EVALUATING THE EFFECT OF THE CYP1A2 rs762551 GENE POLYMORPHISM ON ARROWHEAD AGILITY DRILL TEST PERFORMANCE IN PHYSICALLY ACTIVE YOUNG MEN
Yıl 2025,
Cilt: 23 Sayı: 2, 149 - 157, 30.06.2025
Esra Yildiz
,
Mesut Cerit
,
Tolga Polat
,
Murat Anilir
,
Selin Yıldırım Tuncer
Öz
The purpose of this study is to determine the different results and genotype distributions associated with the effect of CYP1A2 rs762551 gene polymorphisms on the development rates of arrowhead agility drill test performance after six weeks of training in active adult males. The research population comprised of 54 healthy young men aged 19 to 24 from the Faculty of Sports Sciences who freely participated. The arrowhead agility drill test was administered at the beginning and end of the 6-week trial to assess anaerobic performance. There was no statistically significant difference between the three genotypes, according to the comparison of the subject group's pre- and post-test results for the arrowhead agility drill test for both right and left variables. The genotype frequencies for the CYP1A2 gene polymorphism are as follows: AA 29.78%, AC 63.82%, and CC 6.40%. In conclusion, while our study's sample size was not as large as hoped, the findings on the interactions revealed by CYP1A2 gene polymorphisms impacting athletic achievement are similar with those from another research. Given that the performance-enhancing effects of caffeine on athletes may be influenced by several genes and multifactorial variations, comprehensive study is essential to enhance the predictability of techniques connected to CYP1A2 gene variants.
Kaynakça
-
Astorino, T. A., & Roberson, D. W. (2010). Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: a systematic review. The Journal of Strength & Conditioning Research, 24(1), 257-265. https://doi.org/10.1519/JSC.0b013e3181c1f88a
-
Baumert, P., Lake, M. J., Stewart, C. E., Drust, B., & Erskine, R. M. (2016). Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing. European Journal of Applied Physiology, 116, 1595-1625. https://doi.org/10.1007/s00421-016-3411-1
-
Bouchard, C., An, P., Rice, T., Skinner, J. S., Wilmore, J. H., Gagnon, J., ... & Rao, D. C. (1999). Familial aggregation ofV o 2 max response to exercise training: results from the HERITAGE Family Study. Journal of Applied Physiology, 87(3), 1003-1008. https://doi.org/10.1152/jappl.1999.87.3.1003
-
Bouchard, C., & Rankinen, T. (2001). Individual differences in response to regular physical activity. Medicine & Science in Sports & Exercise, 33(6), S446-S451.
-
Bouchard, C., Rankinen, T., & Timmons, J. A. (2011). Genomics and genetics in the biology of adaptation to exercise. Comprehensive Physiology, 1(3), 1603. https://doi.org/10.1002/cphy.c100059
-
Bulğay, C., Çetin, E., & Ergün, M. A. (2020). The Relationship Between Athletic Performance and BDNF. Gazi Medical Journal, 31(4). https://doi.org/10.12996/gmj.2020.160
-
Carmelli, D., Swan, G. E., Robinette, D., & Fabsitz, R. R. (1990). Heritability of substance use in the NAS-NRC Twin Registry. Acta Geneticae Medicae et Gemellologiae: Twin Research, 39(1), 91-98. https://doi.org/10.1017/S0001566000005602
-
Cornelis, M. C., Kacprowski, T., Menni, C., Gustafsson, S., Pivin, E., Adamski, J., ... & Ingelsson, E. (2016). Genome-wide association study of caffeine metabolites provides new insights to caffeine metabolism and dietary caffeine-consumption behavior. Human Molecular Genetics, 25(24), 5472-5482. https://doi.org/10.1093/hmg/ddw334
-
