ACUTE AND CHRONIC EFFECTS OF PRE-SLEEP PROTEIN INTAKE ON MUSCLE PROTEIN SYNTHESIS, MASS AND STRENGTH
Yıl 2021,
Cilt: 19 Sayı: 3, 30 - 50, 30.09.2021
Tuğçe Nur Erdoğmuş
,
Dicle Aras
Öz
Pre-sleep protein intake is a topic that has been studied frequently in the recent years. Protein taken before sleep is thought to be effectively digested and absorbed during nighttime sleep, thus increasing the muscle protein synthesis rate during the night. The effects of pre-sleep protein intake are substantial, as physically active individuals and athletes want to maximize their physiological adaptation and improve their performance. The purpose of the present review is to examine the current studies on muscle protein synthesis, muscle mass and strength of pre-sleep protein intake, and provide up-to-date and complementary information on the subject by summarizing the acute and chronic effects.
Kaynakça
- Abbott, W., Brett, A., Cockburn, E., Clifford, T. (2019). Presleep Casein Protein Ingestion: Acceleration of Functional Recovery in Professional Soccer Players. International journal of sports physiology and performance, 14(3), 385–391. https://doi.org/10.1123/ijspp.2018-0385
- Aragon, A. A., Schoenfeld, B. J. (2013). Nutrient timing revisited: is there a post-exercise anabolic window?. Journal of the International Society of Sports Nutrition, 10(1), 5. https://doi.org/10.1186/1550-2783-10-5
- Allman, B. R., Morrissey, M. C., Kim, J. S., Panton, L. B., Contreras, R. J., Hickner, R. C., Ormsbee, M. J. (2020). Lipolysis and Fat Oxidation Are Not Altered with Presleep Compared with Daytime Casein Protein Intake in Resistance-Trained Women. The Journal of nutrition, 150(1), 47–54. https://doi.org/10.1093/jn/nxz186
- Anthony T. G. (2016). Mechanisms of protein balance in skeletal muscle. Domestic animal endocrinology, 56 Suppl(Suppl), S23–S32. https://doi.org/10.1016/j.domaniend.2016.02.012
- Apweiler, E., Wallace, D., Stansfield, S., Allerton, D. M., Brown, M. A., Stevenson, E. J., Clifford, T. (2018). Pre-Bed Casein Protein Supplementation Does Not Enhance Acute Functional Recovery in Physically Active Males and Females When Exercise is Performed in the Morning. Sports (Basel, Switzerland), 7(1), 5. https://doi.org/10.3390/sports7010005
- Beelen, M., Tieland, M., Gijsen, A. P., Vandereyt, H., Kies, A. K., Kuipers, H., Saris, W. H., Koopman, R., van Loon, L. J. (2008). Coingestion of carbohydrate and protein hydrolysate stimulates muscle protein synthesis during exercise in young men, with no further increase during subsequent overnight recovery. The Journal of nutrition, 138(11), 2198–2204. https://doi.org/10.3945/jn.108.092924
- Benardot, D. (2006) Advanced Sports Nutrition. Human Kinetics, in Champaign, IL. First edition. s: 32.
- Bodine, S. C., Stitt, T. N., Gonzalez, M., Kline, W. O., Stover, G. L., Bauerlein, R., Zlotchenko, E., Scrimgeour, A., Lawrence, J. C., Glass, D. J., Yancopoulos, G. D. (2001). Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nature cell biology, 3(11), 1014–1019. https://doi.org/10.1038/ncb1101-1014.
- Boirie, Y., Dangin, M., Gachon, P., Vasson, M. P., Maubois, J. L., Beaufrère, B. (1997). Slow and fast dietary proteins differently modulate postprandial protein accretion. Proceedings of the National Academy of Sciences of the United States of America, 94(26), 14930–14935. https://doi.org/10.1073/pnas.94.26.14930
- Bos, C., Metges, C. C., Gaudichon, C., Petzke, K. J., Pueyo, M. E., Morens, C., Everwand, J., Benamouzig, R., Tomé, D. (2003). Postprandial kinetics of dietary amino acids are the main determinant of their metabolism after soy or milk protein ingestion in humans. The Journal of nutrition, 133(5), 1308–1315. https://doi.org/10.1093/jn/133.5.1308
- Breen, L., Churchward-Venne, T. A. (2012). Leucine: a nutrient 'trigger' for muscle anabolism, but what more?. The Journal of physiology, 590(9), 2065–2066. https://doi.org/10.1113/jphysiol.2012.230631
- Bucci, L. (1993). Nutrients as Ergogenic Aids for Sports and Exercise (1st ed.). CRC Press. https://doi.org/10.1201/9781003068051
- Burd, N. A., Tang, J. E., Moore, D. R., Phillips, S. M. (2009). Exercise training and protein metabolism: influences of contraction, protein intake, and sex-based differences. Journal of applied physiology (Bethesda, Md. : 1985), 106(5), 1692–1701. https://doi.org/10.1152/japplphysiol.91351.2008
- Burd, N. A., Gorissen, S. H., van Vliet, S., Snijders, T., van Loon, L. J. (2015). Differences in postprandial protein handling after beef compared with milk ingestion during postexercise recovery: a randomized controlled trial. The American journal of clinical nutrition, 102(4), 828–836. https://doi.org/10.3945/ajcn.114.103184
- Chen, H. T., Chung, Y. C., Chen, Y. J., Ho, S. Y., Wu, H. J. (2017). Effects of Different Types of Exercise on Body Composition, Muscle Strength, and IGF-1 in the Elderly with Sarcopenic Obesity. Journal of the American Geriatrics Society, 65(4), 827–832. https://doi.org/10.1111/jgs.14722
