Araştırma Makalesi
BibTex RIS Kaynak Göster

ANTROPOMETRİ TEMELLİ DENKLEMLERLE TAHMİN EDİLEN VÜCUT BİLEŞİMİNİN BİYOELEKTRİK İMPEDANS ANALİZİ SONUÇLARI İLE UYUMLULUĞU

Yıl 2023, Cilt: 4 Sayı: 1, 15 - 30, 29.03.2023

Öz

Amaç: Bireylerin antropometrik ölçümlerini ve vücut bileşimlerini belirlemek, toplam vücut suyunun tahmininde kullanılan formüllerden elde edilen vücut suyu değerinden diğer vücut bileşenlerini hesaplayıp bu değerlerin biyoelektrik impedans analizi (BİA) sonuçlarıyla uyumluluğunu değerlendirmek ve cinsiyete özgü yeni denklemler geliştirmektir.
Yöntem: Araştırma, 18-50 yaş arası 103 birey (67 kadın, 36 erkek) ile yürütülmüştür. Bireylerin antropometrik ölçümleri (vücut ağırlığı, boy uzunluğu) alınmış ve dual frekans BİA cihazı ile vücut bileşimleri (toplam vücut suyu, vücut yağ yüzdesi ve yağsız vücut kütlesi) analiz edilmiştir. Bireylerin antropometrik ölçümleri kullanılarak Watson, Hume, Chertow, Deurenberg formülleri ile vücut suyu ve buna bağlı olarak diğer vücut bileşimleri hesaplanmıştır. Her bir formül için bulunan değer BİA cihazı ile bulunan değerle gösterdiği korelasyon ve uyum açısından değerlendirilmiştir. Regresyon analizi ile vücut bileşiminin tahmini için cinsiyete özgü yeni denklemler geliştirilmiştir.
Bulgular: Tek yönlü varyans analizi sonucunda farklı ölçüm yöntemleri ile elde edilen toplam vücut suyu, yağsız vücut kütlesi ve vücut yağ yüzdesi aritmetik ortalamaları arasındaki fark istatistiksel olarak anlamlı bulunmuştur (p<0.05). Tukey testi sonucunda BİA ve Chertow denklemi ile hesaplanan toplam vücut suyu ortalamaları arasında istatistiksel olarak anlamlı bir fark olduğu bulunmuştur (p<0.05). Bland-Altman analizi ise toplam vücut suyunun tahmini açısından biyoelektrik impedans analizi ile Hume denklemi arasında yüksek bir uyum olduğunu göstermiştir.
Sonuç: BİA cihazına erişimin olmadığı ya da çeşitli sebeplerle uygulanamadığı durumlarda vücut bileşiminin tahmini açısından Watson, Hume ve Deurenberg denklemlerinin kullanımı oldukça yararlıdır.

