Araştırma Makalesi
BibTex RIS Kaynak Göster

SAĞLIK RİSK FAKTÖRLERİNE GÖRE ÜLKELERİN KÜMELENMESİ VE ÇOK KRİTERLİ KARAR VERME TEKNİKLERİYLE SAĞLIK DURUMU GÖSTERGELERİNİN ANALİZİ

Yıl 2020, , 283 - 320, 30.11.2020
https://doi.org/10.21441/sosyalguvence.823636

Öz

Bir ülkenin sağlık durumu düzeyi o ülkenin gelişmişlik düzeyini yansıtan önemli bir göstergedir. Bu nedenle ülkelerin sağlık durumu göstergelerinin kıyaslanması ile elde edilecek bulgular önemli bilgiler sağlayacaktır. Bu kıyaslamalar yapılırken ülkelerin benzer özelliklere sahip ülke grupları içerisinde değerlendirilmesi, daha gerçekçi ve ulaşılabilir hedefler belirlenmesini sağlayacaktır. Bu doğrultuda çalışmada Dünya Bankası’na üye ülkelerin sağlık risk faktörleri bakımından homojen olarak gruplandırılması ve elde edilen bu gruplardaki ülkelerin sağlık durumu göstergeleri bakımından sıralanması amaçlanmıştır. Buna göre öncelikle PM2,5 hava kirliliği, temel içme suyu hizmetleri kullanımı, yetersiz beslenme prevalansı, sigara içme prevalansı, kişi başına toplam alkol tüketimi, yetişkinlerde yetersiz fiziksel aktivite prevalansı ve yetişkinlerde obezite prevalansı olmak üzere toplam yedi risk faktörü temel alınarak k ortalamalar yöntemi ile R programında kümeleme analizi yapılmıştır. K ortalamalar algoritması kullanılarak yapılan kümeleme analizi sonucunda 122 ülkenin 38’i birinci kümede, 84’ü ise ikinci kümede yer alacak şekilde kümelenmiştir. Kümeleme analizi sonrasında doğumda beklenen yaşam süresi, 60 yaşında beklenen sağlıklı yaşam yılı, anne ölüm oranı, bebek ölüm oranı, 30 ve 70 yaşları arasında CVD, kanserdiyabet veya CRD mortalitesi, hanehalkı ve çevredeki hava kirliliğine bağlı mortalite ve sakatlığa ayarlanmış yaşam yılı olmak üzere toplam yedi sağlık durumu göstergesi; CRITIC ve Ortalama Ağırlık gibi iki farklı kriter ağırlıklandırma yöntemi ile Çok Kriterli Karar Verme yöntemlerinden TOPSIS ve EDAS yöntemleri bütünleşik uygulanarak dört farklı öncelik sırası belirlenmiştir. Belirlenen sıralamalar veri birleştirme yöntemi olan Borda Sayım algoritmasıyla birleştirilerek bütünleşik tek bir sıralama elde edilmiştir. Buna göre birinci kümede sırasıyla Sri Lanka, Vietnam ve Çin ilk sıralarda yer alan ülkeler olurken; Sierra Leone, Nijerya ve Lesotho ise son sıralarda yer alan ülkeler olmuştur. İkinci kümede ise sırasıyla Norveç, Avustralya, Lüksemburg ve İsveç ilk sıralarda yer alan ülkeler olurken; Kiribati, Endonezya ve Filipinler ise son sıralarda yer alan ülkeler olmuştur.

