Derleme
BibTex RIS Kaynak Göster

Biomechanical Determinants of Sprint Performance and Horizontal Force-Velocity Profile Components: A Traditional Review

Yıl 2025, Cilt: 23 Sayı: 2, 189 - 209, 30.06.2025
https://doi.org/10.33689/spormetre.1542027

Öz

Sprint is particularly associated with athletes' abilities to accelerate and run at high speeds. During sprint, athletes generate high levels of horizontal force (HF) and apply this force effectively to the ground. The components of the horizontal force-velocity (HF-V) profile play a critical role in this process and are considered an essential factor in optimizing performance. In recent years, with the growing interest in the force-velocity (F-V) relationship, many coaches and field professionals have been enhancing their knowledge in this area in the context of optimizing sprint performance. The purpose of this review is to present a conceptual framework for a comprehensive analysis of the components of the HF-V profile and to conduct an in-depth examination of the neuromuscular and biomechanical characteristics underpinning sprint performance. The direction and magnitude of the HF applied to the ground determine the athlete’s rate of acceleration and ability to reach maximum speed. During sprint, the athlete’s body position ensures the effective application of force. In the acceleration phase of sprint, correctly directing the force applied to the ground is a critical factor in optimizing performance. Therefore, focusing on the correct application of force direction during training is crucial for improving sprint performance. Enhancing components such as F0rel, Pmaxrel, and RFmax can boost performance in the initial stages of sprint, thereby significantly improving an athlete’s overall sprint abilities. Moreover, these components play a critical role in reducing potential injury risks and enhancing sprint performance. Consequently, optimizing the HF-V profile components according to individual needs can be considered a strategic approach to improving athletic performance and minimizing injury risks. This review provides a comprehensive guide for athletes and coaches aiming to enhance sprint performance.

