zhang, R., & Li, J. (2007). Effects of exogenous nitric oxide on growth, active oxygen species metabolism, and photosynthetic characteristics in cucumber seedlings under NaCl stress. Frontiers of Agriculture in China, 1, 308–314. http://dx.doi.org/10.1007/s11703-007-0052-5
  • Furtana Baysal, G., & Tıpırdamaz, R. (2010). Physiological and antioxidant response of three cultivars of cucumber (Cucumis sativus L.) to salinity. Turkish Journal of Biology. 34, 287–296. https://doi.org/10.3906/biy-0812-10
  • Fridovich, I. (1986). Biological effects of the superoxide radical. Archives of Biochemistry and Biophysics. 247(1): 1-11. https://doi.org/10.1016/0003-9861(86)90526-6
  • Gao, J., Thelen, K.D., Min, D.H., Smith, S, Hao, X., & Gehl, R. (2010). Effects of manure and fertilizer applications on canola oil content and fatty acid composition. Agronomy Journal, 102, 790-797. http://dx.doi.org/10.2134/agronj2009.0368
  • Gechev, T.S., & Hille, J. (2005). Hydrogen peroxide as a signal controlling plant programmed cell death. Journal of Cell Biology 168(1):17-20. http://dx.doi.org/10.1083/jcb.200409170
  • Gechev, T., Gadjev, I., Van Breusegem, F., Inzé, D., Dukiandjiev, S., Toneva, V., & Minkov, I. (2002). Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cellular and Molecular Life Sciences. 9, 708-714. http://dx.doi.org/10.1007/s00018-002-8459-x
  • Giannopolitis, C.N., & Ries, S.K. (1977). Superoxide dismutases: I Occurrence in higher plants Plant Physiology. 59(2): 309-314. https://doi.org/10.1104/pp.59.2.309 Gondim, F.A., Gomes-Filho, E., & Costa, J.H. (2012). Catalase plays a key role in salt stress acclimation induced by hydrogen peroxide pretreatment in maize. Plant Physiology and Biochemistry. 56, 62–71. https://doi.org/10.1016/j.plaphy.2012.04.012
  • Gupta, K.J.& Igamberdiev A.U (2015). Compartmentalization of Reactive Oxygen Species and Nitric Oxide Production in Plant Cells: An Overview. In Gupta, K.J.& Igamberdiev A.U. (Eds.) Reactive Oxygen and Nitrogen Species Signaling and Communication in Plants, Signaling and Communication in Plants. (1nd Ed., pp: 1-14). https://doi.org/10.1007/978-3-319-10079-1
  • Güler, N.S., & Pehlivan, N. (2016). Exogenous low-dose hydrogen peroxide enhances drought tolerance of soybean (Glycine max L.) through inducing antioxidant system. Acta biologica Hungarica. 67, 169-183. https://doi.org/10.1556/018.67.2016.2.5
  • Hajihashemi, S., Skalicky, M., Brestic, M., & Pavla, V. (2020). Cross-talk between nitric oxide, hydrogen peroxide and calcium in salt-stressed Chenopodium quinoa Willd. At seed germination stage. Plant Physiology and Biochemistry. 154:657-664. https://doi.10.1016/j.plaphy.2020.07.022.
  • Hasanuzzaman, M., Nahar K., Hossain, M.S., Mahmud, J.A., Rahman, A., Inafuku, M., Oku, H., & Fujita, M. (2017). Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. International Journal of Molecular Science. 18, 200-213. https://doi.org/10.3390/ijms18010200
  • Hasanuzzaman, M., & Fujita, M. (2012). Selenium and plant health: the physiological role of selenium. In: Aomori C, Hokkaido M (eds). Selenium: sources, functions and health effects. New York: Nova Publishers, 12-96. https://dx.doi.org/10.3923/jps.2010.354.375
  • Hayat, S., Yadav, S., Alyemeni, M.N, Irfan, M., Wan, A.Si & Ahmad, A. (2013) Alleviation of Salinity Stress With Sodium Nitroprusside in Tomato,International Journal of Vegetable Science, 19(2), 164-176. https://doi.org/10.1080/19315260.2012.697107
  • Hung, S., Yu, C., & Lin, C. (2005). Hydrogen peroxide functions as a stress signal in plants. Botanical Bulletin of Academia Sinica, 46, 1-10. https://doi.org/10.7016/BBAS.200501.0001
  • Kim, Y. H., Latif Khan, A., & Waqas, M. (2013). Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress. Journal of Plant Growth Regulation, 20, 154-158. https://doi.org/10.1007/s00344-013-9356-2
  • Li, J. T., Qiu, Z. B., Zhang, X. W., & Wang, L. S. (2011). Exogenous hydrogen peroxide can enhance tolerance of wheat seedlings to salt stress. Acta Physiol. Plant. 33, 835–842. http://dx.doi.org/10.1007/s11738-010-0608-5
  • Li, Q. Y., Niu, H. B., Yin, J., Wang, M. B., Shao, H. B., Deng, D. Z., Chen, X. X., Ren, J. P., & Li, Y.C. (2008). Protective role of exogenous nitric oxide against oxidative-stress induced by salt stress in barley (Hordeum vulgare). Colloids and Surfaces Biointerfaces, 65, 220-225. https://doi.org/10.1016/j.colsurfb.2008.04.007
  • Lutts, S., Kinet, J.M., and Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance, Annals of Botany, 78, 389–398. https://doi.org/10.1006/ANBO.1996.0134
