Derleme
BibTex RIS Kaynak Göster

ANAEROBİK HIZ REZERVİ: GENEL BAKIŞ VE GÜNCEL YAKLAŞIMLAR

Yıl 2023, Cilt: 21 Sayı: 4, 158 - 171, 30.12.2023
https://doi.org/10.33689/spormetre.1336107

Öz

Anaerobik Sprint Rezervi (ASR) kavramı maksimum sprint hızı (MSS) ile VO2 max'ta koşu hızı arasındaki fark olarak açıklanmaktadır. Anaerobik hız ve güç rezervinin (ASR/APR), sporcuya uygulanan antrenmandaki yüklenme şiddetini tahmin etmek için kullanılan önemli bir antrenman metodu olduğu bildirilmiştir. Bazı branşlarda (özellikle koşu temelli) teknik beceri düzeyleri birbirine yakın sporcular arasındaki farkları belirlemede ASR’in önemli bir belirteç olabileceği belirtilmektedir. Bunun yanında, sporcuların VO2 max değerleri birbirine yakın olabilir fakat ASR değerleri birbirinden bağımsız olabilir. Bu durum, sporcuların gelişmiş aerobik ve anaerobik dayanıklılık performanslarının bir sonucu olarak açıklanabilir. Ayrıca böyle sporcular, müsabaka sırasında yüksek şiddetli aktiviteleri daha fazla sayıda yapabilir, daha hızlı toparlanabilir ve daha iyi performans ortaya koyabilirler. Sporculardaki ASR değerinin benzer Maksimal aerobik hız (MAS) değerine sahip sporcularda supramaksimal koşu performanslarında bireyler arası farklılıkların üstesinden geldiği gösterilmiştir. Bunun nedeni, aynı mutlak çalışma yoğunluklarının (% MAS), kişinin ASR'sinin farklı bir oranını içermesi ve bu da farklı fizyolojik talepler ve enerji sistemi katkıları ile sonuçlanmasıdır. Tekrarlı sprint yeteneği (RSA) bağlamında antrenörlere, sporcularına yüksek bir başlangıç çıktısı (yüksek maksimum sprint hızı) elde etmelerini ve ardından bu hızı mümkün olduğu kadar uzun süre koruma becerisini sağlayacak antrenmanlar yapmaları önerilmektedir.