- Columbus, D. A., Fiorotto, M. L., Davis, T. A. (2015). Leucine is a major regulator of muscle protein synthesis in neonates. Amino acids, 47(2), 259–270. https://doi.org/10.1007/s00726-014-1866-0
- Cribb, P. J., Hayes, A. (2006). Effects of supplement timing and resistance exercise on skeletal muscle hypertrophy. Medicine and science in sports and exercise, 38(11), 1918–1925. https://doi.org/10.1249/01.mss.0000233790.08788.3e
- Dangin, M., Boirie, Y., Garcia-Rodenas, C., Gachon, P., Fauquant, J., Callier, P., Ballèvre, O., Beaufrère, B. (2001). The digestion rate of protein is an independent regulating factor of postprandial protein retention. American journal of physiology. Endocrinology and metabolism, 280(2), E340–E348. https://doi.org/10.1152/ajpendo.2001.280.2.E340
- Dangin, M., Guillet, C., Garcia-Rodenas, C., Gachon, P., Bouteloup-Demange, C., Reiffers-Magnani, K., Fauquant, J., Ballèvre, O., Beaufrère, B. (2003). The rate of protein digestion affects protein gain differently during aging in humans. The Journal of physiology, 549(Pt 2), 635–644. https://doi.org/10.1113/jphysiol.2002.036897
- Diggle, T. A., Moule, S. K., Avison, M. B., Flynn, A., Foulstone, E. J., Proud, C. G., Denton, R. M. (1996). Both rapamycin-sensitive and -insensitive pathways are involved in the phosphorylation of the initiation factor-4E-binding protein (4E-BP1) in response to insulin in rat epididymal fat-cells. The Biochemical journal, 316 ( Pt 2)(Pt 2), 447–453. https://doi.org/10.1042/bj3160447
- Drummond, M. J., Dreyer, H. C., Fry, C. S., Glynn, E. L., Rasmussen, B. B. (2009). Nutritional and contractile regulation of human skeletal muscle protein synthesis and mTORC1 signaling. Journal of applied physiology (Bethesda, Md. : 1985), 106(4), 1374–1384. https://doi.org/10.1152/japplphysiol.91397.2008
- Duan, Y., Li, F., Li, Y., Tang, Y., Kong, X., Feng, Z., Anthony, T. G., Watford, M., Hou, Y., Wu, G., Yin, Y. (2016). The role of leucine and its metabolites in protein and energy metabolism. Amino acids, 48(1), 41–51. https://doi.org/10.1007/s00726-015-2067-1
- Egan, B., Zierath, J. R. (2013). Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell metabolism, 17(2), 162–184. https://doi.org/10.1016/j.cmet.2012.12.012
- Fouillet, H., Mariotti, F., Gaudichon, C., Bos, C., Tomé, D. (2002). Peripheral and splanchnic metabolism of dietary nitrogen are differently affected by the protein source in humans as assessed by compartmental modeling. The Journal of nutrition, 132(1), 125–133. https://doi.org/10.1093/jn/132.1.125
- Francaux, M., Deldicque, L. (2019). Exercise and the control of muscle mass in human. Pflugers Archiv: European journal of physiology, 471(3), 397–411. https://doi.org/10.1007/s00424-018-2217-x
- Fujita, S., Dreyer, H. C., Drummond, M. J., Glynn, E. L., Cadenas, J. G., Yoshizawa, F., Volpi, E., Rasmussen, B. B. (2007). Nutrient signalling in the regulation of human muscle protein synthesis. The Journal of physiology, 582(Pt 2), 813–823. https://doi.org/10.1113/jphysiol.2007.134593
- Hara, K., Yonezawa, K., Weng, Q. P., Kozlowski, M. T., Belham, C., Avruch, J. (1998). Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. The Journal of biological chemistry, 273(23), 14484–14494. https://doi.org/10.1074/jbc.273.23.14484
- Holwerda, A. M., Kouw, I. W., Trommelen, J., Halson, S. L., Wodzig, W. K., Verdijk, L. B., van Loon, L. J. (2016). Physical Activity Performed in the Evening Increases the Overnight Muscle Protein Synthetic Response to Presleep Protein Ingestion in Older Men. The Journal of nutrition, 146(7), 1307–1314. https://doi.org/10.3945/jn.116.230086
- Ivy J. L. (2004). Regulation of muscle glycogen repletion, muscle protein synthesis and repair following exercise. Journal of sports science & medicine, 3(3), 131–138.
- Jäger, R., Kerksick, C. M., Campbell, B. I., Cribb, P. J., Wells, S. D., Skwiat, T. M., Purpura, M., Ziegenfuss, T. N., Ferrando, A. A., Arent, S. M., Smith-Ryan, A. E., Stout, J. R., Arciero, P. J., Ormsbee, M. J., Taylor, L. W., Wilborn, C. D., Kalman, D. S., Kreider, R. B., Willoughby, D. S., Hoffman, J. R., Antonio, J. (2017). International Society of Sports Nutrition Position Stand: protein and exercise. Journal of the International Society of Sports Nutrition, 14, 20. https://doi.org/10.1186/s12970-017-0177-8
- Jonvik, K. L., Paulussen, K., Danen, S. L., Ceelen, I., Horstman, A. M., Wardenaar, F. C., VAN Loon, L., VAN Dijk, J. W. (2019). Protein Supplementation Does Not Augment Adaptations to Endurance Exercise Training. Medicine and science in sports and exercise, 51(10), 2041–2049. https://doi.org/10.1249/MSS.0000000000002028
- Antonio, J., Ellerbroek, A., Peacock, C., Silver, T. (2017). Casein Protein Supplementation in Trained Men and Women: Morning versus Evening. International journal of exercise science, 10(3), 479–486.