  • Mhamdi, A., Queval, G., Chaouch, S., Vanderauwera, F., Van Breusegem, F. & Noctor, G. (2010). Catalase function in plants: A focus on Arabidopsis mutants as stress-mimic models. Journal of Experimental Botany. 61, 4197-4220. http://dx.doi.org/10.1093/jxb/erq282
  • Mishra, A., & Choudhuri, M.A., (1999). Effects of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice. Biologia Plantarum. 42, 409–415. https://doi.org/10.1023/A%3A1002469303670
  • Munns, R, & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Reviews of Plant Biology 59, 651–681. http://dx.doi.org/10.1146/annurev.arplant.59.032607.092911
  • Neill, J. S., Desikan, R., Clarke, A., Hurst, R. D., & Hanckok, J. T. (2002). Hydrogen peroxide and nitric oxide as signaling molecules in plants. Journal of Experimental Botany, 53, 1237- 1247. http://dx.doi.org/10.1093/jexbot/53.372.1237
  • Nohar, S. D., Keshaw, P. R., Ankit, Y., Shobhana, R., Bharat Lal, S., & Khageshwar, S. P. (2015). Fluoride Contamination of Groundwater and Health Hazard in Central India, Journal of Water Resource and Protection. 7, 1416-1428. http://dx.doi.org/10.4236/jwarp.2015.717115
  • Qiao, W. H., Xiao, S. H., Yu, L., and Fan, L. M. (2009). Expression of a rice gene OsNOA1 re-establishes nitric oxide synthesis and stress-related gene expression for salttolerance in Arabidopsis nitric oxide-associated 1 mutant Atnoa1. Environmental and Experimental Botany. 65, 90–98. https://doi.org/10.1016/J.ENVEXPBOT.2008.06.002
  • Quan, L. J., Zhang, B., Shi, W. W., & Li, H. Y. (2008). Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. Journal of integrative plant biology. 50(1), 2–18. https://doi.org/10.1111/j.1744-7909.2007.00599.x
  • Saleh, A.A.H. (2007). Amelioration of chilling injuriesin mung bean (Vigna radiata L.) seedlings by paclobutarazol, abscisik acid and hydrogen peroxide. American Journal of Physiology. 2(6), 318-332. https://dx.doi.org/10.3923/ajpp.2007.318.332
  • Sathiyaraj, G., Srinivasan, S., Kim, Y.J., Lee, O.R., Parvin, S., Balusamy, S.R., Khorolragchaa, A., & Yang, D.C. (2014). Acclimation of hydrogen peroxide enhances salt tolerance by activating defense-related proteins in Panax ginseng C.A. Meyer. Netherlands Molecular Biology Reports. 41, 3761-3771. https://doi.org/10.1007/s11033-014-3241-3
  • Tanou, G., Molassiotis, A., & Diamantidis, G. (2009a). Hydrogen peroxide- and nitric oxide-induced systemic antioxidant prime-like activity under NaCl-stress and stress-free conditions in citrus plants. Journal of Plant Physiology. 166, 1904-1913. https://doi.org/10.1016/j.jplph.2009.06.012
  • Tanou, G., Molassiotis, A., & Diamantidis, G. (2009b). Induction of reactive oxygen species and necrotic death like destruction in strawberry leaves by salinity. Environmental and Experimental Botany, 65, 270–281. http://dx.doi.org/10.1016/j.envexpbot.2008.09.005
  • Uchida, A., Jagendorf, A. T., Hibino, T., & Takabe, T. (2002). Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science. 163, 515–523. http://dx.doi.org/10.1016/S0168-9452(02)00159-0
  • Wahid, I., Rani, P., Kumari, S., Ahmad, R., Hussain, S.J., Alamri, S., Tripathy, N., M. Iqbal, R., Khan, M.I.R. (2022). Biosynthesized gold nanoparticles maintained nitrogen metabolism, nitric oxide synthesis, ions balance, and stabilizes the defense systems to improve salt stress tolerance in wheat. Chemosphere. 287(2), 132-142. https://doi.org/10.1016/j.chemosphere.2021.132142
  • Yaşar, F., (2003). Tuz stresi altındaki patlıcan genotiplerinde bazı antioksidant enzim aktivitelerinin in vitro ve in vivo olarak incelenmesi, Doktora Tezi, Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü, Van, 15-36.
  • Zhang, F., Wang, Y., Yang, Y., Wu, H., Wang, D., & Liu, J. (2007). İnvolvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses of Populus euphratica. Plant, Cell and Environment, 30, 775-785. https://doi.org/10.1111/j.1365-3040.2007.01667.x
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat, Veterinerlik ve Gıda Bilimleri
Bölüm Research Articles
Yazarlar

Fahriye Öcal Özdamar 0000-0003-0584-2242

Gökçen Baysal Furtana Bu kişi benim 0000-0001-6931-2430

Rukiye Tıpırdamaz Bu kişi benim 0000-0003-2322-6646

Hayri Duman Bu kişi benim 0000-0003-2795-9791

Yayımlanma Tarihi 27 Temmuz 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 11 Sayı: 1

Kaynak Göster

APA Öcal Özdamar, F., Baysal Furtana, G., Tıpırdamaz, R., Duman, H. (2022). H2O2 and NO mitigate salt stress by regulating antioxidant enzymes in in two eggplant (Solanum melongena L.) genotypes. Soil Studies, 11(1), 1-6. https://doi.org/10.21657/topraksu.977238