Kaynakça

  • Altmann, S., Neumann, R., Woll, A., & Hartel, S. (2020). Endurance capacities in professional soccer players: are performance profiles position specific? Frontiers in Sport and Active Living, 3 (2), 2-9. https://doi.org/10.3389/fspor.2020.549897
  • Andrzejewski, M., Chmura, P., Konefał, M., Kowalczuk, E., & Chmura, J. (2018). Match outcome and sprinting activities in match play by elite German soccer players. The Journal of Sports Medicine and Physical Fitness, 58(6),785-92. doi: 10.23736/S0022-4707.17.07352-2.
  • Archiza, B., Andaku, D. K., Beltrame, T., Libardi, C. A., & Borghi-Silva, A. (2020). The relationship between repeated-sprint ability, aerobic capacity, and oxygen uptake recovery kinetics in female soccer athletes. Journal of Human Kinetics, 75, 115-26. doi: 10.2478/hukin-2020-0042
  • Bachero-Mena, B., Pareja-Blanco, F., Rodríguez-Rosell, D., Yanez-Garcia, J. M., Mora-Custodio, R., & González-Badillo, JJ. (2017). Relationships between sprint, jumping and strength abilities, and 800 m performance in male athletes of national and international levels. Journal of Human Kinetics, 58(1), 187-95. doi: 10.1515/hukin-2017-0076
  • Barnes, C., Archer, D., Bush, M., Hogg, R., & Bradley, P. (2014). The evolution of physical and technical performance parameters in the english premier league. International Journal of Sports Medicine, 10, 35:1-6. doi: 10.1055/s-0034-1375695.
  • Bellinger, P., Derave, W., Lievens, E., Kennedy, B., Arnold, B., Rice, H., & Minahan, C. (2021). Determinants of last lap speed in paced and maximal 1500-m time trials. European Journal of Applied Physiology, 121,525-37. doi: 10.1007/s00421-020-04543-x.
  • Bishop, D., Girard, O., & Mendez-Villanueva, A. (2011). Repeated-sprint ability-Part II: Recommendations for training. Sports Medicine, 41(9), 741-56. doi: 10.2165/11590560-000000000-00000.
  • Blondel, N., Berthoin, S., Billat, V., & Lensel, G. (2001). Relationship between run times to exhaustion at 90, 100, 120, and 140 % of vV O2max and velocity expressed relatively to critical velocity and maximal velocity. International journal of sports medicine, 22(1), 27-33. doi: 10.1055/s-2001-11357.
  • Bogdanis, G. C., Nevill, M. E., Boobis, L. H., Lakomy, H. K., & Nevill, A. M. (1995). Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. The Journal of Physiology,15;482(Pt 2), 467-80. doi: 10.1113/jphysiol.1995.sp020533
  • Buchheit, M. (2008). The 30–15 intermittent fitness test: accuracy for individualizing interval training of young intermittent sport players. Journal of Strength and Condition Research, 22, 36-44. doi: 10.1519/JSC.0b013e3181635b2e.
  • Buchheit, M. (2012). Repeated-sprint performance in team sport players: associations with measures of aerobic fitness, metabolic control and locomotor function. International Journal of Sports Medicine, 33(3), 230-39. doı: 10.1055/s-0031-1291364
  • Buchheit, M., & Laursen, P. B. (2013). High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis. Sports Medicine, 43, 313-38. doı: 10.1007/s40279-013-0029-x
  • Buchheit, M., Simpson, B. M., & Mendez-Villanueva, A. (2013). Repeated high-speed activities during youth soccer games in relation to changes in maximal sprinting and aerobic speeds. International Journal of Sports Medicine, 34, 40-8. doi: 10.1055/s-0032-1316363
  • Buchheit, M., Samozino, P., Glynn, J. A., Michael, B. S., Haddad, H. A., Mendez-Villanueva, A., & Morin, J. B. (2014). Mechanical determinants of acceleration and maximal sprinting speed in highly trained young soccer players. Journal of Sports Sciences, 32(20), 1906-13. doi: 10.1080/02640414.2014.965191.
  • Buchheit, M., & Mendez-Villanueva, A. (2014). Changes in repeated-sprint performance in relation to change in locomotor profile in highly-trained young soccer players. Journal of Sports Science, 32(13), 1309-17. doi: 10.1080/02640414.2014.918272.
  • Da Silva, J. F., Guglielmo, L. G., & Bishop, D. (2010). Relationship between different measures of aerobic fitness and repeated-sprint ability in elite soccer players. Journal of Strength and Condition Research, 24(8), 2115-21. doi: 10.1519/JSC.0b013e3181e34794.
  • Dardouri, W., Selmi, M. A., Sassi, R. H., Gharbi, Z., Rebhi, A., Yahmed, M. H., & Moalla, W. (2014). Relationship between repeated sprint performance and both aerobic and anaerobic fitness. Journal of Human Kinetics, 40, 139-48. doi: 10.2478/hukin-2014-0016