- Joy, J. M., Vogel, R. M., Shane Broughton, K., Kudla, U., Kerr, N. Y., Davison, J. M., Wildman, R., DiMarco, N. M. (2018). Daytime and nighttime casein supplements similarly increase muscle size and strength in response to resistance training earlier in the day: a preliminary investigation. Journal of the International Society of Sports Nutrition, 15(1), 24. https://doi.org/10.1186/s12970-018-0228-9
- Katayose, Y., Tasaki, M., Ogata, H., Nakata, Y., Tokuyama, K., Satoh, M. (2009). Metabolic rate and fuel utilization during sleep assessed by whole-body indirect calorimetry. Metabolism: clinical and experimental, 58(7), 920–926. https://doi.org/10.1016/j.metabol.2009.02.025
- Kinsey, A. W., Ormsbee, M. J. (2015). The health impact of nighttime eating: old and new perspectives. Nutrients, 7(4), 2648–2662. https://doi.org/10.3390/nu7042648
- Knuiman, P., van Loon, L., Wouters, J., Hopman, M., Mensink, M. (2019). Protein supplementation elicits greater gains in maximal oxygen uptake capacity and stimulates lean mass accretion during prolonged endurance training: a double-blind randomized controlled trial. The American journal of clinical nutrition, 110(2), 508–518. https://doi.org/10.1093/ajcn/nqz093
- Larsen, M. S., Clausen, D., Jørgensen, A. A., Mikkelsen, U. R., Hansen, M. (2019). Presleep Protein Supplementation Does Not Improve Recovery During Consecutive Days of Intense Endurance Training: A Randomized Controlled Trial. International journal of sport nutrition and exercise metabolism, 29(4), 426–434. https://doi.org/10.1123/ijsnem.2018-0286
- Lemon P. W. (2000). Beyond the zone: protein needs of active individuals. Journal of the American College of Nutrition, 19(5 Suppl), 513S–521S. https://doi.org/10.1080/07315724.2000.10718974
- Madzima, T. A., Panton, L. B., Fretti, S. K., Kinsey, A. W., Ormsbee, M. J. (2014). Night-time consumption of protein or carbohydrate results in increased morning resting energy expenditure in active college-aged men. The British journal of nutrition, 111(1), 71–77. https://doi.org/10.1017/S000711451300192X
- Madzima, T. A., Melanson, J. T., Black, J. R., Nepocatych, S. (2018). Pre-Sleep Consumption of Casein and Whey Protein: Effects on Morning Metabolism and Resistance Exercise Performance in Active Women. Nutrients, 10(9), 1273. https://doi.org/10.3390/nu10091273
- Mamerow, M. M., Mettler, J. A., English, K. L., Casperson, S. L., Arentson-Lantz, E., Sheffield-Moore, M., Layman, D. K., Paddon-Jones, D. (2014). Dietary protein distribution positively influences 24-h muscle protein synthesis in healthy adults. The Journal of nutrition, 144(6), 876–880. https://doi.org/10.3945/jn.113.185280
- McGuigan, M. R., Wright, G. A., Fleck, S. J. (2012). Strength training for athletes: does it really help sports performance?. International journal of sports physiology and performance, 7(1), 2–5. https://doi.org/10.1123/ijspp.7.1.2
- Moore, D. R., Camera, D. M., Areta, J. L., Hawley, J. A. (2014). Beyond muscle hypertrophy: why dietary protein is important for endurance athletes. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme, 39(9), 987–997. https://doi.org/10.1139/apnm-2013-0591
- Moore, D. R., Robinson, M. J., Fry, J. L., Tang, J. E., Glover, E. I., Wilkinson, S. B., Prior, T., Tarnopolsky, M. A., Phillips, S. M. (2009). Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. The American journal of clinical nutrition, 89(1), 161–168. https://doi.org/10.3945/ajcn.2008.26401
- Ormsbee, M. J., Gorman, K. A., Miller, E. A., Baur, D. A., Eckel, L. A., Contreras, R. J., Panton, L. B., Spicer, M. T. (2016). Nighttime feeding likely alters morning metabolism but not exercise performance in female athletes. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme, 41(7), 719–727. https://doi.org/10.1139/apnm-2015-0526
- Proud C. G. (2002). Regulation of mammalian translation factors by nutrients. European journal of biochemistry, 269(22), 5338–5349. https://doi.org/10.1046/j.1432-1033.2002.03292.x
- Proud, C. G., Denton, R. M. (1997). Molecular mechanisms for the control of translation by insulin. The Biochemical journal, 328 (Pt 2)(Pt 2), 329–341. https://doi.org/10.1042/bj3280329
- Reidy, P. T., Walker, D. K., Dickinson, J. M., Gundermann, D. M., Drummond, M. J., Timmerman, K. L., Fry, C. S., Borack, M. S., Cope, M. B., Mukherjea, R., Jennings, K., Volpi, E., Rasmussen, B. B. (2013). Protein blend ingestion following resistance exercise promotes human muscle protein synthesis. The Journal of nutrition, 143(4), 410–416. https://doi.org/10.3945/jn.112.168021
- Reis, C., Loureiro, L., Roschel, H., da Costa, T. (2021). Effects of pre-sleep protein consumption on muscle-related outcomes- A systematic review. Journal of science and medicine in sport, 24(2), 177–182. https://doi.org/10.1016/j.jsams.2020.07.016
- Res, P. T., Groen, B., Pennings, B., Beelen, M., Wallis, G. A., Gijsen, A. P., Senden, J. M., VAN Loon, L. J. (2012). Protein ingestion before sleep improves postexercise overnight recovery. Medicine and science in sports and exercise, 44(8), 1560–1569. https://doi.org/10.1249/MSS.0b013e31824cc363
- Phillips, S. M., Tipton, K. D., Aarsland, A., Wolf, S. E., Wolfe, R. R. (1997). Mixed muscle protein synthesis and breakdown after resistance exercise in humans. The American journal of physiology, 273(1 Pt 1), E99–E107. https://doi.org/10.1152/ajpendo.1997.273.1.E99