Kaynakça

  • Abade, E., Silva, N., Ferreira, R., Baptista, J., Gonçalves, B., Osório, S., & Viana, J. (2021). Effects of adding vertical or horizontal force-vector exercises to in-season general strength training on jumping and sprinting performance of youth football players. The Journal of Strength & Conditioning Research, 35(10), 2769-2774.
  • Adamson, G., & Whitney, R. (1971). Critical appraisal of jumping as a measure of human power. In Biomechanics II (Vol. 6, pp. 208-211). Karger Publishers.
  • Alcazar, J., Csapo, R., Ara, I., & Alegre, L. M. (2019a). On the shape of the force-velocity relationship in skeletal muscles: The linear, the hyperbolic, and the double-hyperbolic. Frontiers in physiology, 10, 438208.
  • Alonso-Callejo, A., García-Unanue, J., Guitart-Trench, M., Majano, C., Gallardo, L., & Felipe, J. L. (2024). Validity and reliability of the acceleration-speed profile for assessing running kinematics' variables derived from the force-velocity profile in professional soccer players. The Journal of Strength & Conditioning Research, 38(3), 563-570.
  • Baena-Raya, A., García-Mateo, P., García-Ramos, A., Rodríguez-Pérez, M. A., & Soriano-Maldonado, A. (2022). Delineating the potential of the vertical and horizontal force-velocity profile for optimizing sport performance: A systematic review. Journal of Sports Sciences, 40(3), 331-344.
  • Barany, M. (1967). ATPase activity of myosin correlated with speed of muscle shortening. The Journal of general physiology, 50(6), 197-218.
  • Bettariga, F., Maestroni, L., Martorelli, L., Turner, A., & Bishop, C. (2023). The effects of a 6-week unilateral strength and ballistic jump training program on the force-velocity profiles of sprinting. The Journal of Strength & Conditioning Research, 37(7), 1390-1396.
  • Bezodis, N., Colyer, S., Nagahara, R., Bayne, H., Bezodis, I., Morin, J.-B., Murata, M., & Samozino, P. (2021). Ratio of forces during sprint acceleration: A comparison of different calculation methods. Journal of biomechanics, 127, 110685.
  • Bezodis, N. E., North, J. S., & Razavet, J. L. (2017). Alterations to the orientation of the ground reaction force vector affect sprint acceleration performance in team sports athletes. Journal of sports sciences, 35(18), 1817-1824.
  • Bodine, S. C., Roy, R., Meadows, D., Zernicke, R., Sacks, R., Fournier, M., & Edgerton, V. (1982). Architectural, histochemical, and contractile characteristics of a unique biarticular muscle: the cat semitendinosus. journal of Neurophysiology, 48(1), 192-201.
  • Bouvier, J., Igonin, P.-H., Boithias, M., Fouré, A., Belli, A., Boisseau, N., & Martin, C. (2025). The squat jump and sprint force–velocity profiles of elite female football players are not influenced by the menstrual cycle phases and oral contraceptive use. European Journal of Applied Physiology, 1-12.
  • Cahill, M. J., Oliver, J. L., Cronin, J. B., Clark, K. P., Cross, M. R., & Lloyd, R. S. (2020). Influence of resisted sled‐push training on the sprint force‐velocity profile of male high school athletes. Scandinavian journal of medicine & science in sports, 30(3), 442-449.
  • Chelly, S. M., & Denis, C. (2001). Leg power and hopping stiffness: relationship with sprint running performance. Medicine & Science in Sports & Exercise, 33(2), 326-333.
  • Clark, K., & Weyand, P. (2015). Sprint running research speeds up: A first look at the mechanics of elite acceleration. In (Vol. 25, pp. 581-582): Wiley Online Library.
  • Clark, K. P., Rieger, R. H., Bruno, R. F., & Stearne, D. J. (2019). The National Football League combine 40-yd dash: how important is maximum velocity? The Journal of Strength & Conditioning Research, 33(6), 1542-1550.
  • Clark, K. P., & Weyand, P. G. (2014). Are running speeds maximized with simple-spring stance mechanics? Journal of applied physiology.
  • Contreras, B., Vigotsky, A. D., Schoenfeld, B. J., Beardsley, C., McMaster, D. T., Reyneke, J. H., & Cronin, J. B. (2017). Effects of a six-week hip thrust vs. front squat resistance training program on performance in adolescent males: a randomized controlled trial. The Journal of Strength & Conditioning Research, 31(4), 999-1008.
  • Cormie, P., McCaulley, G. O., & McBRIDE, J. M. (2007). Power versus strength-power jump squat training: influence on the load-power relationship. Medicine & Science in Sports & Exercise, 39(6), 996-1003. Cormier, P., Tsai, M.-C., Meylan, C., Agar-Newman, D., Epp-Stobbe, A., Kalthoff, Z., & Klimstra, M. (2023). Concurrent validity and reliability of different technologies for sprint-derived horizontal force-velocity-power profiling. The Journal of Strength & Conditioning Research, 37(6), 1298-1305.
  • Cross, M. R., Brughelli, M., Brown, S. R., Samozino, P., Gill, N. D., Cronin, J. B., & Morin, J.-B. (2015). Mechanical properties of sprinting in elite rugby union and rugby league. International journal of sports physiology and performance, 10(6), 695-702.
  • de Barros Sousa, F. A., Henrique Marinho, A., da Silva Calvalcante, M. D., de Almeida Rodrigues, N., Silva Lima, T., Gilo da Silva, D., Fonseca, F. d. S., Balikian Junior, P., & Gomes de Araujo, G. (2024). Running sprint force-velocity-power profile obtained with a low-cost and low frame rate acquisition video technique: reliability and concurrent validity. Sports Biomechanics, 1-17.
  • Dello Iacono, A., Padulo, J., & Seitz, L. D. (2018). Loaded hip thrust-based PAP protocol effects on acceleration and sprint performance of handball players: Original Investigation. Journal of sports sciences, 36(11), 1269-1276.
  • di Prampero, P. E., Fusi, S., Sepulcri, L., Morin, J.-B., Belli, A., & Antonutto, G. (2005). Sprint running: a new energetic approach. Journal of experimental Biology, 208(14), 2809-2816.
  • Djuric, S., Cuk, I., Sreckovic, S., Mirkov, D., Nedeljkovic, A., & Jaric, S. (2016). Selective effects of training against weight and inertia on muscle mechanical properties. International journal of sports physiology and performance, 11(7), 927-932.
  • Edgerton, V. (1986). Morphological basis of skeletal muscle power output. Human muscle power, 43-64.
  • Edouard, P., Lahti, J., Nagahara, R., Samozino, P., Navarro, L., Guex, K., Rossi, J., Brughelli, M., Mendiguchia, J., & Morin, J.-B. (2021). Low horizontal force production capacity during sprinting as a potential risk factor of hamstring injury in football. International journal of environmental research and public health, 18(15), 7827.
  • Edwards, T., Weakley, J., Banyard, H. G., Cripps, A., Piggott, B., Haff, G. G., & Joyce, C. (2021). Influence of age and maturation status on sprint acceleration characteristics in junior Australian football. Journal of Sports Sciences, 39(14), 1585-1593.
  • Ettema, G. (2023). The force–velocity profiling concept for sprint running is a dead end. International Journal of Sports Physiology and Performance, 19(1), 88-91.
  • Fernández-Galván, L. M., Jiménez-Reyes, P., Cuadrado-Peñafiel, V., & Casado, A. (2022). Sprint performance and mechanical force-velocity profile among different maturational stages in young soccer players. International journal of environmental research and public health, 19(3), 1412.