  • Fitzpatrick, J. F., Hicks, K. M., & Hayes, P. R. (2018). Dose-response relationship between training load and changes in aerobic fitness in professional youth soccer players. International Journal of Sports Physiology and Performance, 13(10), 1365-70. doi: 10.1123/ijspp.2017-0843
  • Gabbett, T. J., Stein, J. G., Kemp, J. G., & Lorenzen, C. (2013). Relationship between tests of physical qualities and physical match performance in elite rugby league players. The Journal of Strength and Conditioning Research, 27(6), 1539-45. doi: 10.1519/JSC.0b013e318274f236.
  • Girard, O., Mendez-Villanueva, A., & Bishop, D. (2011). Repeated-sprint ability – Part I: Factors contributing to fatigue. Sports Medicine, 41(8), 673-94. doi: 10.2165/11590550-000000000-00000.
  • Gist, N. H., Fedewa, M. V., Dishman, R. K., & Cureton, K. J. (2014). Sprint interval training effects on aerobic capacity: a systematic review and meta-analysis. Sports Medicine, 44(2), 269-79. doi: 10.1007/s40279-013-0115-0.
  • Hallam, L. C., Ducharme, J. B., Mang, Z. A., & Amorim, F. T. (2022). The role of the anaerobic speed reserve in female middle-distance running. Science and Sports, 37, 637.e1-637.e8. https://doi.org/10.1016/j.scispo.2021.07.006
  • Impellizzeri, F. M., Rampinini, E., Castagna, C., Bishop, D., Ferrari Bravo, D., Tibaudi, A., & Wisloff, U. (2008). Validity of a repeated-sprint test for football. International Journal of Sports Medicine, 29(11), 899-905. doi: 10.1055/s-2008-1038491
  • Jones, R. M., Cook, C. C., Kilduff, L. P., Milanovic, Z., James, N., Sporis, G., Fiorentini, B., Fiorentini, F., Turner, A., & Vuckovic, G. (2013). Relationship between repeated sprint ability and aerobic capacity in professional soccer players. Scientific World Journal, 952350. doi: 10.1155/2013/952350
  • Julio, U. F., Panissa, V. L. G., Paludo, A. C., Alves, E. D., Campos, F. A. D., & Franchini, E. (2020). Use of the anaerobic speed reserve to normalize the prescription of high-intensity interval exercise intensity. European Journal of Sport Science, 7;20(2), 166-73. doi: 10.1080/17461391.2019.1624833.
  • Lopes-Silva, J. P., Ferreira da Silva Santos, J., Abbiss, C. R., & Franchini, E. (2019). Measurement properties and feasibility of repeated sprint ability test: A systematic review. Strength and Conditioning Journal, 41(6), 41-61. doı: 10.1519/SSC.0000000000000495
  • Lundquist, M., Nelson, M. J., Debenedictis, T., Gollan, S., Fuller, J. T., Larwood, T., & Bellenger, C. R. (2021). Set distance time trials for predicting maximal aerobic speed in female Australian Rules Footballers. Journal of Science and Medicine in Sport, 24, 391-6. https://doi.org/10.1016/j.jsams.2020.10.002
  • McMahon, S., & Jenkins, D. (2002). Factors affecting the rate of phosphocreatine resynthesis following intense exercise. Sports Medicine, 1;32(12), 761-84. doi: 10.2165/00007256-200232120-00002.
  • Mendez-Villanueva, A., Hamer, P., & Bishop, D. (2008). Fatigue in repeated sprint exercise is related to muscle power factors and reduced neuromuscular activity. European Journal of Applied Physiology, 103, 411-19. doi: 10.1007/s00421-008-0723-9.
  • Mendez-Villanueva, A., Buchheit, M., Simpson, B., Peltola, E., & Bourdon, P. (2011). Does on-field sprinting performance in young soccer players depend on how fast they can run or how fast they do run? Journal of Strength and Condition Research, 25(9), 2634-38. doi: 10.1519/JSC.0b013e318201c281.
  • Mendiguchia, J., Gonzalez De la Flor, A., Mendez-Villanueva, A., Morin, J. B., Edouard, P., & Garrues, M. A. (2020). Training-induced changes in anterior pelvic tilt: potential implications for hamstring strain injuries management. Journal of Sports Science, 10, 1-8. doi: 10.1080/02640414.2020.1845439.
  • Ortiz, J. G., Teixeira, A. S., Mohr, P. A., Do Nascimento, S. P. C., Cetolin, T., Guglielmo, L. G. A., & De Lucas, R. D. (2018). The anaerobic speed reserve of high-level soccer players: a comparison based on the running speed profile among and within playing positions. Human Movements, 19(5), 65-72. doı: 10.5114/hm.2018.81287
  • Papadakis, L., MItrotasios, M., & Patras, K. (2017). Influence of aerobic endurance, sports speed and strength to repeated sprint performance in professional soccer players. Biology of Exercise, 13(1), 45-57. doı: 10.4127/jbe.2017.0115