- Saracino, P. G., Saylor, H. E., Hanna, B. R., Hickner, R. C., Kim, J. S., Ormsbee, M. J. (2020). Effects of Pre-Sleep Whey vs. Plant-Based Protein Consumption on Muscle Recovery Following Damaging Morning Exercise. Nutrients, 12(7), 2049. https://doi.org/10.3390/nu12072049
- Snijders, T., Res, P. T., Smeets, J. S., van Vliet, S., van Kranenburg, J., Maase, K., Kies, A. K., Verdijk, L. B., van Loon, L. J. (2015). Protein Ingestion before Sleep Increases Muscle Mass and Strength Gains during Prolonged Resistance-Type Exercise Training in Healthy Young Men. The Journal of nutrition, 145(6), 1178–1184. https://doi.org/10.3945/jn.114.208371
- Snijders, T., Trommelen, J., Kouw, I., Holwerda, A. M., Verdijk, L. B., van Loon, L. (2019). The Impact of Pre-sleep Protein Ingestion on the Skeletal Muscle Adaptive Response to Exercise in Humans: An Update. Frontiers in nutrition, 6, 17. https://doi.org/10.3389/fnut.2019.00017
- Spahillari, A., Mukamal, K. J., DeFilippi, C., Kizer, J. R., Gottdiener, J. S., Djoussé, L., Lyles, M. F., Bartz, T. M., Murthy, V. L., Shah, R. V. (2016). The association of lean and fat mass with all-cause mortality in older adults: The Cardiovascular Health Study. Nutrition, metabolism, and cardiovascular diseases : NMCD, 26(11), 1039–1047. https://doi.org/10.1016/j.numecd.2016.06.011
- Taber, C. B., Vigotsky, A., Nuckols, G., Haun, C. T. (2019). Exercise-Induced Myofibrillar Hypertrophy is a Contributory Cause of Gains in Muscle Strength. Sports medicine (Auckland, N.Z.), 49(7), 993–997. https://doi.org/10.1007/s40279-019-01107-8
- Tang, J. E., Moore, D. R., Kujbida, G. W., Tarnopolsky, M. A., Phillips, S. M. (2009). Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. Journal of applied physiology (Bethesda, Md. : 1985), 107(3), 987–992. https://doi.org/10.1152/japplphysiol.00076.2009
- Tipton, K. D., Elliott, T. A., Cree, M. G., Wolf, S. E., Sanford, A. P., Wolfe, R. R. (2004). Ingestion of casein and whey proteins result in muscle anabolism after resistance exercise. Medicine and science in sports and exercise, 36(12), 2073–2081. https://doi.org/10.1249/01.mss.0000147582.99810.c5
- Tipton, K. D., Ferrando, A. A., Phillips, S. M., Doyle, D., Jr, Wolfe, R. R. (1999). Postexercise net protein synthesis in human muscle from orally administered amino acids. The American journal of physiology, 276(4), E628–E634. https://doi.org/10.1152/ajpendo.1999.276.4.E628
- Tipton, K. D., Rasmussen, B. B., Miller, S. L., Wolf, S. E., Owens-Stovall, S. K., Petrini, B. E., Wolfe, R. R. (2001). Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. American journal of physiology. Endocrinology and metabolism, 281(2), E197–E206. https://doi.org/10.1152/ajpendo.2001.281.2.E197
- Trommelen, J., Kouw, I., Holwerda, A. M., Snijders, T., Halson, S. L., Rollo, I., Verdijk, L. B., van Loon, L. (2018). Presleep dietary protein-derived amino acids are incorporated in myofibrillar protein during postexercise overnight recovery. American journal of physiology. Endocrinology and metabolism, 314(5), E457–E467. https://doi.org/10.1152/ajpendo.00273.2016
- Trommelen, J., van Loon, L. J. (2016). Pre-Sleep Protein Ingestion to Improve the Skeletal Muscle Adaptive Response to Exercise Training. Nutrients, 8(12), 763. https://doi.org/10.3390/nu8120763
- Vangsoe, M. T., Joergensen, M. S., Heckmann, L. L., Hansen, M. (2018). Effects of Insect Protein Supplementation during Resistance Training on Changes in Muscle Mass and Strength in Young Men. Nutrients, 10(3), 335. https://doi.org/10.3390/nu10030335
- Volaklis, K. A., Halle, M., & Meisinger, C. (2015). Muscular strength as a strong predictor of mortality: A narrative review. European journal of internal medicine, 26(5), 303–310. https://doi.org/10.1016/j.ejim.2015.04.013
- von Manteuffel, S. R., Gingras, A. C., Ming, X. F., Sonenberg, N., Thomas, G. (1996). 4E-BP1 phosphorylation is mediated by the FRAP-p70s6k pathway and is independent of mitogen-activated protein kinase. Proceedings of the National Academy of Sciences of the United States of America, 93(9), 4076–4080. https://doi.org/10.1073/pnas.93.9.4076
- Wilkinson, S. B., Tarnopolsky, M. A., Macdonald, M. J., Macdonald, J. R., Armstrong, D., Phillips, S. M. (2007). Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage. The American journal of clinical nutrition, 85(4), 1031–1040. https://doi.org/10.1093/ajcn/85.4.1031
- Wolfe R. R. (2017). Branched-chain amino acids and muscle protein synthesis in humans: myth or reality?. Journal of the International Society of Sports Nutrition, 14, 30. https://doi.org/10.1186/s12970-017-0184-9
UYKU ÖNCESİ PROTEİN ALIMININ KAS PROTEİN SENTEZİ, KÜTLESİ VE KUVVETİ ÜZERİNE AKUT VE KRONİK ETKİLERİ
Yıl 2021,
Cilt: 19 Sayı: 3, 30 - 50, 30.09.2021
Tuğçe Nur Erdoğmuş
,
Dicle Aras
Öz
Uyku öncesi protein alımı son yıllarda ilgi çekmeye başlayan bir konudur. Uykudan önce alınan proteinin, gece uykusu sırasında etkili bir şekilde sindirildiği ve emildiği, böylece gece boyunca kas protein sentez hızını artırdığı düşünülmektedir. Fiziksel olarak aktif bireyler ve sporcular fizyolojik adaptasyonlarını en üst düzeye çıkarmak ve performanslarını arttırmak istedikleri için, uyku öncesi protein alımının etkileri önemlidir. Bu derleme makalenin amacı, uyku öncesi protein alımının kas protein sentezi, kas kütlesi ve kuvveti üzerine yapılan güncel araştırmaları incelemek, akut ve kronik etkileri özetleyerek konuyla ilgili güncel ve derleyici bilgi sunmaktır.