de Salles Painelli, V., Teixeira, E. L., Tardone, B., Moreno, M., Morandini, J., Larrain, V. H., & Pires, F. O. (2021). Habitual caffeine consumption does not interfere with the acute caffeine supplementation effects on strength endurance and jumping performance in trained individuals. International Journal of Sport Nutrition and Exercise Metabolism, 31(4), 321-328. https://doi.org/10.1123/ijsnem.2020-0363
-
Demirci, B., Bulgay, C., Ceylan, H. İ., Öztürk, M. E., Öztürk, D., Kazan, H. H., ... & Cepicka, L. (2023). Association of ACTN3 R577X polymorphism with elite basketball player status and training responses. Genes, 14(6), 1190. https://doi.org/10.3390/genes14061190
-
Denisov, N. S., Kamenskikh, E. M., & Fedorova, O. S. (2022). Trends in Population-Based Studies: Molecular and Digital Epidemiology. Современные Mехнологии в Mедицине, 14(4 (eng)), 60-70. https://doi.org/10.17691/stm2022.14.4.07
-
Doherty, M., Smith, P. M., Davison, R. R., & Hughes, M. G. (2002). Caffeine is ergogenic after supplementation of oral creatine monohydrate. Medicine & Science in Sports & Exercise, 34(11), 1785-1792. https://doi.org/10.1249/01.MSS.0000035365.66598.24
-
Ganio, M. S., Klau, J. F., Casa, D. J., Armstrong, L. E., & Maresh, C. M. (2009). Effect of caffeine on sport-specific endurance performance: a systematic review. The Journal of Strength & Conditioning Research, 23(1), 315-324.
-
George, D., & Mallery, P. (2019). IBM SPSS statistics 26 step by step: A simple guide and reference. Routledge.
-
Glaister, M., Chopra, K., Pereira de Sena, A. L., Sternbach, C., Morina, L., & Mavrommatis, Y. (2021). Caffeine, exercise physiology, and time-trial performance: no effect of ADORA2A or CYP1A2 genotypes. Applied Physiology, Nutrition, and Metabolism, 46(6), 541-551. https://doi.org/10.1139/apnm-2020-055
-
Gonglach, A. R., Ade, C. J., Bemben, M. G., Larson, R. D., & Black, C. D. (2016). Muscle Pain as a Regulator of Cycling Intensity: Effect of Caffeine Ingestion. Medicine and Science in Sports and Exercise, 48(2), 287-296. https://doi.org/10.1249/mss.0000000000000767
-
Grgic, J., & Mikulic, P. (2021). Acute effects of caffeine supplementation on resistance exercise, jumping, and Wingate performance: no influence of habitual caffeine intake. European Journal of Sport Science, 21(8), 1165-1175. https://doi.org/10.1080/17461391.2020.1817155
-
Grgic, J., Pickering, C., Bishop, D. J., Schoenfeld, B. J., Mikulic, P., & Pedisic, Z. (2020). CYP1A2 genotype and acute effects of caffeine on resistance exercise, jumping, and sprinting performance. Journal of the International Society of Sports Nutrition, 17(1), 21. https://doi.org/10.1186/s12970-020-00349-6
-
Guest, N., Corey, P., Vescovi, J., & El-Sohemy, A. (2018). Caffeine, CYP1A2 genotype, and endurance performance in athletes. Medicine & Science in Sports & Exercise, 50(8), 1570-1578. https://doi.org/10.1249/MSS.0000000000001596
-
Guest, N. S., Horne, J., Vanderhout, S. M., & El-Sohemy, A. (2019). Sport nutrigenomics: personalized nutrition for athletic performance. Frontiers in Nutrition, 6, 433157. https://doi.org/10.3389/fnut.2019.00008
-
Hammons, G. J., Yan-Sanders, Y., Jin, B., Blann, E., Kadlubar, F. F., & Lyn-Cook, B. D. (2001). Specific site methylation in the 5′-flanking region of CYP1A2: Interindividual differences in human livers. Life Sciences, 69(7), 839-845. https://doi.org/10.1016/S0024-3205(01)01175-4
-
He, C., Holme, J., & Anthony, J. (2014). SNP genotyping: the KASP assay. Crop Breeding: Methods and Protocols, 75-86.