  • Feser, E., Lindley, K., Clark, K., Bezodis, N., Korfist, C., & Cronin, J. (2022). Comparison of two measurement devices for obtaining horizontal force-velocity profile variables during sprint running. International Journal of Sports Science & Coaching, 17(6), 1455-1461.
  • Fitzpatrick, D. A., Cimadoro, G., & Cleather, D. J. (2019). The magical horizontal force muscle? A preliminary study examining the “force-vector” theory. Sports, 7(2), 30.
  • Fornasier-Santos, C., Arnould, A., Jusseaume, J., Millot, B., Guilhem, G., Couturier, A., Samozino, P., Slawinski, J., & Morin, J.-B. (2022). Sprint acceleration mechanical outputs derived from position–or velocity–time data: A multi-system comparison study. Sensors, 22(22), 8610.
  • Furusawa, K., Hill, A. V., & Parkinson, J. (1927). The dynamics of" sprint" running. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 102(713), 29-42.
  • Galantine, P., Sudlow, A., Hays, A., Maso, F., Duché, P., & Bertin, D. (2025). Effect of fatigability on sprint time performance and force-velocity profile according to maturity status in young rugby players. PloS one, 20(1), e0316947.
  • Hansen, T., & Lindhard, J. (1923). On the maximum work of human muscles especially the flexors of the elbow. The Journal of physiology, 57(5), 287.
  • Hardyk, A. T. T. (2000). Force-and power-velocity relationships in a multi-joint movement. The Pennsylvania State University.
  • Harris, N. K., Cronin, J. B., Hopkins, W. G., & Hansen, K. T. (2008). Squat jump training at maximal power loads vs. heavy loads: effect on sprint ability. The Journal of Strength & Conditioning Research, 22(6), 1742-1749.
  • Haugen, T. A., Breitschädel, F., & Seiler, S. (2019). Sprint mechanical variables in elite athletes: Are force-velocity profiles sport specific or individual? PLoS One, 14(7), e0215551.
  • Haugen, T. A., Breitschädel, F., & Seiler, S. (2020). Sprint mechanical properties in soccer players according to playing standard, position, age and sex. Journal of Sports Sciences, 38(9), 1070-1076.
  • Haugen, T. A., Tønnessen, E., & Seiler, S. K. (2012). The difference is in the start: impact of timing and start procedure on sprint running performance. The Journal of Strength & Conditioning Research, 26(2), 473-479.
  • Hermosilla-Palma, F., Loro-Ferrer, J. F., Merino-Muñoz, P., Gómez-Álvarez, N., Bustamante-Garrido, A., Cerda-Kohler, H., Portes-Junior, M., & Aedo-Muñoz, E. (2022). Changes in the mechanical properties of the horizontal force-velocity profile during a repeated sprint test in professional soccer players. International journal of environmental research and public health, 20(1), 704.
  • Hicks, D. S., Drummond, C., Williams, K. J., Pickering, C., & van den Tillaar, R. (2022). Individualization of training based on sprint force-velocity profiles: a conceptual framework for biomechanical and technical training recommendations. Strength & Conditioning Journal, 10.1519.
  • Hicks, D. S., Schuster, J. G., Samozino, P., & Morin, J.-B. (2020). Improving mechanical effectiveness during sprint acceleration: practical recommendations and guidelines. Strength & Conditioning Journal, 42(2), 45-62.
  • Hill, A., Long, C., & Lupton, H. (1924). The effect of fatigue on the relation between work and speed, in contraction of human arm muscles. The Journal of physiology, 58(4-5), 334.
  • Hill, A. V. (1922). The maximum work and mechanical efficiency of human muscles, and their most economical speed. The Journal of physiology, 56(1-2), 19.
  • Hill, A. V. (1938). The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society of London. Series B-Biological Sciences, 126(843), 136-195.
  • Huxley, A. F. (1957). Muscle structure and theories of contraction. Progress in biophysics and biophysical chemistry, 7, 255-318.
  • Jiménez-Reyes, P., García-Ramos, A., Cuadrado-Peñafiel, V., Párraga-Montilla, J. A., Morcillo-Losa, J. A., Samozino, P., & Morin, J.-B. (2019). Differences in sprint mechanical force–velocity profile between trained soccer and futsal players. International journal of sports physiology and performance, 14(4), 478-485.
  • Jiménez-Reyes, P., Samozino, P., Brughelli, M., & Morin, J.-B. (2017). Effectiveness of an individualized training based on force-velocity profiling during jumping. Frontiers in physiology, 7, 677.
  • Jiménez-Reyes, P., Samozino, P., García-Ramos, A., Cuadrado-Peñafiel, V., Brughelli, M., & Morin, J.-B. (2018). Relationship between vertical and horizontal force-velocity-power profiles in various sports and levels of practice. PeerJ, 6, e5937.
  • Jiménez-Reyes, P., Samozino, P., Pareja-Blanco, F., Conceição, F., Cuadrado-Peñafiel, V., González-Badillo, J. J., & Morin, J.-B. (2017). Validity of a simple method for measuring force-velocity-power profile in countermovement jump. International Journal of Sports Physiology and Performance, 12(1), 36-43.
  • Jovanović, M., & Vescovi, J. (2022). {shorts}: An R package for modeling short sprints. International Journal of Strength and Conditioning, 2(1).
  • Kugler, F., & Janshen, L. (2010). Body position determines propulsive forces in accelerated running. Journal of biomechanics, 43(2), 343-348.
  • Lahti, J., Huuhka, T., Romero, V., Bezodis, I., Morin, J.-B., & Häkkinen, K. (2020). Changes in sprint performance and sagittal plane kinematics after heavy resisted sprint training in professional soccer players. PeerJ, 8, e10507.
  • Lindberg, K., Solberg, P., Rønnestad, B. R., Frank, M. T., Larsen, T., Abusdal, G., Berntsen, S., Paulsen, G., Sveen, O., & Seynnes, O. (2021). Should we individualize training based on force‐velocity profiling to improve physical performance in athletes? Scandinavian journal of medicine & science in sports, 31(12), 2198-2210.
  • Macadam, P., Simperingham, K. D., & Cronin, J. B. (2017). Acute kinematic and kinetic adaptations to wearable resistance during sprint acceleration. The Journal of Strength & Conditioning Research, 31(5), 1297-1304.
  • May, T. S., Ishak, A., & Zolkafi, M. A. A. (2023). Sprint, Jump Performances, and Force-Velocity Profile in A Well-Trained Football Player: A Pilot Study. Journal of Social Science and Humanities, 6(6), 17-22.
  • Mendiguchia, J., Edouard, P., Samozino, P., Brughelli, M., Cross, M., Ross, A., Gill, N., & Morin, J.-B. (2016). Field monitoring of sprinting power–force–velocity profile before, during and after hamstring injury: two case reports. Journal of Sports Sciences, 34(6), 535-541.
  • Mero, A., Komi, P., & Gregor, R. (1992). Biomechanics of sprint running: A review. Sports medicine, 13, 376-392. Mitrečić, K., & Vučetić, V. (2025). Relationship between the horizontal force-velocity profile and performance variables obtained in sprinting, slalom test, and kicking in amateur soccer players. Montenegrin Journal of Sports Science and Medicine, 14(1), Ahead of Print.