  • Pupo, J. D., Detanico, D., Ache-Dias, J., & Dos-Santos, S. G. (2017). The fatigue effect of a simulated futsal match protocol on sprint performance and kinematics of the lower limbs. Journal of Sports Sciences, 2;35(1), 81-8. doi: 10.1080/02640414.2016.1156727.
  • Rago, V., Brito, J., Figueiredo, P., Krustrup, P., & Rebelo, A. (2020). Application of individualized speed zones to quantify external training load in professional soccer. Journal of Human Kinetics, 31;72(1), 279-89. doi: 10.2478/hukin-2019-0113
  • Rampinini, E., Sassi, A., Morelli, A., Mazzoni, S., Fanchini, M., & Coutts, A. J. (2009). Repeated-sprint ability in professional and amateur soccer players. Applied Physiology, Nutrition and Metabolism, 34(6), 1048-54. doi: 10.1139/H09-111.
  • Rodríguez-Fernández, A., Sanchez-Sanchez, J., Ramirez-Campillo, R., Nakamura, F. Y., Rodríguez-Marroyo, J. A., & Villa-Vicente, J. G. (2019). Relationship between repeated sprint ability, aerobic capacity, intermittent endurance, and heart rate recovery in youth soccer players. Journal of Strength and Condition Research, 33(12), 3406-13. doi: 10.1519/JSC.0000000000002193.
  • Sanders, D., & Heijboer, M. (2018). The anaerobic power reserve and its applicability in professional road cycling. Journal of Sports Science [Internet], 37, 621-29. doi: 10.1080/02640414.2018.1522684.
  • Sandford, G. N., Pearson, S., Allen, S. V., Malcata, R. M, Kilding, A. E., Ross, A., & Laursen, P. B. (2018). Tactical behaviors in men’s 800-m Olympic and world-championship medalists: A changing of the guard. International Journal of Sports Physiology and Performance, 13(2), 246-49. doı: 10.1123/ijspp.2016-0780
  • Sandford, G. N., Rogers, S. A., Sharma, A. P., Kilding, A. E., Ross, A., & Laursen P. B. (2019). Implementing anaerobic speed reserve testing in the field: validation of vVO2max prediction from 1500-m race performance in elite middle-distance runners. International journal of sports physiology and performance, 14(8), 1147-50. doi: 10.1123/ijspp.2018-0553.
  • Sandford, G. N., Kilding, A. E., Ross, A., & Laursen, P. B. (2019). Maximal sprint speed and the anaerobic speed reserve domain: the untapped tools that diferentiate the world’s best male 800 m runners. Sport Medicine [Internet], 49, 843-52. doı: 10.1007/s40279-018-1010-5
  • Sandford, G. N., Laursen, P. B., & Buchheit, M. (2021). Anaerobic speed/power reserve and sport performance: scientifc basis, current applications and future directions. Sports Medicine, 51, 2017-28. doi: 10.1007/s40279-021-01523-9
  • Scott, P. (2018). Applying the anaerobic speed reserve to team sport conditioning. Hettler Performance, on Twitter @Gareth_Sandford and @pcfscott.
  • Spencer, M., Fitzsimons, M., Dawson, B., Bishop, D., & Goodman, C. (2006). Reliability of a repeated-sprint test for field-hockey. Journal of Science and Medicine in Sport, 1;9(1), 181-89. doi: 10.1016/j.jsams.2005.05.001.
  • Tomlin, D. L., & Wenger, H. A. (2001). The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Sports Medicine, 31(1), 1-11. doi: 10.2165/00007256-200131010-00001.
  • Ufland, P., Ahmaidi, S., & Buchheit, M. (2013). Repeated-sprint performance, locomotor profile and muscle oxygen uptake recovery: effect of training background. International Journal of Sports Medicine, 34, 924-30. doi: 10.1055/s-0033-1333719.
  • Ursula, F. J., Valeria, L. G., Panissa, A. C. P., Elaine, D. A., Fabio, A., Campos, D., & Franchini, E. (2020). Use of the anaerobic speed reserve to normalize the prescription of high-intensity interval exercise intensity, European Journal of Sport Science, 20 (2), 166-173. doi: 10.1080/17461391.2019.1624833.
  • Weyand, P. G., Sternlight, D. B., Bellizzi, M. J, & Wright, S. (2000). Faster top running speeds are achieved with greater ground forces not more rapid leg movements. Journal of Applied Physiology, 89(5), 1991-99. doi: 10.1152/jappl.2000.89.5.1991.
  • Weyand, P. G., Lin, J. E., & Bundle, M. W. (2006). Sprint performance-duration relationships are set by the fractional duration of external force application. American journal of physiology-Regulatory, Integrative and Comparative physiology, 8(3), 758-65. doi: 10.1152/ajpregu.00562.2005.