Kaynakça
- Abbott, W., Brett, A., Cockburn, E., Clifford, T. (2019). Presleep Casein Protein Ingestion: Acceleration of Functional Recovery in Professional Soccer Players. International journal of sports physiology and performance, 14(3), 385–391. https://doi.org/10.1123/ijspp.2018-0385
- Aragon, A. A., Schoenfeld, B. J. (2013). Nutrient timing revisited: is there a post-exercise anabolic window?. Journal of the International Society of Sports Nutrition, 10(1), 5. https://doi.org/10.1186/1550-2783-10-5
- Allman, B. R., Morrissey, M. C., Kim, J. S., Panton, L. B., Contreras, R. J., Hickner, R. C., Ormsbee, M. J. (2020). Lipolysis and Fat Oxidation Are Not Altered with Presleep Compared with Daytime Casein Protein Intake in Resistance-Trained Women. The Journal of nutrition, 150(1), 47–54. https://doi.org/10.1093/jn/nxz186
- Anthony T. G. (2016). Mechanisms of protein balance in skeletal muscle. Domestic animal endocrinology, 56 Suppl(Suppl), S23–S32. https://doi.org/10.1016/j.domaniend.2016.02.012
- Apweiler, E., Wallace, D., Stansfield, S., Allerton, D. M., Brown, M. A., Stevenson, E. J., Clifford, T. (2018). Pre-Bed Casein Protein Supplementation Does Not Enhance Acute Functional Recovery in Physically Active Males and Females When Exercise is Performed in the Morning. Sports (Basel, Switzerland), 7(1), 5. https://doi.org/10.3390/sports7010005
- Beelen, M., Tieland, M., Gijsen, A. P., Vandereyt, H., Kies, A. K., Kuipers, H., Saris, W. H., Koopman, R., van Loon, L. J. (2008). Coingestion of carbohydrate and protein hydrolysate stimulates muscle protein synthesis during exercise in young men, with no further increase during subsequent overnight recovery. The Journal of nutrition, 138(11), 2198–2204. https://doi.org/10.3945/jn.108.092924
- Benardot, D. (2006) Advanced Sports Nutrition. Human Kinetics, in Champaign, IL. First edition. s: 32.
- Bodine, S. C., Stitt, T. N., Gonzalez, M., Kline, W. O., Stover, G. L., Bauerlein, R., Zlotchenko, E., Scrimgeour, A., Lawrence, J. C., Glass, D. J., Yancopoulos, G. D. (2001). Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nature cell biology, 3(11), 1014–1019. https://doi.org/10.1038/ncb1101-1014.
- Boirie, Y., Dangin, M., Gachon, P., Vasson, M. P., Maubois, J. L., Beaufrère, B. (1997). Slow and fast dietary proteins differently modulate postprandial protein accretion. Proceedings of the National Academy of Sciences of the United States of America, 94(26), 14930–14935. https://doi.org/10.1073/pnas.94.26.14930
- Bos, C., Metges, C. C., Gaudichon, C., Petzke, K. J., Pueyo, M. E., Morens, C., Everwand, J., Benamouzig, R., Tomé, D. (2003). Postprandial kinetics of dietary amino acids are the main determinant of their metabolism after soy or milk protein ingestion in humans. The Journal of nutrition, 133(5), 1308–1315. https://doi.org/10.1093/jn/133.5.1308
- Breen, L., Churchward-Venne, T. A. (2012). Leucine: a nutrient 'trigger' for muscle anabolism, but what more?. The Journal of physiology, 590(9), 2065–2066. https://doi.org/10.1113/jphysiol.2012.230631
- Bucci, L. (1993). Nutrients as Ergogenic Aids for Sports and Exercise (1st ed.). CRC Press. https://doi.org/10.1201/9781003068051
- Burd, N. A., Tang, J. E., Moore, D. R., Phillips, S. M. (2009). Exercise training and protein metabolism: influences of contraction, protein intake, and sex-based differences. Journal of applied physiology (Bethesda, Md. : 1985), 106(5), 1692–1701. https://doi.org/10.1152/japplphysiol.91351.2008
- Burd, N. A., Gorissen, S. H., van Vliet, S., Snijders, T., van Loon, L. J. (2015). Differences in postprandial protein handling after beef compared with milk ingestion during postexercise recovery: a randomized controlled trial. The American journal of clinical nutrition, 102(4), 828–836. https://doi.org/10.3945/ajcn.114.103184
- Chen, H. T., Chung, Y. C., Chen, Y. J., Ho, S. Y., Wu, H. J. (2017). Effects of Different Types of Exercise on Body Composition, Muscle Strength, and IGF-1 in the Elderly with Sarcopenic Obesity. Journal of the American Geriatrics Society, 65(4), 827–832. https://doi.org/10.1111/jgs.14722
- Columbus, D. A., Fiorotto, M. L., Davis, T. A. (2015). Leucine is a major regulator of muscle protein synthesis in neonates. Amino acids, 47(2), 259–270. https://doi.org/10.1007/s00726-014-1866-0
- Cribb, P. J., Hayes, A. (2006). Effects of supplement timing and resistance exercise on skeletal muscle hypertrophy. Medicine and science in sports and exercise, 38(11), 1918–1925. https://doi.org/10.1249/01.mss.0000233790.08788.3e