  • Morin, J.-B., Bourdin, M., Edouard, P., Peyrot, N., Samozino, P., & Lacour, J.-R. (2012). Mechanical determinants of 100-m sprint running performance. European Journal of Applied Physiology, 112, 3921-3930.
  • Morin, J.-B., Edouard, P., & Samozino, P. (2011). Technical ability of force application as a determinant factor of sprint performance. Medicine & Science in Sports & Exercise, 43(9), 1680-1688.
  • Morin, J.-B., Jeannin, T., Chevallier, B., & Belli, A. (2006). Spring-mass model characteristics during sprint running: correlation with performance and fatigue-induced changes. International journal of sports medicine, 27(02), 158-165.
  • Morin, J.-B., & Samozino, P. (2016). Interpreting power-force-velocity profiles for individualized and specific training. International journal of sports physiology and performance, 11(2), 267-272.
  • Morin, J.-B., Samozino, P., Bonnefoy, R., Edouard, P., & Belli, A. (2010). Direct measurement of power during one single sprint on treadmill. Journal of biomechanics, 43(10), 1970-1975.
  • Morin, J.-B., Samozino, P., Murata, M., Cross, M. R., & Nagahara, R. (2019). A simple method for computing sprint acceleration kinetics from running velocity data: Replication study with improved design. Journal of biomechanics, 94, 82-87.
  • Morin, J.-B., Slawinski, J., Dorel, S., Couturier, A., Samozino, P., Brughelli, M., & Rabita, G. (2015). Acceleration capability in elite sprinters and ground impulse: push more, brake less? Journal of biomechanics, 48(12), 3149-3154.
  • Newton, R. U., Murphy, A. J., Humphries, B. J., Wilson, G. J., Kraemer, W. J., & Häkkinen, K. (1997). Influence of load and stretch shortening cycle on the kinematics, kinetics and muscle activation that occurs during explosive upper-body movements. European journal of applied physiology and occupational physiology, 75, 333-342.
  • Niederdraeing, L., & Zentgraf, K. (2025). Force-Velocity Profiling among Different Maturational Stages in Young Soccer Players: A Cross-Sectional Study. International Journal of Strength and Conditioning, 5(1).
  • Norgeot, F., & Fouré, A. (2024). Effects of vertical and horizontal plyometric training on jump performances and sprint force–velocity profile in young elite soccer players. European Journal of Applied Physiology, 124(9), 2591-2601.
  • Pantoja, P. D., Carvalho, A. R., Ribas, L. R., & Peyré-Tartaruga, L. A. (2018). Effect of weighted sled towing on sprinting effectiveness, power and force-velocity relationship. PLoS One, 13(10), e0204473.
  • Pantoja, P. D., De Villarreal, E. S., Brisswalter, J., Peyre-Tartaruga, L. A., & Morin, J.-B. (2016). Sprint acceleration mechanics in masters athletes. Medicine and Science in Sports and Exercise, 48(12), 2469-2476.
  • Perez, J., Guilhem, G., & Brocherie, F. (2022). Reliability of the force-velocity-power variables during ice hockey sprint acceleration. Sports Biomechanics, 21(1), 56-70.
  • Powers, S. K., & Howley, E. T. (1995). Exercise Physiology: Theory and Application to Fitness and Performances. Medicine & Science in Sports & Exercise, 27(3), 466.
  • Rabita, G., Dorel, S., Slawinski, J., Sàez‐de‐Villarreal, E., Couturier, A., Samozino, P., & Morin, J. B. (2015). Sprint mechanics in world‐class athletes: a new insight into the limits of human locomotion. Scandinavian journal of medicine & science in sports, 25(5), 583-594.
  • Rakovic, E., Paulsen, G., Helland, C., Eriksrud, O., & Haugen, T. (2018). The effect of individualised sprint training in elite female team sport athletes: A pilot study. Journal of Sports Sciences, 36(24), 2802-2808. Rivière, J. R., Peyrot, N., Cross, M. R., Messonnier, L. A., & Samozino, P. (2020). Strength-endurance: Interaction between force-velocity condition and power output. Frontiers in physiology, 11, 576725.
  • Romero-Franco, N., Jiménez-Reyes, P., Castaño-Zambudio, A., Capelo-Ramírez, F., Rodríguez-Juan, J. J., González-Hernández, J., Toscano-Bendala, F. J., Cuadrado-Peñafiel, V., & Balsalobre-Fernández, C. (2017). Sprint performance and mechanical outputs computed with an iPhone app: Comparison with existing reference methods. European journal of sport science, 17(4), 386-392.
  • Samozino, P., Peyrot, N., Edouard, P., Nagahara, R., Jimenez‐Reyes, P., Vanwanseele, B., & Morin, J. B. (2022). Optimal mechanical force‐velocity profile for sprint acceleration performance. Scandinavian journal of medicine & science in sports, 32(3), 559-575.
  • Samozino, P., Rabita, G., Dorel, S., Slawinski, J., Peyrot, N., Saez de Villarreal, E., & Morin, J. B. (2016). A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scandinavian journal of medicine & science in sports, 26(6), 648-658.
  • Samozino, P., Rivière, J. R., Rossi, J., Morin, J.-B., & Jimenez-Reyes, P. (2018). How fast is a horizontal squat jump? International journal of sports physiology and performance, 13(7), 910-916.
  • Simperingham, K. D., Cronin, J. B., Pearson, S. N., & Ross, A. (2019). Reliability of horizontal force–velocity–power profiling during short sprint-running accelerations using radar technology. Sports Biomechanics, 18(1), 88-99.
  • Spector, S. A., Gardiner, P. F., Zernicke, R. F., Roy, R. R., & Edgerton, V. R. (1980). Muscle architecture and force-velocity characteristics of cat soleus and medial gastrocnemius: implications for motor control. journal of Neurophysiology, 44(5), 951-960.
  • Stavridis, I., Smilios, I., Tsopanidou, A., Economou, T., & Paradisis, G. (2019). Differences in the force velocity mechanical profile and the effectiveness of force application during sprint-acceleration between sprinters and hurdlers. Frontiers in Sports and Active Living, 1, 26.
  • Taylor, N. A., Cotter, J. D., Stanley, S. N., & Marshall, R. N. (1991). Functional torque-velocity and power-velocity characteristics of elite athletes. European journal of applied physiology and occupational physiology, 62, 116-121.
  • van den Tillaar, R., Haugen, M. E., & Falch, H. N. (2022). A comparison of sprint mechanical parameters measured with timing gates and a laser gun. Frontiers in Sports and Active Living, 4, 877482.
  • Vescovi, J. D., & Jovanović, M. (2021). Sprint mechanical characteristics of female soccer players: A retrospective pilot study to examine a novel approach for correction of timing gate starts. Frontiers in Sports and Active Living, 3, 629694.
  • Wendt, I., & Gibbs, C. (1974). Energy production of mammalian fast-and slow-twitch muscles during development. American Journal of Physiology-Legacy Content, 226(3), 642-647.
  • Widrick, J. J., Trappe, S. W., Costill, D. L., & Fitts, R. H. (1996). Force-velocity and force-power properties of single muscle fibers from elite master runners and sedentary men. American Journal of Physiology-Cell Physiology, 271(2), C676-C683.
  • Williams, M. J., Gibson, N. V., Sorbie, G. G., Ugbolue, U. C., Brouner, J., & Easton, C. (2021). Activation of the gluteus maximus during performance of the back squat, split squat, and barbell hip thrust and the relationship with maximal sprinting. The Journal of Strength & Conditioning Research, 35(1), 16-24.