ANAEROBIC SPEED RESERVE: OVERVIEW AND CURRENT APPROACHES

Yıl 2023, Cilt: 21 Sayı: 4, 158 - 171, 30.12.2023
https://doi.org/10.33689/spormetre.1336107

Öz

The concept of Anaerobic Sprint Reserve (ASR) is explained as the difference between maximum sprint speed (MSS) and running speed at VO2 max. It has been reported that anaerobic speed and power reserve (ASR/APR) is an important training method used to estimate the intensity of loading in the training applied to the athlete. It is stated that ASR may be an important marker in determining the differences between athletes with similar technical skill levels in some branches (especially running-based). In addition, VO2 max values of athletes may be close to each other, but ASR values may be independent of each other. This can be explained as a result of their improved aerobic and anaerobic endurance performance. In addition, such athletes are able to perform a greater number of high intensity activities during competition, recover faster and perform better. ASR value in athletes has been shown to overcome inter-individual differences in supramaximal running performances in athletes with similar MAS. This is because the same absolute work intensities (% MAS) involve a different proportion of the individual's ASR, resulting in different physiological demands and energy system contributions. In the context of repeated sprinting ability (RSA), coaches are advised to train their athletes to achieve a high initial output (high maximum sprint speed or MSS) and then the ability to maintain this speed for as long as possible