-
Laitala, V. S., Kaprio, J., & Silventoinen, K. (2008). Genetics of coffee consumption and its stability. Addiction, 103(12), 2054-2061. https://doi.org/10.1111/j.1360-0443.2008.02375.x
-
Lovallo, W. R., Farag, N. H., Vincent, A. S., Thomas, T. L., & Wilson, M. F. (2006). Cortisol responses to mental stress, exercise, and meals following caffeine intake in men and women. Pharmacology Biochemistry and Behavior, 83(3), 441-447. https://doi.org/10.1016/j.pbb.2006.03.005
-
Loy, B. D., O'Connor, P. J., Lindheimer, J. B., & Covert, S. F. (2015). Caffeine is ergogenic for adenosine A2A receptor gene (ADORA2A) T allele homozygotes: a pilot study. Journal of Caffeine Research, 5(2), 73-81. https://doi.org/10.1089/jcr.2014.0035
-
Luciano, M., Kirk, K. M., Heath, A. C., & Martin, N. G. (2005). The genetics of tea and coffee drinking and preference for source of caffeine in a large community sample of Australian twins. Addiction, 100(10), 1510-1517. https://doi.org/10.1111/j.1360-0443.2005.01223.x
-
Nobari, H., Cholewa, J. M., Castillo-Rodríguez, A., Kargarfard, M., & Pérez-Gómez, J. (2021). Effects of chronic betaine supplementation on performance in professional young soccer players during a competitive season: a double blind, randomized, placebo-controlled trial. Journal of the International Society of Sports Nutrition, 18(1), 67. https://doi.org/10.1186/s12970-021-00464-y
-
Papadimitriou, I. D., Lucia, A., Pitsiladis, Y. P., Pushkarev, V. P., Dyatlov, D. A., Orekhov, E. F., ... & Eynon, N. (2016). ACTN3 R577X and ACE I/D gene variants influence performance in elite sprinters: a multi-cohort study. BMC Genomics, 17, 1-8. https://doi.org/10.1186/s12864-016-2462-3
-
Rago, V., Brito, J., Figueiredo, P., Ermidis, G., Barreira, D., & Rebelo, A. (2020). The arrowhead agility test: reliability, minimum detectable change, and practical applications in soccer players. The Journal of Strength & Conditioning Research, 34(2), 483-494. https://doi.org/10.1519/JSC.0000000000002987
-
Salinero, J. J., Lara, B., Ruiz-Vicente, D., Areces, F., Puente-Torres, C., Gallo-Salazar, C., ... & Del Coso, J. (2017). CYP1A2 genotype variations do not modify the benefits and drawbacks of caffeine during exercise: a pilot study. Nutrients, 9(3), 269. https://doi.org/10.3390/nu9030269
-
Southward, K., Rutherfurd-Markwick, K., Badenhorst, C., & Ali, A. (2018). The role of genetics in moderating the inter-individual differences in the ergogenicity of caffeine. Nutrients, 10(10), 1352. https://doi.org/10.3390/nu10101352
-
Souza, D. B., Del Coso, J., Casonatto, J., & Polito, M. D. (2017). Acute effects of caffeine-containing energy drinks on physical performance: a systematic review and meta-analysis. European Journal of Nutrition, 56, 13-27. https://doi.org/10.1007/s00394-016-1331-9
-
Spineli, H., Pinto, M. P., Dos Santos, B. P., Lima‐Silva, A. E., Bertuzzi, R., Gitaí, D. L., & de Araujo, G. G. (2020). Caffeine improves various aspects of athletic performance in adolescents independent of their 163 C> A CYP1A2 genotypes. Scandinavian Journal of Medicine & Science in Sports, 30(10), 1869-1877. https://doi.org/10.1111/sms.13749
-
Spriet, L. L. (2014). Exercise and sport performance with low doses of caffeine. Sports Medicine, 44, 175-184. https://doi.org/10.1007/s40279-014-0257-8