SPRİNT PERFORMANSININ BİYOMEKANİK BELİRLEYİCİLERİ VE YATAY KUVVET-HIZ PROFİLİ BİLEŞENLERİ: GELENEKSEL DERLEME

Yıl 2025, Cilt: 23 Sayı: 2, 189 - 209, 30.06.2025
https://doi.org/10.33689/spormetre.1542027

Öz

Sprint, özellikle sporcuların ivmelenme ve yüksek hızda koşma yetenekleriyle ilişkilidir. Sprint sırasında, sporcular yüksek düzeyde yatay kuvvet (YK) üretmekte ve bu kuvveti etkili bir şekilde zemine uygulamaktadır. Yatay kuvvet-hız (YK-H) profili bileşenleri, bu süreçte kritik bir rol oynamaktadır ve performansın optimize edilmesinde önemli bir bileşen olarak kabul edilmektedir. Son yıllarda, kuvvet-hız (K-H) ilişkisine yönelik artan ilgiyle birlikte, birçok antrenör ve saha profesyoneli, sprint performansını optimize etme bağlamında bu alana dair bilgisini geliştirmektedir. Bu derlemenin amacı, YK-H profilinin bileşenlerini derinlemesine incelemek için kavramsal bir çerçeve sunmak ve sprint performansının nöromüsküler ve biyomekanik özelliklerini ayrıntılı olarak gözden geçirmektir. Zemine uygulanan YK yönü ve büyüklüğü, sporcunun ivmelenme hızını ve maksimum hıza ulaşma yeteneğini belirlemektedir. Sprint sırasında sporcunun vücut pozisyonu, kuvvetin etkin bir şekilde uygulanmasını sağlamaktadır. Sprintin ivmelenme aşamasında yere uygulanan kuvvetin doğru yönde yönlendirilmesi, performansın optimize edilmesi açısından kritik bir faktördür. Bu nedenle, antrenmanlar sırasında kuvvetin doğru yönde uygulanmasına odaklanmak, sprint performansını iyileştirmek için önemlidir. F0rel, Pmaxrel ve YKmax gibi bileşenlerin geliştirilmesi, sprintin ilk aşamalarındaki performansı artırabilir ve bu sayede sporcunun genel sprint yeteneklerini önemli ölçüde iyileştirebilir. Ayrıca, bu bileşenler, olası yaralanma risklerini azaltmada ve sprint performansını artırmada kritik rol oynamaktadır. Sonuç olarak, YK-H profili bileşenlerinin bireysel ihtiyaçlara göre optimize edilmesi, sporcunun performansını artırmak ve yaralanma risklerini en aza indirmek için stratejik bir yaklaşım olarak değerlendirilebilir. Bu derleme, sprint performansını geliştirmek isteyen sporcular ve antrenörler için kapsamlı bir rehber sunmaktadır.