Kaynakça

  • Chen, S. J., & Hwang, C. L., (1992). Fuzzy multiple attribute decision making: Methods and applications. Berlin: Springer.
  • Anderberg, M. R. (2014). Cluster analysis for applications, probability and mathematical statistics: A series of monographs and textbooks. (Vol. 19). Cambridge: Academic Press.
  • Charrad, M., Ghazzali, N., Boiteau, V. & Niknafs, A. (2014). NbClust: An R package for determining the relevant number of clusters in a data set. Journal of Statistical Software, 61(6), 1-36.
  • Chen, M. F., & Tzeng, G. H. (2004). Combining grey relation and TOPSIS concepts for selecting an expatriate host country. Mathematical and Computer Modelling, 40(13), 1473-1490.
  • Choi, J., Ki, M., Kwon, H. J., Park, B., Bae, S., Oh, C. M., ... Cheong, H. K. (2019). Health indicators related to disease, death, and reproduction. Journal of Preventive Medicine and Public Health, 52(1), 14-20.
  • Cotsapas, C., Voight, B. F., Rossin, E., Lage, K., Neale, B. M., Wallace, C., ... De Jager, P. L. (2011). Pervasive sharing of genetic effects in autoimmune disease. PLoS Genetics, 7(8), e1002254.
  • Çelik, Y. (2016). Sağlık ekonomisi. 3.b. Ankara: Siyasal Kitabevi.
  • Deng, H., Yeh, C. H., & Willis, R. J. (2000). Inter-company comparison using modified TOPSIS with objective weights. Computers & Operations Research, 27(10), 963-973.
  • Diakoulaki, D., Mavrotas, G., & Papayannakis, L. (1995). Determining objective weights in multiple criteria problems: The critic method. Computers & Operations Research, 22(7), 763-770.
  • Everitt, B., Landau, S., & Leese, M. (2001). Cluster analysis. London: Oxford University Press.
  • Ghorabaee, M. K., Zavadskas, E. K., Olfat, L., Turskis, Z., (2015). Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS), Informatica, 26(3), 435-451.
  • Güriş, S., & Astar, M. (2014). Bilimsel araştırmalarda SPSS ile istatistik. İstanbul: DER Yayınları.
  • Haiman, C. A., Le Marchand, L., Yamamato, J., Stram, D. O., Sheng, X., Kolonel, L. N., ... Henderson, B. E. (2007). A common genetic risk factor for colorectal and prostate cancer. Nature Genetics, 39(8), 954-956.
  • Han, J., Pei, J., & Kamber, M. (2011). Data mining: Concepts and techniques. 3.b. Boston: Morgan Kaufmann.
  • Huber, M., Knottnerus, J. A., Green, L., van der Horst, H., Jadad, A. R., Kromhout, D., ... Schnabel, P. (2011). How should we define health?. BMJ, 343, 1-3.
  • Hwang, C.L., & Yoon, K., (1981). Multiple attribute decision making. In: Lecture notes in economics and mathematical systems. Berlin: Springer-Verlag, 1-15.
  • Ishizaka, A., & Nemery, P. (2013). Multi-criteria decision analysis: methods and software. West Sussex: John Wiley & Sons.
  • Jahan, A., Mustapha, F., Sapuan, S. M., Ismail, M. Y., & Bahraminasab, M. (2012). A framework for weighting of criteria in ranking stage of material selection process. The International Journal of Advanced Manufacturing Technology, 58(1-4), 411-420.
  • Kardia, S. L., Modell, S. M., & Peyser, P. A. (2003). Family-centered approaches to understanding and preventing coronary heart disease. American Journal of Preventive Medicine, 24(2), 143-151.
  • Kazan, H., & Ozdemir, O. (2014). Financial performance assessment of large scale conglomerates via TOPSIS and CRITIC methods, International Journal of Management and Sustainability, 3(4), 203–224.
  • Kim, M. J., Min, S. H., & Han, I. (2006). An evolutionary approach to the combination of multiple classifiers to predict a stock price index. Expert Systems with Applications, 31(2), 241–247.
  • Kodinariya, T. M., & Makwana, P. R. (2013). Review on determining number of Cluster in K-Means Clustering. International Journal, 1(6), 90-95.