-
Swan, G. E., Carmelli, D., & Cardon, L. R. (1996). The consumption of tobacco, alcohol, and coffee in Caucasian male twins: a multivariate genetic analysis. Journal of substance abuse, 8(1), 19-31. https://doi.org/10.1016/S0899-3289(96)90055-3
-
Timmons, J. A., Knudsen, S., Rankinen, T., Koch, L. G., Sarzynski, M., Jensen, T., ... & Bouchard, C. (2010). Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. Journal of Applied Physiology, 108(6), 1487-1496. https://doi.org/10.1152/japplphysiol.01295.2009
-
Ulucan, K., Sercan, C., & Biyikli, T. (2015). Distribution of angiotensin-1 converting enzyme insertion/deletion and α-actinin-3 codon 577 polymorphisms in Turkish male soccer players. Genetics & Epigenetics, 7, GEG-S31479. https://doi.org/10.4137/GG.31479
-
Womack, C. J., Saunders, M. J., Bechtel, M. K., Bolton, D. J., Martin, M., Luden, N. D., ... & Hancock, M. (2012). The influence of a CYP1A2 polymorphism on the ergogenic effects of caffeine. Journal of the International Society of Sports Nutrition, 9(1), 7. https://doi.org/10.1186/1550-2783-9-7
-
Vink, J. M., Staphorsius, A. S., & Boomsma, D. I. (2009). A genetic analysis of coffee consumption in a sample of Dutch twins. Twin Research and Human Genetics, 12(2), 127-131. https://doi.org/10.1375/twin.12.2.127
-
Yıldırım, D. S., Kocak, M. S., & Cerit, M. (2022). The mysterious world of genes: physical performance and genetic interactions: traditional review. Türkiye Klinikleri Journal of Sports Sciences, 14(3). https://doi.org/10.5336/sportsci.2022-91973
AKTİF YETİŞKİN ERKEKLERDE CYP1A2 rs762551 GEN POLİMORFİZMİNİN ARROWHEAD ÇEVİKLİK YETENEK TEST PERFORMANSI ÜZERİNDEKİ ETKİLERİNİN İNCELENMESİ
Yıl 2025,
Cilt: 23 Sayı: 2, 149 - 157, 30.06.2025
Esra Yildiz
,
Mesut Cerit
,
Tolga Polat
,
Murat Anilir
,
Selin Yıldırım Tuncer
Öz
Bu çalışma, aktif yetişkin erkeklerde altı haftalık antrenmanın ardından CYP1A2 rs762551 gen polimorfizmlerinin arrowhead agility drill testi performans gelişim oranlarına etkilerinin açığa çıkardığı farklı sonuçlar ve genotip dağılımların belirlenmesi amaçlanmıştır Araştırmanın evrenini Spor Bilimleri Fakültesi'nden gönüllü olarak katılan, yaşları 19-24 arasında değişen 54 sağlıklı genç erkek oluşturmuştur. Anaerobik performansı değerlendirmek için 6 haftalık çalışmanın başlangıcında ve sonunda arrowhead çeviklik yetenek testi yapıldı. Denek grubunun arrowhead çeviklik yetenek testine ilişkin ön test ve son test sonuçları hem sağ hem de sol değişkenler açısından değerlendirildiğinde, üç genotip arasında istatistiksel olarak anlamlı farklılık bulunmamıştır. CYP1A2 gen polimorfizminin genotip frekans dağılımı şu şekildedir: AA %29,78, AC %63,82 ve CC %6,40. Sonuç olarak, çalışmamızdaki örneklem büyüklüğü arzu edilen sayıda olmamasına rağmen atletik başarıyı etkileyen CYP1A2 gen polimorfizmlerinin açığa çıkardığı etkileşimlerde gözlemlediğimiz sonuçlar bazı araştırmaların bulgularıyla benzerlik göstermektedir. Bu çerçevede; kafeinin sporcular üzerindeki performans artırıcı etkileri çok gen ve çok faktörlü varyasyonlara bağlı olabileceği gerçeği göz önüne alınarak, CYP1A2 gen varyantlarına ilişkin yaklaşımların daha öngörülebilir olabilmesi için geniş kapsamlı araştırmalar yapılmasına ihtiyaç olduğu değerlendirilmektedir.