Kaynakça

  • Abade, E., Silva, N., Ferreira, R., Baptista, J., Gonçalves, B., Osório, S., & Viana, J. (2021). Effects of adding vertical or horizontal force-vector exercises to in-season general strength training on jumping and sprinting performance of youth football players. The Journal of Strength & Conditioning Research, 35(10), 2769-2774.
  • Adamson, G., & Whitney, R. (1971). Critical appraisal of jumping as a measure of human power. In Biomechanics II (Vol. 6, pp. 208-211). Karger Publishers.
  • Alcazar, J., Csapo, R., Ara, I., & Alegre, L. M. (2019a). On the shape of the force-velocity relationship in skeletal muscles: The linear, the hyperbolic, and the double-hyperbolic. Frontiers in physiology, 10, 438208.
  • Alonso-Callejo, A., García-Unanue, J., Guitart-Trench, M., Majano, C., Gallardo, L., & Felipe, J. L. (2024). Validity and reliability of the acceleration-speed profile for assessing running kinematics' variables derived from the force-velocity profile in professional soccer players. The Journal of Strength & Conditioning Research, 38(3), 563-570.
  • Baena-Raya, A., García-Mateo, P., García-Ramos, A., Rodríguez-Pérez, M. A., & Soriano-Maldonado, A. (2022). Delineating the potential of the vertical and horizontal force-velocity profile for optimizing sport performance: A systematic review. Journal of Sports Sciences, 40(3), 331-344.
  • Barany, M. (1967). ATPase activity of myosin correlated with speed of muscle shortening. The Journal of general physiology, 50(6), 197-218.
  • Bettariga, F., Maestroni, L., Martorelli, L., Turner, A., & Bishop, C. (2023). The effects of a 6-week unilateral strength and ballistic jump training program on the force-velocity profiles of sprinting. The Journal of Strength & Conditioning Research, 37(7), 1390-1396.
  • Bezodis, N., Colyer, S., Nagahara, R., Bayne, H., Bezodis, I., Morin, J.-B., Murata, M., & Samozino, P. (2021). Ratio of forces during sprint acceleration: A comparison of different calculation methods. Journal of biomechanics, 127, 110685.
  • Bezodis, N. E., North, J. S., & Razavet, J. L. (2017). Alterations to the orientation of the ground reaction force vector affect sprint acceleration performance in team sports athletes. Journal of sports sciences, 35(18), 1817-1824.
  • Bodine, S. C., Roy, R., Meadows, D., Zernicke, R., Sacks, R., Fournier, M., & Edgerton, V. (1982). Architectural, histochemical, and contractile characteristics of a unique biarticular muscle: the cat semitendinosus. journal of Neurophysiology, 48(1), 192-201.
  • Bouvier, J., Igonin, P.-H., Boithias, M., Fouré, A., Belli, A., Boisseau, N., & Martin, C. (2025). The squat jump and sprint force–velocity profiles of elite female football players are not influenced by the menstrual cycle phases and oral contraceptive use. European Journal of Applied Physiology, 1-12.
  • Cahill, M. J., Oliver, J. L., Cronin, J. B., Clark, K. P., Cross, M. R., & Lloyd, R. S. (2020). Influence of resisted sled‐push training on the sprint force‐velocity profile of male high school athletes. Scandinavian journal of medicine & science in sports, 30(3), 442-449.
  • Chelly, S. M., & Denis, C. (2001). Leg power and hopping stiffness: relationship with sprint running performance. Medicine & Science in Sports & Exercise, 33(2), 326-333.
  • Clark, K., & Weyand, P. (2015). Sprint running research speeds up: A first look at the mechanics of elite acceleration. In (Vol. 25, pp. 581-582): Wiley Online Library.
  • Clark, K. P., Rieger, R. H., Bruno, R. F., & Stearne, D. J. (2019). The National Football League combine 40-yd dash: how important is maximum velocity? The Journal of Strength & Conditioning Research, 33(6), 1542-1550.
  • Clark, K. P., & Weyand, P. G. (2014). Are running speeds maximized with simple-spring stance mechanics? Journal of applied physiology.
  • Contreras, B., Vigotsky, A. D., Schoenfeld, B. J., Beardsley, C., McMaster, D. T., Reyneke, J. H., & Cronin, J. B. (2017). Effects of a six-week hip thrust vs. front squat resistance training program on performance in adolescent males: a randomized controlled trial. The Journal of Strength & Conditioning Research, 31(4), 999-1008.
  • Cormie, P., McCaulley, G. O., & McBRIDE, J. M. (2007). Power versus strength-power jump squat training: influence on the load-power relationship. Medicine & Science in Sports & Exercise, 39(6), 996-1003. Cormier, P., Tsai, M.-C., Meylan, C., Agar-Newman, D., Epp-Stobbe, A., Kalthoff, Z., & Klimstra, M. (2023). Concurrent validity and reliability of different technologies for sprint-derived horizontal force-velocity-power profiling. The Journal of Strength & Conditioning Research, 37(6), 1298-1305.
  • Cross, M. R., Brughelli, M., Brown, S. R., Samozino, P., Gill, N. D., Cronin, J. B., & Morin, J.-B. (2015). Mechanical properties of sprinting in elite rugby union and rugby league. International journal of sports physiology and performance, 10(6), 695-702.
  • de Barros Sousa, F. A., Henrique Marinho, A., da Silva Calvalcante, M. D., de Almeida Rodrigues, N., Silva Lima, T., Gilo da Silva, D., Fonseca, F. d. S., Balikian Junior, P., & Gomes de Araujo, G. (2024). Running sprint force-velocity-power profile obtained with a low-cost and low frame rate acquisition video technique: reliability and concurrent validity. Sports Biomechanics, 1-17.
  • Dello Iacono, A., Padulo, J., & Seitz, L. D. (2018). Loaded hip thrust-based PAP protocol effects on acceleration and sprint performance of handball players: Original Investigation. Journal of sports sciences, 36(11), 1269-1276.
  • di Prampero, P. E., Fusi, S., Sepulcri, L., Morin, J.-B., Belli, A., & Antonutto, G. (2005). Sprint running: a new energetic approach. Journal of experimental Biology, 208(14), 2809-2816.
  • Djuric, S., Cuk, I., Sreckovic, S., Mirkov, D., Nedeljkovic, A., & Jaric, S. (2016). Selective effects of training against weight and inertia on muscle mechanical properties. International journal of sports physiology and performance, 11(7), 927-932.
  • Edgerton, V. (1986). Morphological basis of skeletal muscle power output. Human muscle power, 43-64.
  • Edouard, P., Lahti, J., Nagahara, R., Samozino, P., Navarro, L., Guex, K., Rossi, J., Brughelli, M., Mendiguchia, J., & Morin, J.-B. (2021). Low horizontal force production capacity during sprinting as a potential risk factor of hamstring injury in football. International journal of environmental research and public health, 18(15), 7827.
  • Edwards, T., Weakley, J., Banyard, H. G., Cripps, A., Piggott, B., Haff, G. G., & Joyce, C. (2021). Influence of age and maturation status on sprint acceleration characteristics in junior Australian football. Journal of Sports Sciences, 39(14), 1585-1593.
  • Ettema, G. (2023). The force–velocity profiling concept for sprint running is a dead end. International Journal of Sports Physiology and Performance, 19(1), 88-91.
  • Fernández-Galván, L. M., Jiménez-Reyes, P., Cuadrado-Peñafiel, V., & Casado, A. (2022). Sprint performance and mechanical force-velocity profile among different maturational stages in young soccer players. International journal of environmental research and public health, 19(3), 1412.
  • Feser, E., Lindley, K., Clark, K., Bezodis, N., Korfist, C., & Cronin, J. (2022). Comparison of two measurement devices for obtaining horizontal force-velocity profile variables during sprint running. International Journal of Sports Science & Coaching, 17(6), 1455-1461.