  • Lalonde, M. (1974). A new perspective on the health of Canadians. Ottowa: Goverment of Canada.
  • Lim, S. S., Vos, T., Flaxman, A. D., Danaei, G., Shibuya, K., Adair-Rohani, H., ... Aryee, M. (2012). A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the global burden of disease study 2010. The Lancet, 380 (9859), 2224-2260.
  • MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In proceedings of the fifth Berkeley symposium on mathematical statistics and probability, 281–297. California: University of California Press.
  • ODPHP (US Department of Health and Human Services, Office of Disease Prevention and Health Promotion). (2017). Foundation health measures: Determinants of health. Washington, DC: US Department of Health and Human Services.
  • Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445-455.
  • Prüss-Üstün, A., Wolf, J., Corvalán, C., Bos, R., & Neira, M. (2016). Preventing disease through healthy environments: a global assessment of the burden of disease from environmental risks. Geneva: World Health Organization.
  • Rana, S., Jasola, S., & Kumar, R. (2011). A review on particle swarm optimization algorithms and their applications to data clustering. Artificial Intelligence Review, 35(3), 211-222.
  • Royal Australian College of General Practitioners (2015). Smoking, nutrition, alcohol, physical activity (SNAP): A population health guide to behavioural risk factors in general practice, 2. ed. Melbourne: The Royal Australian College of General Practitioners.
  • Shariat, S. F., Sfakianos, J. P., Droller, M. J., Karakiewicz, P. I., Meryn, S., & Bochner, B. H. (2010). The effect of age and gender on bladder cancer: a critical review of the literature. BJU international, 105(3), 300-308.
  • Stewart A. L., & Ware, J. E. (1992). Measuring functioning and well-being: The medical outcomes study approach. Durham, NC: Duke University Press.
  • Triantaphyllou, E., Shu, B., Sanchez, S. N., & Ray, T. (1998). Multi-criteria decision making: an operations research approach. Encyclopedia of Electrical and Electronics Engineering, 15(1998), 175-186.
  • Uçar, N. (2014). Kümeleme analizi. İçinde: SPSS uygulamalı çok değişkenli istatistik teknikleri. Ankara: Asil Yayıncılık.
  • Vatansever, M. (2008). Görsel veri madenciliği tekniklerinin kümeleme analizlerinde kullanımı ve uygulanması, Yayınlanmamış Yüksek Lisans Tezi, İstanbul: Yıldız Teknik Üniversitesi Fen Bilimler Enstitüsü.
  • WHO (2018). 2018 Global reference list of 100 core health indicators (plus health-related SDGs). Geneva: World Health Organization.
  • World Bank (1993). World Development Report 1993: Investing in Health, https://openknowledge.worldbank.org/handle/10986/5976 (Erişim Tarihi: 10.10.2019).
  • World Bank (2019). World Bank open data. https://data.worldbank.org/indicator. (Erişim Tarihi: 22.12.2019).
  • World Health Organization (2019). The global health observatory data repository. https://www.who.int/data/gho/data/indicators. (Erişim Tarihi: 22.12.2019).
  • Wu, W. W. (2011). Beyond Travel & Tourism competitiveness ranking using DEA, GST, ANN and Borda count. Expert Systems with Applications, 38(10), 12974-12982.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Politikası
Bölüm Makaleler
Yazarlar

Faruk Yılmaz Bu kişi benim 0000-0001-7398-8302

Selma Söyük Bu kişi benim 0000-0001-9822-9417

Yayımlanma Tarihi 30 Kasım 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Yılmaz, F., & Söyük, S. (2020). SAĞLIK RİSK FAKTÖRLERİNE GÖRE ÜLKELERİN KÜMELENMESİ VE ÇOK KRİTERLİ KARAR VERME TEKNİKLERİYLE SAĞLIK DURUMU GÖSTERGELERİNİN ANALİZİ. Sosyal Güvence(17), 283-320. https://doi.org/10.21441/sosyalguvence.823636