Kaynakça
-
Astorino, T. A., & Roberson, D. W. (2010). Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: a systematic review. The Journal of Strength & Conditioning Research, 24(1), 257-265. https://doi.org/10.1519/JSC.0b013e3181c1f88a
-
Baumert, P., Lake, M. J., Stewart, C. E., Drust, B., & Erskine, R. M. (2016). Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing. European Journal of Applied Physiology, 116, 1595-1625. https://doi.org/10.1007/s00421-016-3411-1
-
Bouchard, C., An, P., Rice, T., Skinner, J. S., Wilmore, J. H., Gagnon, J., ... & Rao, D. C. (1999). Familial aggregation ofV o 2 max response to exercise training: results from the HERITAGE Family Study. Journal of Applied Physiology, 87(3), 1003-1008. https://doi.org/10.1152/jappl.1999.87.3.1003
-
Bouchard, C., & Rankinen, T. (2001). Individual differences in response to regular physical activity. Medicine & Science in Sports & Exercise, 33(6), S446-S451.
-
Bouchard, C., Rankinen, T., & Timmons, J. A. (2011). Genomics and genetics in the biology of adaptation to exercise. Comprehensive Physiology, 1(3), 1603. https://doi.org/10.1002/cphy.c100059
-
Bulğay, C., Çetin, E., & Ergün, M. A. (2020). The Relationship Between Athletic Performance and BDNF. Gazi Medical Journal, 31(4). https://doi.org/10.12996/gmj.2020.160
-
Carmelli, D., Swan, G. E., Robinette, D., & Fabsitz, R. R. (1990). Heritability of substance use in the NAS-NRC Twin Registry. Acta Geneticae Medicae et Gemellologiae: Twin Research, 39(1), 91-98. https://doi.org/10.1017/S0001566000005602
-
Cornelis, M. C., Kacprowski, T., Menni, C., Gustafsson, S., Pivin, E., Adamski, J., ... & Ingelsson, E. (2016). Genome-wide association study of caffeine metabolites provides new insights to caffeine metabolism and dietary caffeine-consumption behavior. Human Molecular Genetics, 25(24), 5472-5482. https://doi.org/10.1093/hmg/ddw334
-
de Salles Painelli, V., Teixeira, E. L., Tardone, B., Moreno, M., Morandini, J., Larrain, V. H., & Pires, F. O. (2021). Habitual caffeine consumption does not interfere with the acute caffeine supplementation effects on strength endurance and jumping performance in trained individuals. International Journal of Sport Nutrition and Exercise Metabolism, 31(4), 321-328. https://doi.org/10.1123/ijsnem.2020-0363
-
Demirci, B., Bulgay, C., Ceylan, H. İ., Öztürk, M. E., Öztürk, D., Kazan, H. H., ... & Cepicka, L. (2023). Association of ACTN3 R577X polymorphism with elite basketball player status and training responses. Genes, 14(6), 1190. https://doi.org/10.3390/genes14061190
-
Denisov, N. S., Kamenskikh, E. M., & Fedorova, O. S. (2022). Trends in Population-Based Studies: Molecular and Digital Epidemiology. Современные Mехнологии в Mедицине, 14(4 (eng)), 60-70. https://doi.org/10.17691/stm2022.14.4.07
-
Doherty, M., Smith, P. M., Davison, R. R., & Hughes, M. G. (2002). Caffeine is ergogenic after supplementation of oral creatine monohydrate. Medicine & Science in Sports & Exercise, 34(11), 1785-1792. https://doi.org/10.1249/01.MSS.0000035365.66598.24
-
Ganio, M. S., Klau, J. F., Casa, D. J., Armstrong, L. E., & Maresh, C. M. (2009). Effect of caffeine on sport-specific endurance performance: a systematic review. The Journal of Strength & Conditioning Research, 23(1), 315-324.
-
George, D., & Mallery, P. (2019). IBM SPSS statistics 26 step by step: A simple guide and reference. Routledge.