  • Fitzpatrick, D. A., Cimadoro, G., & Cleather, D. J. (2019). The magical horizontal force muscle? A preliminary study examining the “force-vector” theory. Sports, 7(2), 30.
  • Fornasier-Santos, C., Arnould, A., Jusseaume, J., Millot, B., Guilhem, G., Couturier, A., Samozino, P., Slawinski, J., & Morin, J.-B. (2022). Sprint acceleration mechanical outputs derived from position–or velocity–time data: A multi-system comparison study. Sensors, 22(22), 8610.
  • Furusawa, K., Hill, A. V., & Parkinson, J. (1927). The dynamics of" sprint" running. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 102(713), 29-42.
  • Galantine, P., Sudlow, A., Hays, A., Maso, F., Duché, P., & Bertin, D. (2025). Effect of fatigability on sprint time performance and force-velocity profile according to maturity status in young rugby players. PloS one, 20(1), e0316947.
  • Hansen, T., & Lindhard, J. (1923). On the maximum work of human muscles especially the flexors of the elbow. The Journal of physiology, 57(5), 287.
  • Hardyk, A. T. T. (2000). Force-and power-velocity relationships in a multi-joint movement. The Pennsylvania State University.
  • Harris, N. K., Cronin, J. B., Hopkins, W. G., & Hansen, K. T. (2008). Squat jump training at maximal power loads vs. heavy loads: effect on sprint ability. The Journal of Strength & Conditioning Research, 22(6), 1742-1749.
  • Haugen, T. A., Breitschädel, F., & Seiler, S. (2019). Sprint mechanical variables in elite athletes: Are force-velocity profiles sport specific or individual? PLoS One, 14(7), e0215551.
  • Haugen, T. A., Breitschädel, F., & Seiler, S. (2020). Sprint mechanical properties in soccer players according to playing standard, position, age and sex. Journal of Sports Sciences, 38(9), 1070-1076.
  • Haugen, T. A., Tønnessen, E., & Seiler, S. K. (2012). The difference is in the start: impact of timing and start procedure on sprint running performance. The Journal of Strength & Conditioning Research, 26(2), 473-479.
  • Hermosilla-Palma, F., Loro-Ferrer, J. F., Merino-Muñoz, P., Gómez-Álvarez, N., Bustamante-Garrido, A., Cerda-Kohler, H., Portes-Junior, M., & Aedo-Muñoz, E. (2022). Changes in the mechanical properties of the horizontal force-velocity profile during a repeated sprint test in professional soccer players. International journal of environmental research and public health, 20(1), 704.
  • Hicks, D. S., Drummond, C., Williams, K. J., Pickering, C., & van den Tillaar, R. (2022). Individualization of training based on sprint force-velocity profiles: a conceptual framework for biomechanical and technical training recommendations. Strength & Conditioning Journal, 10.1519.
  • Hicks, D. S., Schuster, J. G., Samozino, P., & Morin, J.-B. (2020). Improving mechanical effectiveness during sprint acceleration: practical recommendations and guidelines. Strength & Conditioning Journal, 42(2), 45-62.
  • Hill, A., Long, C., & Lupton, H. (1924). The effect of fatigue on the relation between work and speed, in contraction of human arm muscles. The Journal of physiology, 58(4-5), 334.
  • Hill, A. V. (1922). The maximum work and mechanical efficiency of human muscles, and their most economical speed. The Journal of physiology, 56(1-2), 19.
  • Hill, A. V. (1938). The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society of London. Series B-Biological Sciences, 126(843), 136-195.
  • Huxley, A. F. (1957). Muscle structure and theories of contraction. Progress in biophysics and biophysical chemistry, 7, 255-318.
  • Jiménez-Reyes, P., García-Ramos, A., Cuadrado-Peñafiel, V., Párraga-Montilla, J. A., Morcillo-Losa, J. A., Samozino, P., & Morin, J.-B. (2019). Differences in sprint mechanical force–velocity profile between trained soccer and futsal players. International journal of sports physiology and performance, 14(4), 478-485.
  • Jiménez-Reyes, P., Samozino, P., Brughelli, M., & Morin, J.-B. (2017). Effectiveness of an individualized training based on force-velocity profiling during jumping. Frontiers in physiology, 7, 677.
  • Jiménez-Reyes, P., Samozino, P., García-Ramos, A., Cuadrado-Peñafiel, V., Brughelli, M., & Morin, J.-B. (2018). Relationship between vertical and horizontal force-velocity-power profiles in various sports and levels of practice. PeerJ, 6, e5937.
  • Jiménez-Reyes, P., Samozino, P., Pareja-Blanco, F., Conceição, F., Cuadrado-Peñafiel, V., González-Badillo, J. J., & Morin, J.-B. (2017). Validity of a simple method for measuring force-velocity-power profile in countermovement jump. International Journal of Sports Physiology and Performance, 12(1), 36-43.
  • Jovanović, M., & Vescovi, J. (2022). {shorts}: An R package for modeling short sprints. International Journal of Strength and Conditioning, 2(1).
  • Kugler, F., & Janshen, L. (2010). Body position determines propulsive forces in accelerated running. Journal of biomechanics, 43(2), 343-348.
  • Lahti, J., Huuhka, T., Romero, V., Bezodis, I., Morin, J.-B., & Häkkinen, K. (2020). Changes in sprint performance and sagittal plane kinematics after heavy resisted sprint training in professional soccer players. PeerJ, 8, e10507.
  • Lindberg, K., Solberg, P., Rønnestad, B. R., Frank, M. T., Larsen, T., Abusdal, G., Berntsen, S., Paulsen, G., Sveen, O., & Seynnes, O. (2021). Should we individualize training based on force‐velocity profiling to improve physical performance in athletes? Scandinavian journal of medicine & science in sports, 31(12), 2198-2210.
  • Macadam, P., Simperingham, K. D., & Cronin, J. B. (2017). Acute kinematic and kinetic adaptations to wearable resistance during sprint acceleration. The Journal of Strength & Conditioning Research, 31(5), 1297-1304.
  • May, T. S., Ishak, A., & Zolkafi, M. A. A. (2023). Sprint, Jump Performances, and Force-Velocity Profile in A Well-Trained Football Player: A Pilot Study. Journal of Social Science and Humanities, 6(6), 17-22.
  • Mendiguchia, J., Edouard, P., Samozino, P., Brughelli, M., Cross, M., Ross, A., Gill, N., & Morin, J.-B. (2016). Field monitoring of sprinting power–force–velocity profile before, during and after hamstring injury: two case reports. Journal of Sports Sciences, 34(6), 535-541.
  • Mero, A., Komi, P., & Gregor, R. (1992). Biomechanics of sprint running: A review. Sports medicine, 13, 376-392. Mitrečić, K., & Vučetić, V. (2025). Relationship between the horizontal force-velocity profile and performance variables obtained in sprinting, slalom test, and kicking in amateur soccer players. Montenegrin Journal of Sports Science and Medicine, 14(1), Ahead of Print.
  • Morin, J.-B., Bourdin, M., Edouard, P., Peyrot, N., Samozino, P., & Lacour, J.-R. (2012). Mechanical determinants of 100-m sprint running performance. European Journal of Applied Physiology, 112, 3921-3930.
  • Morin, J.-B., Edouard, P., & Samozino, P. (2011). Technical ability of force application as a determinant factor of sprint performance. Medicine & Science in Sports & Exercise, 43(9), 1680-1688.
  • Morin, J.-B., Jeannin, T., Chevallier, B., & Belli, A. (2006). Spring-mass model characteristics during sprint running: correlation with performance and fatigue-induced changes. International journal of sports medicine, 27(02), 158-165.