Destekleyen Kurum

Yok

Proje Numarası

-

Teşekkür

Yok

Kaynakça

  • Aristizabal, J., Estrada-Restrepo, A., & Giraldo, A. (2018). Development and validation of anthropometric equations to estimate body composition in adult women. ColomBİA Médica : CM, 49(2), 154-159.
  • Chertow, G., Lazarus, J., Lew, N., Ma, L., & Lowrie, E. (1997). Development of a population-specific regression equation to estimate total body water in hemodialysis patients. Kidney international, 51(5), 1578-1582.
  • Cicchetti, D. V., & Sparrow, S. S. (1981). Developing criteria for establishing the interrater reliability of spesific items in a given inventory. American Journal of Mental Deficiency, 86, 127-137.
  • Coppini, L. Z., Waitzberg, D. L., & Campos, A. C. (2005). Limitations and validation of bioelectrical impedance analysis in morbidly obese patients. Current Opinion in Clinical Nutrition and Metabolic Care, 8(3), 329–332.
  • Daugirdas, J., Greene, T., Depner, T., Chumlea, C., Rocco, M., & Chertow, G. (2003). Anthropometrically estimated total body water volumes are larger than modeled urea volume in chronic hemodialysis patients: Effects of age, race, and gender. Kidney international, 64(3), 1108-1119.
  • Deurenberg, P., Weststrate, J., & Seidell, J. (1991). Body mass index as a measure of body fatness: age- and sex-specific prediction formulas. The British journal of nutrition, 65(2), 105-114.
  • Deurenberg, P. (1996). Limitations of the bioelectrical impedance method for the assessment of body fat in severe obesity. The American Journal of Clinical Nutrition, 64(3), 449S–452S.
  • Genc, Y., Sertkaya, D., & Demirtas, S. (2003). Klinik Araştırmalarda İki Ölçüm Tekniğinin Uyumunu İncelemede Kullanılan İstatistiksel Yöntemler. Ankara Üniversitesi Tıp Fakültesi Mecmuası. 56(1), 1-6.
  • Gropper, S. A. S., & Smith, J. L. (2013). Advanced Nutrition and Human Metabolism. Sixth edition ed. Belmont, CA : Wadsworth/Cengage Learning.
  • Henry, J., Ponnalagu, S., Bi, X., & Tan, S.-Y. (2018). New Equations to Predict Body Fat in Asian-Chinese Adults Using Age, Height, Skinfold Thickness, and Waist Circumference. Journal of the Academy of Nutrition and Dietetics, 118 (7), 1263-1269.
  • Hume, R., & Weyers, E. (1971). Relation between total body water and surface area in normal and obese subjects. Journal of clinical pathology, 24(3), 234-238.
  • Khan, A., Aggarwala, J., & Dhingra, M. (2017). Application of bioelectrical impedance analysis and anthropometry as interchangeable methods to assess body composition of sportspersons. Biomedical and Advance Research, 8(11), 400-406.
  • Lee, S., Song, J., Kim, G. A., Lee, K., & Kim, M. (2001). Assessment of total body water from anthropometry-based equations using bioelectrical impedance as reference in Korean controls and haemodialysis patients. Nephrol Dial Transplant, 16(1), 91-97.
  • Lohman, T. G., Roche, A. F., & Martorell, R. (1988). Anthropometric standardization reference manual. Champaign, IL: Human Kinetics Books.
  • Lopez-Taylor, J., González-Mendoza, R., Gaytán-González, A., Jiménez-Alvarado, J. A., Villegas-Balcázar, M., Jáuregui-Ulloa, E. E., & Torres-Naranjo, F. (2018). Accuracy of Anthropometric Equations for Estimating Body Fat in Professional Male Soccer Players Compared with DXA. Journal of Sports Medicine, 2018 (6843792), 1-7.
  • Montagnani, M., Montomoli, M., Mulinari, M., Guzzo, G., Scopetani, N., & Gennari, C. (1998). Relevance of hydration state of the fat free mass in estimating fat mass by body impedance analysis. Applied Radiation and Isotopes, 49(5-6), 499-500.
  • Ndagire, C., Muyonga, J., Odur, B., & Nakimbugwe, D. (2018). Prediction equations for body composition of children and adolescents aged 8–19 years in Uganda using deuterium dilution as the reference technique. Clinical Nutrition ESPEN, 28, 103-109.
  • Pimentel, G., Bernhard, A., Frezza, M., Rinaldi, A., & Burini, R. (2010). Bioelectric impedance overestimates the body fat in overweight and underestimates in Brazilian obese women: a comparison with Segal equation 1. Nutrición hospitalaria, 25(5), 741-745.
  • Salamat, M., Shanei, A., Salamat, A. H., Khoshhali, M., & Asgari, M. (2015). Anthropometric predictive equations for estimating body composition. Advanced biomedical research, 4 (34), 1-6.
  • Saxena, A., Gupta, A., Abraham, G., Sakhuja, V., & Jha, V. (2015). Non-invasive screening tool for chronic kidney disease. Saudi Journal of Kidney Diseases and Transplantation, 26(6), 1311-1313.
  • Silva, B., Mialich, M., Albuquerque de Paula, F., & Jordao, A. (2017). Comparison of New Adiposity Indices for the Prediction of Body Fat in Hospitalized Patients. Nutrition, 42, 99-105.
  • TEMD. (2018). Obezite Tanı ve Tedavi Klavuzu. Ankara: Miki Matbaacılık.
  • Tovar-Gálvez, M. I., González-Jiménez, E., Martí-García, C., & Schmidt-RioValle, J. (2017). Body composition in a population of school adolescents: A comparison of simple anthropometric methods and bioelectrical impedance. Endocrinología, Diabetes y Nutrición (English ed), 64 (8), 424-431.
  • Watson, P. E., Watson, I. D., & Batt, R. D. (1980). Total body water volumes for adult males and females estimated from simple anthropometric measurements. The American journal of clinical nutrition, 33(1), 27-39.
  • WHO. (1995). Physical Status: The Use and Interpretation of Anthropometry. Report of a WHO Expert Committee.
  • WHO. BMI classification Erişim: http://www.assessmentpsychology.com/icbmi.htm Erişim tarihi: 11.05.2020