- Dangin, M., Boirie, Y., Garcia-Rodenas, C., Gachon, P., Fauquant, J., Callier, P., Ballèvre, O., Beaufrère, B. (2001). The digestion rate of protein is an independent regulating factor of postprandial protein retention. American journal of physiology. Endocrinology and metabolism, 280(2), E340–E348. https://doi.org/10.1152/ajpendo.2001.280.2.E340
- Dangin, M., Guillet, C., Garcia-Rodenas, C., Gachon, P., Bouteloup-Demange, C., Reiffers-Magnani, K., Fauquant, J., Ballèvre, O., Beaufrère, B. (2003). The rate of protein digestion affects protein gain differently during aging in humans. The Journal of physiology, 549(Pt 2), 635–644. https://doi.org/10.1113/jphysiol.2002.036897
- Diggle, T. A., Moule, S. K., Avison, M. B., Flynn, A., Foulstone, E. J., Proud, C. G., Denton, R. M. (1996). Both rapamycin-sensitive and -insensitive pathways are involved in the phosphorylation of the initiation factor-4E-binding protein (4E-BP1) in response to insulin in rat epididymal fat-cells. The Biochemical journal, 316 ( Pt 2)(Pt 2), 447–453. https://doi.org/10.1042/bj3160447
- Drummond, M. J., Dreyer, H. C., Fry, C. S., Glynn, E. L., Rasmussen, B. B. (2009). Nutritional and contractile regulation of human skeletal muscle protein synthesis and mTORC1 signaling. Journal of applied physiology (Bethesda, Md. : 1985), 106(4), 1374–1384. https://doi.org/10.1152/japplphysiol.91397.2008
- Duan, Y., Li, F., Li, Y., Tang, Y., Kong, X., Feng, Z., Anthony, T. G., Watford, M., Hou, Y., Wu, G., Yin, Y. (2016). The role of leucine and its metabolites in protein and energy metabolism. Amino acids, 48(1), 41–51. https://doi.org/10.1007/s00726-015-2067-1
- Egan, B., Zierath, J. R. (2013). Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell metabolism, 17(2), 162–184. https://doi.org/10.1016/j.cmet.2012.12.012
- Fouillet, H., Mariotti, F., Gaudichon, C., Bos, C., Tomé, D. (2002). Peripheral and splanchnic metabolism of dietary nitrogen are differently affected by the protein source in humans as assessed by compartmental modeling. The Journal of nutrition, 132(1), 125–133. https://doi.org/10.1093/jn/132.1.125
- Francaux, M., Deldicque, L. (2019). Exercise and the control of muscle mass in human. Pflugers Archiv: European journal of physiology, 471(3), 397–411. https://doi.org/10.1007/s00424-018-2217-x
- Fujita, S., Dreyer, H. C., Drummond, M. J., Glynn, E. L., Cadenas, J. G., Yoshizawa, F., Volpi, E., Rasmussen, B. B. (2007). Nutrient signalling in the regulation of human muscle protein synthesis. The Journal of physiology, 582(Pt 2), 813–823. https://doi.org/10.1113/jphysiol.2007.134593
- Hara, K., Yonezawa, K., Weng, Q. P., Kozlowski, M. T., Belham, C., Avruch, J. (1998). Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. The Journal of biological chemistry, 273(23), 14484–14494. https://doi.org/10.1074/jbc.273.23.14484
- Holwerda, A. M., Kouw, I. W., Trommelen, J., Halson, S. L., Wodzig, W. K., Verdijk, L. B., van Loon, L. J. (2016). Physical Activity Performed in the Evening Increases the Overnight Muscle Protein Synthetic Response to Presleep Protein Ingestion in Older Men. The Journal of nutrition, 146(7), 1307–1314. https://doi.org/10.3945/jn.116.230086
- Ivy J. L. (2004). Regulation of muscle glycogen repletion, muscle protein synthesis and repair following exercise. Journal of sports science & medicine, 3(3), 131–138.
- Jäger, R., Kerksick, C. M., Campbell, B. I., Cribb, P. J., Wells, S. D., Skwiat, T. M., Purpura, M., Ziegenfuss, T. N., Ferrando, A. A., Arent, S. M., Smith-Ryan, A. E., Stout, J. R., Arciero, P. J., Ormsbee, M. J., Taylor, L. W., Wilborn, C. D., Kalman, D. S., Kreider, R. B., Willoughby, D. S., Hoffman, J. R., Antonio, J. (2017). International Society of Sports Nutrition Position Stand: protein and exercise. Journal of the International Society of Sports Nutrition, 14, 20. https://doi.org/10.1186/s12970-017-0177-8
- Jonvik, K. L., Paulussen, K., Danen, S. L., Ceelen, I., Horstman, A. M., Wardenaar, F. C., VAN Loon, L., VAN Dijk, J. W. (2019). Protein Supplementation Does Not Augment Adaptations to Endurance Exercise Training. Medicine and science in sports and exercise, 51(10), 2041–2049. https://doi.org/10.1249/MSS.0000000000002028
- Antonio, J., Ellerbroek, A., Peacock, C., Silver, T. (2017). Casein Protein Supplementation in Trained Men and Women: Morning versus Evening. International journal of exercise science, 10(3), 479–486.