Kaynakça

  • Altmann, S., Neumann, R., Woll, A., & Hartel, S. (2020). Endurance capacities in professional soccer players: are performance profiles position specific? Frontiers in Sport and Active Living, 3 (2), 2-9. https://doi.org/10.3389/fspor.2020.549897
  • Andrzejewski, M., Chmura, P., Konefał, M., Kowalczuk, E., & Chmura, J. (2018). Match outcome and sprinting activities in match play by elite German soccer players. The Journal of Sports Medicine and Physical Fitness, 58(6),785-92. doi: 10.23736/S0022-4707.17.07352-2.
  • Archiza, B., Andaku, D. K., Beltrame, T., Libardi, C. A., & Borghi-Silva, A. (2020). The relationship between repeated-sprint ability, aerobic capacity, and oxygen uptake recovery kinetics in female soccer athletes. Journal of Human Kinetics, 75, 115-26. doi: 10.2478/hukin-2020-0042
  • Bachero-Mena, B., Pareja-Blanco, F., Rodríguez-Rosell, D., Yanez-Garcia, J. M., Mora-Custodio, R., & González-Badillo, JJ. (2017). Relationships between sprint, jumping and strength abilities, and 800 m performance in male athletes of national and international levels. Journal of Human Kinetics, 58(1), 187-95. doi: 10.1515/hukin-2017-0076
  • Barnes, C., Archer, D., Bush, M., Hogg, R., & Bradley, P. (2014). The evolution of physical and technical performance parameters in the english premier league. International Journal of Sports Medicine, 10, 35:1-6. doi: 10.1055/s-0034-1375695.
  • Bellinger, P., Derave, W., Lievens, E., Kennedy, B., Arnold, B., Rice, H., & Minahan, C. (2021). Determinants of last lap speed in paced and maximal 1500-m time trials. European Journal of Applied Physiology, 121,525-37. doi: 10.1007/s00421-020-04543-x.
  • Bishop, D., Girard, O., & Mendez-Villanueva, A. (2011). Repeated-sprint ability-Part II: Recommendations for training. Sports Medicine, 41(9), 741-56. doi: 10.2165/11590560-000000000-00000.
  • Blondel, N., Berthoin, S., Billat, V., & Lensel, G. (2001). Relationship between run times to exhaustion at 90, 100, 120, and 140 % of vV O2max and velocity expressed relatively to critical velocity and maximal velocity. International journal of sports medicine, 22(1), 27-33. doi: 10.1055/s-2001-11357.
  • Bogdanis, G. C., Nevill, M. E., Boobis, L. H., Lakomy, H. K., & Nevill, A. M. (1995). Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. The Journal of Physiology,15;482(Pt 2), 467-80. doi: 10.1113/jphysiol.1995.sp020533
  • Buchheit, M. (2008). The 30–15 intermittent fitness test: accuracy for individualizing interval training of young intermittent sport players. Journal of Strength and Condition Research, 22, 36-44. doi: 10.1519/JSC.0b013e3181635b2e.
  • Buchheit, M. (2012). Repeated-sprint performance in team sport players: associations with measures of aerobic fitness, metabolic control and locomotor function. International Journal of Sports Medicine, 33(3), 230-39. doı: 10.1055/s-0031-1291364
  • Buchheit, M., & Laursen, P. B. (2013). High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis. Sports Medicine, 43, 313-38. doı: 10.1007/s40279-013-0029-x
  • Buchheit, M., Simpson, B. M., & Mendez-Villanueva, A. (2013). Repeated high-speed activities during youth soccer games in relation to changes in maximal sprinting and aerobic speeds. International Journal of Sports Medicine, 34, 40-8. doi: 10.1055/s-0032-1316363
  • Buchheit, M., Samozino, P., Glynn, J. A., Michael, B. S., Haddad, H. A., Mendez-Villanueva, A., & Morin, J. B. (2014). Mechanical determinants of acceleration and maximal sprinting speed in highly trained young soccer players. Journal of Sports Sciences, 32(20), 1906-13. doi: 10.1080/02640414.2014.965191.
  • Buchheit, M., & Mendez-Villanueva, A. (2014). Changes in repeated-sprint performance in relation to change in locomotor profile in highly-trained young soccer players. Journal of Sports Science, 32(13), 1309-17. doi: 10.1080/02640414.2014.918272.
  • Da Silva, J. F., Guglielmo, L. G., & Bishop, D. (2010). Relationship between different measures of aerobic fitness and repeated-sprint ability in elite soccer players. Journal of Strength and Condition Research, 24(8), 2115-21. doi: 10.1519/JSC.0b013e3181e34794.
  • Dardouri, W., Selmi, M. A., Sassi, R. H., Gharbi, Z., Rebhi, A., Yahmed, M. H., & Moalla, W. (2014). Relationship between repeated sprint performance and both aerobic and anaerobic fitness. Journal of Human Kinetics, 40, 139-48. doi: 10.2478/hukin-2014-0016