-
Glaister, M., Chopra, K., Pereira de Sena, A. L., Sternbach, C., Morina, L., & Mavrommatis, Y. (2021). Caffeine, exercise physiology, and time-trial performance: no effect of ADORA2A or CYP1A2 genotypes. Applied Physiology, Nutrition, and Metabolism, 46(6), 541-551. https://doi.org/10.1139/apnm-2020-055
-
Gonglach, A. R., Ade, C. J., Bemben, M. G., Larson, R. D., & Black, C. D. (2016). Muscle Pain as a Regulator of Cycling Intensity: Effect of Caffeine Ingestion. Medicine and Science in Sports and Exercise, 48(2), 287-296. https://doi.org/10.1249/mss.0000000000000767
-
Grgic, J., & Mikulic, P. (2021). Acute effects of caffeine supplementation on resistance exercise, jumping, and Wingate performance: no influence of habitual caffeine intake. European Journal of Sport Science, 21(8), 1165-1175. https://doi.org/10.1080/17461391.2020.1817155
-
Grgic, J., Pickering, C., Bishop, D. J., Schoenfeld, B. J., Mikulic, P., & Pedisic, Z. (2020). CYP1A2 genotype and acute effects of caffeine on resistance exercise, jumping, and sprinting performance. Journal of the International Society of Sports Nutrition, 17(1), 21. https://doi.org/10.1186/s12970-020-00349-6
-
Guest, N., Corey, P., Vescovi, J., & El-Sohemy, A. (2018). Caffeine, CYP1A2 genotype, and endurance performance in athletes. Medicine & Science in Sports & Exercise, 50(8), 1570-1578. https://doi.org/10.1249/MSS.0000000000001596
-
Guest, N. S., Horne, J., Vanderhout, S. M., & El-Sohemy, A. (2019). Sport nutrigenomics: personalized nutrition for athletic performance. Frontiers in Nutrition, 6, 433157. https://doi.org/10.3389/fnut.2019.00008
-
Hammons, G. J., Yan-Sanders, Y., Jin, B., Blann, E., Kadlubar, F. F., & Lyn-Cook, B. D. (2001). Specific site methylation in the 5′-flanking region of CYP1A2: Interindividual differences in human livers. Life Sciences, 69(7), 839-845. https://doi.org/10.1016/S0024-3205(01)01175-4
-
He, C., Holme, J., & Anthony, J. (2014). SNP genotyping: the KASP assay. Crop Breeding: Methods and Protocols, 75-86.
-
Laitala, V. S., Kaprio, J., & Silventoinen, K. (2008). Genetics of coffee consumption and its stability. Addiction, 103(12), 2054-2061. https://doi.org/10.1111/j.1360-0443.2008.02375.x
-
Lovallo, W. R., Farag, N. H., Vincent, A. S., Thomas, T. L., & Wilson, M. F. (2006). Cortisol responses to mental stress, exercise, and meals following caffeine intake in men and women. Pharmacology Biochemistry and Behavior, 83(3), 441-447. https://doi.org/10.1016/j.pbb.2006.03.005
-
Loy, B. D., O'Connor, P. J., Lindheimer, J. B., & Covert, S. F. (2015). Caffeine is ergogenic for adenosine A2A receptor gene (ADORA2A) T allele homozygotes: a pilot study. Journal of Caffeine Research, 5(2), 73-81. https://doi.org/10.1089/jcr.2014.0035
-
Luciano, M., Kirk, K. M., Heath, A. C., & Martin, N. G. (2005). The genetics of tea and coffee drinking and preference for source of caffeine in a large community sample of Australian twins. Addiction, 100(10), 1510-1517. https://doi.org/10.1111/j.1360-0443.2005.01223.x
-
Nobari, H., Cholewa, J. M., Castillo-Rodríguez, A., Kargarfard, M., & Pérez-Gómez, J. (2021). Effects of chronic betaine supplementation on performance in professional young soccer players during a competitive season: a double blind, randomized, placebo-controlled trial. Journal of the International Society of Sports Nutrition, 18(1), 67. https://doi.org/10.1186/s12970-021-00464-y
-