- Joy, J. M., Vogel, R. M., Shane Broughton, K., Kudla, U., Kerr, N. Y., Davison, J. M., Wildman, R., DiMarco, N. M. (2018). Daytime and nighttime casein supplements similarly increase muscle size and strength in response to resistance training earlier in the day: a preliminary investigation. Journal of the International Society of Sports Nutrition, 15(1), 24. https://doi.org/10.1186/s12970-018-0228-9
- Katayose, Y., Tasaki, M., Ogata, H., Nakata, Y., Tokuyama, K., Satoh, M. (2009). Metabolic rate and fuel utilization during sleep assessed by whole-body indirect calorimetry. Metabolism: clinical and experimental, 58(7), 920–926. https://doi.org/10.1016/j.metabol.2009.02.025
- Kinsey, A. W., Ormsbee, M. J. (2015). The health impact of nighttime eating: old and new perspectives. Nutrients, 7(4), 2648–2662. https://doi.org/10.3390/nu7042648
- Knuiman, P., van Loon, L., Wouters, J., Hopman, M., Mensink, M. (2019). Protein supplementation elicits greater gains in maximal oxygen uptake capacity and stimulates lean mass accretion during prolonged endurance training: a double-blind randomized controlled trial. The American journal of clinical nutrition, 110(2), 508–518. https://doi.org/10.1093/ajcn/nqz093
- Larsen, M. S., Clausen, D., Jørgensen, A. A., Mikkelsen, U. R., Hansen, M. (2019). Presleep Protein Supplementation Does Not Improve Recovery During Consecutive Days of Intense Endurance Training: A Randomized Controlled Trial. International journal of sport nutrition and exercise metabolism, 29(4), 426–434. https://doi.org/10.1123/ijsnem.2018-0286
- Lemon P. W. (2000). Beyond the zone: protein needs of active individuals. Journal of the American College of Nutrition, 19(5 Suppl), 513S–521S. https://doi.org/10.1080/07315724.2000.10718974
- Madzima, T. A., Panton, L. B., Fretti, S. K., Kinsey, A. W., Ormsbee, M. J. (2014). Night-time consumption of protein or carbohydrate results in increased morning resting energy expenditure in active college-aged men. The British journal of nutrition, 111(1), 71–77. https://doi.org/10.1017/S000711451300192X
- Madzima, T. A., Melanson, J. T., Black, J. R., Nepocatych, S. (2018). Pre-Sleep Consumption of Casein and Whey Protein: Effects on Morning Metabolism and Resistance Exercise Performance in Active Women. Nutrients, 10(9), 1273. https://doi.org/10.3390/nu10091273
- Mamerow, M. M., Mettler, J. A., English, K. L., Casperson, S. L., Arentson-Lantz, E., Sheffield-Moore, M., Layman, D. K., Paddon-Jones, D. (2014). Dietary protein distribution positively influences 24-h muscle protein synthesis in healthy adults. The Journal of nutrition, 144(6), 876–880. https://doi.org/10.3945/jn.113.185280
- McGuigan, M. R., Wright, G. A., Fleck, S. J. (2012). Strength training for athletes: does it really help sports performance?. International journal of sports physiology and performance, 7(1), 2–5. https://doi.org/10.1123/ijspp.7.1.2
- Moore, D. R., Camera, D. M., Areta, J. L., Hawley, J. A. (2014). Beyond muscle hypertrophy: why dietary protein is important for endurance athletes. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme, 39(9), 987–997. https://doi.org/10.1139/apnm-2013-0591
- Moore, D. R., Robinson, M. J., Fry, J. L., Tang, J. E., Glover, E. I., Wilkinson, S. B., Prior, T., Tarnopolsky, M. A., Phillips, S. M. (2009). Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. The American journal of clinical nutrition, 89(1), 161–168. https://doi.org/10.3945/ajcn.2008.26401
- Ormsbee, M. J., Gorman, K. A., Miller, E. A., Baur, D. A., Eckel, L. A., Contreras, R. J., Panton, L. B., Spicer, M. T. (2016). Nighttime feeding likely alters morning metabolism but not exercise performance in female athletes. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme, 41(7), 719–727. https://doi.org/10.1139/apnm-2015-0526
- Proud C. G. (2002). Regulation of mammalian translation factors by nutrients. European journal of biochemistry, 269(22), 5338–5349. https://doi.org/10.1046/j.1432-1033.2002.03292.x
- Proud, C. G., Denton, R. M. (1997). Molecular mechanisms for the control of translation by insulin. The Biochemical journal, 328 (Pt 2)(Pt 2), 329–341. https://doi.org/10.1042/bj3280329
- Reidy, P. T., Walker, D. K., Dickinson, J. M., Gundermann, D. M., Drummond, M. J., Timmerman, K. L., Fry, C. S., Borack, M. S., Cope, M. B., Mukherjea, R., Jennings, K., Volpi, E., Rasmussen, B. B. (2013). Protein blend ingestion following resistance exercise promotes human muscle protein synthesis. The Journal of nutrition, 143(4), 410–416. https://doi.org/10.3945/jn.112.168021
- Reis, C., Loureiro, L., Roschel, H., da Costa, T. (2021). Effects of pre-sleep protein consumption on muscle-related outcomes- A systematic review. Journal of science and medicine in sport, 24(2), 177–182. https://doi.org/10.1016/j.jsams.2020.07.016
- Res, P. T., Groen, B., Pennings, B., Beelen, M., Wallis, G. A., Gijsen, A. P., Senden, J. M., VAN Loon, L. J. (2012). Protein ingestion before sleep improves postexercise overnight recovery. Medicine and science in sports and exercise, 44(8), 1560–1569. https://doi.org/10.1249/MSS.0b013e31824cc363