  • Fitzpatrick, J. F., Hicks, K. M., & Hayes, P. R. (2018). Dose-response relationship between training load and changes in aerobic fitness in professional youth soccer players. International Journal of Sports Physiology and Performance, 13(10), 1365-70. doi: 10.1123/ijspp.2017-0843
  • Gabbett, T. J., Stein, J. G., Kemp, J. G., & Lorenzen, C. (2013). Relationship between tests of physical qualities and physical match performance in elite rugby league players. The Journal of Strength and Conditioning Research, 27(6), 1539-45. doi: 10.1519/JSC.0b013e318274f236.
  • Girard, O., Mendez-Villanueva, A., & Bishop, D. (2011). Repeated-sprint ability – Part I: Factors contributing to fatigue. Sports Medicine, 41(8), 673-94. doi: 10.2165/11590550-000000000-00000.
  • Gist, N. H., Fedewa, M. V., Dishman, R. K., & Cureton, K. J. (2014). Sprint interval training effects on aerobic capacity: a systematic review and meta-analysis. Sports Medicine, 44(2), 269-79. doi: 10.1007/s40279-013-0115-0.
  • Hallam, L. C., Ducharme, J. B., Mang, Z. A., & Amorim, F. T. (2022). The role of the anaerobic speed reserve in female middle-distance running. Science and Sports, 37, 637.e1-637.e8. https://doi.org/10.1016/j.scispo.2021.07.006
  • Impellizzeri, F. M., Rampinini, E., Castagna, C., Bishop, D., Ferrari Bravo, D., Tibaudi, A., & Wisloff, U. (2008). Validity of a repeated-sprint test for football. International Journal of Sports Medicine, 29(11), 899-905. doi: 10.1055/s-2008-1038491
  • Jones, R. M., Cook, C. C., Kilduff, L. P., Milanovic, Z., James, N., Sporis, G., Fiorentini, B., Fiorentini, F., Turner, A., & Vuckovic, G. (2013). Relationship between repeated sprint ability and aerobic capacity in professional soccer players. Scientific World Journal, 952350. doi: 10.1155/2013/952350
  • Julio, U. F., Panissa, V. L. G., Paludo, A. C., Alves, E. D., Campos, F. A. D., & Franchini, E. (2020). Use of the anaerobic speed reserve to normalize the prescription of high-intensity interval exercise intensity. European Journal of Sport Science, 7;20(2), 166-73. doi: 10.1080/17461391.2019.1624833.
  • Lopes-Silva, J. P., Ferreira da Silva Santos, J., Abbiss, C. R., & Franchini, E. (2019). Measurement properties and feasibility of repeated sprint ability test: A systematic review. Strength and Conditioning Journal, 41(6), 41-61. doı: 10.1519/SSC.0000000000000495
  • Lundquist, M., Nelson, M. J., Debenedictis, T., Gollan, S., Fuller, J. T., Larwood, T., & Bellenger, C. R. (2021). Set distance time trials for predicting maximal aerobic speed in female Australian Rules Footballers. Journal of Science and Medicine in Sport, 24, 391-6. https://doi.org/10.1016/j.jsams.2020.10.002
  • McMahon, S., & Jenkins, D. (2002). Factors affecting the rate of phosphocreatine resynthesis following intense exercise. Sports Medicine, 1;32(12), 761-84. doi: 10.2165/00007256-200232120-00002.
  • Mendez-Villanueva, A., Hamer, P., & Bishop, D. (2008). Fatigue in repeated sprint exercise is related to muscle power factors and reduced neuromuscular activity. European Journal of Applied Physiology, 103, 411-19. doi: 10.1007/s00421-008-0723-9.
  • Mendez-Villanueva, A., Buchheit, M., Simpson, B., Peltola, E., & Bourdon, P. (2011). Does on-field sprinting performance in young soccer players depend on how fast they can run or how fast they do run? Journal of Strength and Condition Research, 25(9), 2634-38. doi: 10.1519/JSC.0b013e318201c281.
  • Mendiguchia, J., Gonzalez De la Flor, A., Mendez-Villanueva, A., Morin, J. B., Edouard, P., & Garrues, M. A. (2020). Training-induced changes in anterior pelvic tilt: potential implications for hamstring strain injuries management. Journal of Sports Science, 10, 1-8. doi: 10.1080/02640414.2020.1845439.
  • Ortiz, J. G., Teixeira, A. S., Mohr, P. A., Do Nascimento, S. P. C., Cetolin, T., Guglielmo, L. G. A., & De Lucas, R. D. (2018). The anaerobic speed reserve of high-level soccer players: a comparison based on the running speed profile among and within playing positions. Human Movements, 19(5), 65-72. doı: 10.5114/hm.2018.81287
  • Papadakis, L., MItrotasios, M., & Patras, K. (2017). Influence of aerobic endurance, sports speed and strength to repeated sprint performance in professional soccer players. Biology of Exercise, 13(1), 45-57. doı: 10.4127/jbe.2017.0115
  • Pupo, J. D., Detanico, D., Ache-Dias, J., & Dos-Santos, S. G. (2017). The fatigue effect of a simulated futsal match protocol on sprint performance and kinematics of the lower limbs. Journal of Sports Sciences, 2;35(1), 81-8. doi: 10.1080/02640414.2016.1156727.