Papadimitriou, I. D., Lucia, A., Pitsiladis, Y. P., Pushkarev, V. P., Dyatlov, D. A., Orekhov, E. F., ... & Eynon, N. (2016). ACTN3 R577X and ACE I/D gene variants influence performance in elite sprinters: a multi-cohort study. BMC Genomics, 17, 1-8. https://doi.org/10.1186/s12864-016-2462-3
-
Rago, V., Brito, J., Figueiredo, P., Ermidis, G., Barreira, D., & Rebelo, A. (2020). The arrowhead agility test: reliability, minimum detectable change, and practical applications in soccer players. The Journal of Strength & Conditioning Research, 34(2), 483-494. https://doi.org/10.1519/JSC.0000000000002987
-
Salinero, J. J., Lara, B., Ruiz-Vicente, D., Areces, F., Puente-Torres, C., Gallo-Salazar, C., ... & Del Coso, J. (2017). CYP1A2 genotype variations do not modify the benefits and drawbacks of caffeine during exercise: a pilot study. Nutrients, 9(3), 269. https://doi.org/10.3390/nu9030269
-
Southward, K., Rutherfurd-Markwick, K., Badenhorst, C., & Ali, A. (2018). The role of genetics in moderating the inter-individual differences in the ergogenicity of caffeine. Nutrients, 10(10), 1352. https://doi.org/10.3390/nu10101352
-
Souza, D. B., Del Coso, J., Casonatto, J., & Polito, M. D. (2017). Acute effects of caffeine-containing energy drinks on physical performance: a systematic review and meta-analysis. European Journal of Nutrition, 56, 13-27. https://doi.org/10.1007/s00394-016-1331-9
-
Spineli, H., Pinto, M. P., Dos Santos, B. P., Lima‐Silva, A. E., Bertuzzi, R., Gitaí, D. L., & de Araujo, G. G. (2020). Caffeine improves various aspects of athletic performance in adolescents independent of their 163 C> A CYP1A2 genotypes. Scandinavian Journal of Medicine & Science in Sports, 30(10), 1869-1877. https://doi.org/10.1111/sms.13749
-
Spriet, L. L. (2014). Exercise and sport performance with low doses of caffeine. Sports Medicine, 44, 175-184. https://doi.org/10.1007/s40279-014-0257-8
-
Swan, G. E., Carmelli, D., & Cardon, L. R. (1996). The consumption of tobacco, alcohol, and coffee in Caucasian male twins: a multivariate genetic analysis. Journal of substance abuse, 8(1), 19-31. https://doi.org/10.1016/S0899-3289(96)90055-3
-
Timmons, J. A., Knudsen, S., Rankinen, T., Koch, L. G., Sarzynski, M., Jensen, T., ... & Bouchard, C. (2010). Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. Journal of Applied Physiology, 108(6), 1487-1496. https://doi.org/10.1152/japplphysiol.01295.2009
-
Ulucan, K., Sercan, C., & Biyikli, T. (2015). Distribution of angiotensin-1 converting enzyme insertion/deletion and α-actinin-3 codon 577 polymorphisms in Turkish male soccer players. Genetics & Epigenetics, 7, GEG-S31479. https://doi.org/10.4137/GG.31479
-
Womack, C. J., Saunders, M. J., Bechtel, M. K., Bolton, D. J., Martin, M., Luden, N. D., ... & Hancock, M. (2012). The influence of a CYP1A2 polymorphism on the ergogenic effects of caffeine. Journal of the International Society of Sports Nutrition, 9(1), 7. https://doi.org/10.1186/1550-2783-9-7
-
Vink, J. M., Staphorsius, A. S., & Boomsma, D. I. (2009). A genetic analysis of coffee consumption in a sample of Dutch twins. Twin Research and Human Genetics, 12(2), 127-131. https://doi.org/10.1375/twin.12.2.127
-
Yıldırım, D. S., Kocak, M. S., & Cerit, M. (2022). The mysterious world of genes: physical performance and genetic interactions: traditional review. Türkiye Klinikleri Journal of Sports Sciences, 14(3). https://doi.org/10.5336/sportsci.2022-91973