- Phillips, S. M., Tipton, K. D., Aarsland, A., Wolf, S. E., Wolfe, R. R. (1997). Mixed muscle protein synthesis and breakdown after resistance exercise in humans. The American journal of physiology, 273(1 Pt 1), E99–E107. https://doi.org/10.1152/ajpendo.1997.273.1.E99
- Saracino, P. G., Saylor, H. E., Hanna, B. R., Hickner, R. C., Kim, J. S., Ormsbee, M. J. (2020). Effects of Pre-Sleep Whey vs. Plant-Based Protein Consumption on Muscle Recovery Following Damaging Morning Exercise. Nutrients, 12(7), 2049. https://doi.org/10.3390/nu12072049
- Snijders, T., Res, P. T., Smeets, J. S., van Vliet, S., van Kranenburg, J., Maase, K., Kies, A. K., Verdijk, L. B., van Loon, L. J. (2015). Protein Ingestion before Sleep Increases Muscle Mass and Strength Gains during Prolonged Resistance-Type Exercise Training in Healthy Young Men. The Journal of nutrition, 145(6), 1178–1184. https://doi.org/10.3945/jn.114.208371
- Snijders, T., Trommelen, J., Kouw, I., Holwerda, A. M., Verdijk, L. B., van Loon, L. (2019). The Impact of Pre-sleep Protein Ingestion on the Skeletal Muscle Adaptive Response to Exercise in Humans: An Update. Frontiers in nutrition, 6, 17. https://doi.org/10.3389/fnut.2019.00017
- Spahillari, A., Mukamal, K. J., DeFilippi, C., Kizer, J. R., Gottdiener, J. S., Djoussé, L., Lyles, M. F., Bartz, T. M., Murthy, V. L., Shah, R. V. (2016). The association of lean and fat mass with all-cause mortality in older adults: The Cardiovascular Health Study. Nutrition, metabolism, and cardiovascular diseases : NMCD, 26(11), 1039–1047. https://doi.org/10.1016/j.numecd.2016.06.011
- Taber, C. B., Vigotsky, A., Nuckols, G., Haun, C. T. (2019). Exercise-Induced Myofibrillar Hypertrophy is a Contributory Cause of Gains in Muscle Strength. Sports medicine (Auckland, N.Z.), 49(7), 993–997. https://doi.org/10.1007/s40279-019-01107-8
- Tang, J. E., Moore, D. R., Kujbida, G. W., Tarnopolsky, M. A., Phillips, S. M. (2009). Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. Journal of applied physiology (Bethesda, Md. : 1985), 107(3), 987–992. https://doi.org/10.1152/japplphysiol.00076.2009
- Tipton, K. D., Elliott, T. A., Cree, M. G., Wolf, S. E., Sanford, A. P., Wolfe, R. R. (2004). Ingestion of casein and whey proteins result in muscle anabolism after resistance exercise. Medicine and science in sports and exercise, 36(12), 2073–2081. https://doi.org/10.1249/01.mss.0000147582.99810.c5
- Tipton, K. D., Ferrando, A. A., Phillips, S. M., Doyle, D., Jr, Wolfe, R. R. (1999). Postexercise net protein synthesis in human muscle from orally administered amino acids. The American journal of physiology, 276(4), E628–E634. https://doi.org/10.1152/ajpendo.1999.276.4.E628
- Tipton, K. D., Rasmussen, B. B., Miller, S. L., Wolf, S. E., Owens-Stovall, S. K., Petrini, B. E., Wolfe, R. R. (2001). Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. American journal of physiology. Endocrinology and metabolism, 281(2), E197–E206. https://doi.org/10.1152/ajpendo.2001.281.2.E197
- Trommelen, J., Kouw, I., Holwerda, A. M., Snijders, T., Halson, S. L., Rollo, I., Verdijk, L. B., van Loon, L. (2018). Presleep dietary protein-derived amino acids are incorporated in myofibrillar protein during postexercise overnight recovery. American journal of physiology. Endocrinology and metabolism, 314(5), E457–E467. https://doi.org/10.1152/ajpendo.00273.2016
- Trommelen, J., van Loon, L. J. (2016). Pre-Sleep Protein Ingestion to Improve the Skeletal Muscle Adaptive Response to Exercise Training. Nutrients, 8(12), 763. https://doi.org/10.3390/nu8120763
- Vangsoe, M. T., Joergensen, M. S., Heckmann, L. L., Hansen, M. (2018). Effects of Insect Protein Supplementation during Resistance Training on Changes in Muscle Mass and Strength in Young Men. Nutrients, 10(3), 335. https://doi.org/10.3390/nu10030335
- Volaklis, K. A., Halle, M., & Meisinger, C. (2015). Muscular strength as a strong predictor of mortality: A narrative review. European journal of internal medicine, 26(5), 303–310. https://doi.org/10.1016/j.ejim.2015.04.013
- von Manteuffel, S. R., Gingras, A. C., Ming, X. F., Sonenberg, N., Thomas, G. (1996). 4E-BP1 phosphorylation is mediated by the FRAP-p70s6k pathway and is independent of mitogen-activated protein kinase. Proceedings of the National Academy of Sciences of the United States of America, 93(9), 4076–4080. https://doi.org/10.1073/pnas.93.9.4076
- Wilkinson, S. B., Tarnopolsky, M. A., Macdonald, M. J., Macdonald, J. R., Armstrong, D., Phillips, S. M. (2007). Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage. The American journal of clinical nutrition, 85(4), 1031–1040. https://doi.org/10.1093/ajcn/85.4.1031
- Wolfe R. R. (2017). Branched-chain amino acids and muscle protein synthesis in humans: myth or reality?. Journal of the International Society of Sports Nutrition, 14, 30. https://doi.org/10.1186/s12970-017-0184-9