  • Rago, V., Brito, J., Figueiredo, P., Krustrup, P., & Rebelo, A. (2020). Application of individualized speed zones to quantify external training load in professional soccer. Journal of Human Kinetics, 31;72(1), 279-89. doi: 10.2478/hukin-2019-0113
  • Rampinini, E., Sassi, A., Morelli, A., Mazzoni, S., Fanchini, M., & Coutts, A. J. (2009). Repeated-sprint ability in professional and amateur soccer players. Applied Physiology, Nutrition and Metabolism, 34(6), 1048-54. doi: 10.1139/H09-111.
  • Rodríguez-Fernández, A., Sanchez-Sanchez, J., Ramirez-Campillo, R., Nakamura, F. Y., Rodríguez-Marroyo, J. A., & Villa-Vicente, J. G. (2019). Relationship between repeated sprint ability, aerobic capacity, intermittent endurance, and heart rate recovery in youth soccer players. Journal of Strength and Condition Research, 33(12), 3406-13. doi: 10.1519/JSC.0000000000002193.
  • Sanders, D., & Heijboer, M. (2018). The anaerobic power reserve and its applicability in professional road cycling. Journal of Sports Science [Internet], 37, 621-29. doi: 10.1080/02640414.2018.1522684.
  • Sandford, G. N., Pearson, S., Allen, S. V., Malcata, R. M, Kilding, A. E., Ross, A., & Laursen, P. B. (2018). Tactical behaviors in men’s 800-m Olympic and world-championship medalists: A changing of the guard. International Journal of Sports Physiology and Performance, 13(2), 246-49. doı: 10.1123/ijspp.2016-0780
  • Sandford, G. N., Rogers, S. A., Sharma, A. P., Kilding, A. E., Ross, A., & Laursen P. B. (2019). Implementing anaerobic speed reserve testing in the field: validation of vVO2max prediction from 1500-m race performance in elite middle-distance runners. International journal of sports physiology and performance, 14(8), 1147-50. doi: 10.1123/ijspp.2018-0553.
  • Sandford, G. N., Kilding, A. E., Ross, A., & Laursen, P. B. (2019). Maximal sprint speed and the anaerobic speed reserve domain: the untapped tools that diferentiate the world’s best male 800 m runners. Sport Medicine [Internet], 49, 843-52. doı: 10.1007/s40279-018-1010-5
  • Sandford, G. N., Laursen, P. B., & Buchheit, M. (2021). Anaerobic speed/power reserve and sport performance: scientifc basis, current applications and future directions. Sports Medicine, 51, 2017-28. doi: 10.1007/s40279-021-01523-9
  • Scott, P. (2018). Applying the anaerobic speed reserve to team sport conditioning. Hettler Performance, on Twitter @Gareth_Sandford and @pcfscott.
  • Spencer, M., Fitzsimons, M., Dawson, B., Bishop, D., & Goodman, C. (2006). Reliability of a repeated-sprint test for field-hockey. Journal of Science and Medicine in Sport, 1;9(1), 181-89. doi: 10.1016/j.jsams.2005.05.001.
  • Tomlin, D. L., & Wenger, H. A. (2001). The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Sports Medicine, 31(1), 1-11. doi: 10.2165/00007256-200131010-00001.
  • Ufland, P., Ahmaidi, S., & Buchheit, M. (2013). Repeated-sprint performance, locomotor profile and muscle oxygen uptake recovery: effect of training background. International Journal of Sports Medicine, 34, 924-30. doi: 10.1055/s-0033-1333719.
  • Ursula, F. J., Valeria, L. G., Panissa, A. C. P., Elaine, D. A., Fabio, A., Campos, D., & Franchini, E. (2020). Use of the anaerobic speed reserve to normalize the prescription of high-intensity interval exercise intensity, European Journal of Sport Science, 20 (2), 166-173. doi: 10.1080/17461391.2019.1624833.
  • Weyand, P. G., Sternlight, D. B., Bellizzi, M. J, & Wright, S. (2000). Faster top running speeds are achieved with greater ground forces not more rapid leg movements. Journal of Applied Physiology, 89(5), 1991-99. doi: 10.1152/jappl.2000.89.5.1991.
  • Weyand, P. G., Lin, J. E., & Bundle, M. W. (2006). Sprint performance-duration relationships are set by the fractional duration of external force application. American journal of physiology-Regulatory, Integrative and Comparative physiology, 8(3), 758-65. doi: 10.1152/ajpregu.00562.2005.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Antrenman
Bölüm Derleme
Yazarlar

Halit Egesoy 0000-0003-1347-8647

Erken Görünüm Tarihi 28 Aralık 2023
Yayımlanma Tarihi 30 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 21 Sayı: 4

Kaynak Göster

APA Egesoy, H. (2023). ANAEROBİK HIZ REZERVİ: GENEL BAKIŞ VE GÜNCEL YAKLAŞIMLAR. SPORMETRE Beden Eğitimi Ve Spor Bilimleri Dergisi, 21(4), 158-171. https://doi.org/10.33689/spormetre.1336107

Flag Counter