  • Morin, J.-B., & Samozino, P. (2016). Interpreting power-force-velocity profiles for individualized and specific training. International journal of sports physiology and performance, 11(2), 267-272.
  • Morin, J.-B., Samozino, P., Bonnefoy, R., Edouard, P., & Belli, A. (2010). Direct measurement of power during one single sprint on treadmill. Journal of biomechanics, 43(10), 1970-1975.
  • Morin, J.-B., Samozino, P., Murata, M., Cross, M. R., & Nagahara, R. (2019). A simple method for computing sprint acceleration kinetics from running velocity data: Replication study with improved design. Journal of biomechanics, 94, 82-87.
  • Morin, J.-B., Slawinski, J., Dorel, S., Couturier, A., Samozino, P., Brughelli, M., & Rabita, G. (2015). Acceleration capability in elite sprinters and ground impulse: push more, brake less? Journal of biomechanics, 48(12), 3149-3154.
  • Newton, R. U., Murphy, A. J., Humphries, B. J., Wilson, G. J., Kraemer, W. J., & Häkkinen, K. (1997). Influence of load and stretch shortening cycle on the kinematics, kinetics and muscle activation that occurs during explosive upper-body movements. European journal of applied physiology and occupational physiology, 75, 333-342.
  • Niederdraeing, L., & Zentgraf, K. (2025). Force-Velocity Profiling among Different Maturational Stages in Young Soccer Players: A Cross-Sectional Study. International Journal of Strength and Conditioning, 5(1).
  • Norgeot, F., & Fouré, A. (2024). Effects of vertical and horizontal plyometric training on jump performances and sprint force–velocity profile in young elite soccer players. European Journal of Applied Physiology, 124(9), 2591-2601.
  • Pantoja, P. D., Carvalho, A. R., Ribas, L. R., & Peyré-Tartaruga, L. A. (2018). Effect of weighted sled towing on sprinting effectiveness, power and force-velocity relationship. PLoS One, 13(10), e0204473.
  • Pantoja, P. D., De Villarreal, E. S., Brisswalter, J., Peyre-Tartaruga, L. A., & Morin, J.-B. (2016). Sprint acceleration mechanics in masters athletes. Medicine and Science in Sports and Exercise, 48(12), 2469-2476.
  • Perez, J., Guilhem, G., & Brocherie, F. (2022). Reliability of the force-velocity-power variables during ice hockey sprint acceleration. Sports Biomechanics, 21(1), 56-70.
  • Powers, S. K., & Howley, E. T. (1995). Exercise Physiology: Theory and Application to Fitness and Performances. Medicine & Science in Sports & Exercise, 27(3), 466.
  • Rabita, G., Dorel, S., Slawinski, J., Sàez‐de‐Villarreal, E., Couturier, A., Samozino, P., & Morin, J. B. (2015). Sprint mechanics in world‐class athletes: a new insight into the limits of human locomotion. Scandinavian journal of medicine & science in sports, 25(5), 583-594.
  • Rakovic, E., Paulsen, G., Helland, C., Eriksrud, O., & Haugen, T. (2018). The effect of individualised sprint training in elite female team sport athletes: A pilot study. Journal of Sports Sciences, 36(24), 2802-2808. Rivière, J. R., Peyrot, N., Cross, M. R., Messonnier, L. A., & Samozino, P. (2020). Strength-endurance: Interaction between force-velocity condition and power output. Frontiers in physiology, 11, 576725.
  • Romero-Franco, N., Jiménez-Reyes, P., Castaño-Zambudio, A., Capelo-Ramírez, F., Rodríguez-Juan, J. J., González-Hernández, J., Toscano-Bendala, F. J., Cuadrado-Peñafiel, V., & Balsalobre-Fernández, C. (2017). Sprint performance and mechanical outputs computed with an iPhone app: Comparison with existing reference methods. European journal of sport science, 17(4), 386-392.
  • Samozino, P., Peyrot, N., Edouard, P., Nagahara, R., Jimenez‐Reyes, P., Vanwanseele, B., & Morin, J. B. (2022). Optimal mechanical force‐velocity profile for sprint acceleration performance. Scandinavian journal of medicine & science in sports, 32(3), 559-575.
  • Samozino, P., Rabita, G., Dorel, S., Slawinski, J., Peyrot, N., Saez de Villarreal, E., & Morin, J. B. (2016). A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scandinavian journal of medicine & science in sports, 26(6), 648-658.
  • Samozino, P., Rivière, J. R., Rossi, J., Morin, J.-B., & Jimenez-Reyes, P. (2018). How fast is a horizontal squat jump? International journal of sports physiology and performance, 13(7), 910-916.
  • Simperingham, K. D., Cronin, J. B., Pearson, S. N., & Ross, A. (2019). Reliability of horizontal force–velocity–power profiling during short sprint-running accelerations using radar technology. Sports Biomechanics, 18(1), 88-99.
  • Spector, S. A., Gardiner, P. F., Zernicke, R. F., Roy, R. R., & Edgerton, V. R. (1980). Muscle architecture and force-velocity characteristics of cat soleus and medial gastrocnemius: implications for motor control. journal of Neurophysiology, 44(5), 951-960.
  • Stavridis, I., Smilios, I., Tsopanidou, A., Economou, T., & Paradisis, G. (2019). Differences in the force velocity mechanical profile and the effectiveness of force application during sprint-acceleration between sprinters and hurdlers. Frontiers in Sports and Active Living, 1, 26.
  • Taylor, N. A., Cotter, J. D., Stanley, S. N., & Marshall, R. N. (1991). Functional torque-velocity and power-velocity characteristics of elite athletes. European journal of applied physiology and occupational physiology, 62, 116-121.
  • van den Tillaar, R., Haugen, M. E., & Falch, H. N. (2022). A comparison of sprint mechanical parameters measured with timing gates and a laser gun. Frontiers in Sports and Active Living, 4, 877482.
  • Vescovi, J. D., & Jovanović, M. (2021). Sprint mechanical characteristics of female soccer players: A retrospective pilot study to examine a novel approach for correction of timing gate starts. Frontiers in Sports and Active Living, 3, 629694.
  • Wendt, I., & Gibbs, C. (1974). Energy production of mammalian fast-and slow-twitch muscles during development. American Journal of Physiology-Legacy Content, 226(3), 642-647.
  • Widrick, J. J., Trappe, S. W., Costill, D. L., & Fitts, R. H. (1996). Force-velocity and force-power properties of single muscle fibers from elite master runners and sedentary men. American Journal of Physiology-Cell Physiology, 271(2), C676-C683.
  • Williams, M. J., Gibson, N. V., Sorbie, G. G., Ugbolue, U. C., Brouner, J., & Easton, C. (2021). Activation of the gluteus maximus during performance of the back squat, split squat, and barbell hip thrust and the relationship with maximal sprinting. The Journal of Strength & Conditioning Research, 35(1), 16-24.
Toplam 87 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Antrenman, Spor Biliminde Biyomekanik, Spor Biliminde Hareket Eğitimi, Egzersiz ve Spor Bilimleri (Diğer)
Bölüm Derleme
Yazarlar

Salih Çabuk 0000-0003-4148-9781

İzzet İnce 0000-0002-6566-5201

Erken Görünüm Tarihi 25 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 2 Eylül 2024
Kabul Tarihi 3 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 23 Sayı: 2

Kaynak Göster

APA Çabuk, S., & İnce, İ. (2025). SPRİNT PERFORMANSININ BİYOMEKANİK BELİRLEYİCİLERİ VE YATAY KUVVET-HIZ PROFİLİ BİLEŞENLERİ: GELENEKSEL DERLEME. SPORMETRE Beden Eğitimi ve Spor Bilimleri Dergisi, 23(2), 189-209. https://doi.org/10.33689/spormetre.1542027
Spormetre Journal of Physical Education and Sport Sciences licensed under a Creative Commons Attribution-NonCommercial-Non-Derivatives 4.0 International Licence (CC BY-NC-ND 4.0).

                                                                                                     Flag Counter