Compatibility of Body Composition Estimated by Anthropometry-Based Equations with Bioelectric Impedance Analysis Results

Yıl 2023, Cilt: 4 Sayı: 1, 15 - 30, 29.03.2023

Öz

Purpose: The aim of this study is to determine the anthropometric measurements and body composition of individuals, calculating other body components from the body water value obtained from the formulas used in the estimation of total body water and evaluating the compatibility of these values with the bioelectrical impedance analysis (BIA) results, and to develop new gender-spesific equations.
Methods: The research was carried out with 103 individuals (67 females, 36 males) between the ages of 18-50. Anthropometric measurements (body weight, height) of the individuals were taken and their body compositions (total body water, body fat percentage and lean body mass) were analyzed with a dual frequency BIA device. Body water was calculated with Watson, Hume, Chertow, Deurenberg formulas using anthropometric measurements of individuals and then other body compositions were calculated. The value found for each formula was evaluated in terms of correlation and compatibility with the value found with the BIA device. New gender-spesific equations have been developed for the estimation of body composition by regression analysis.
Results: As a result of one-way analysis of variance, the difference between the arithmetic averages of total body water, lean body mass and body fat percentage obtained with different measurement methods was found to be statistically significant (p<0.05). As a result of the Tukey test, it was found that there was a statistically significant difference between the mean total body water calculated by the BIA and the Chertow equation (p<0.05). Bland-Altman analysis showed a high agreement between bioelectrical impedance analysis and Hume's equation for the estimation of total body water.
Conclusion: In cases where the BIA device is not accessible or cannot be applied for various reasons, the use of Watson, Hume and Deurenberg equations is very useful in terms of estimating body composition.

Proje Numarası

-

Kaynakça

  • Aristizabal, J., Estrada-Restrepo, A., & Giraldo, A. (2018). Development and validation of anthropometric equations to estimate body composition in adult women. ColomBİA Médica : CM, 49(2), 154-159.
  • Chertow, G., Lazarus, J., Lew, N., Ma, L., & Lowrie, E. (1997). Development of a population-specific regression equation to estimate total body water in hemodialysis patients. Kidney international, 51(5), 1578-1582.
  • Cicchetti, D. V., & Sparrow, S. S. (1981). Developing criteria for establishing the interrater reliability of spesific items in a given inventory. American Journal of Mental Deficiency, 86, 127-137.
  • Coppini, L. Z., Waitzberg, D. L., & Campos, A. C. (2005). Limitations and validation of bioelectrical impedance analysis in morbidly obese patients. Current Opinion in Clinical Nutrition and Metabolic Care, 8(3), 329–332.
  • Daugirdas, J., Greene, T., Depner, T., Chumlea, C., Rocco, M., & Chertow, G. (2003). Anthropometrically estimated total body water volumes are larger than modeled urea volume in chronic hemodialysis patients: Effects of age, race, and gender. Kidney international, 64(3), 1108-1119.
  • Deurenberg, P., Weststrate, J., & Seidell, J. (1991). Body mass index as a measure of body fatness: age- and sex-specific prediction formulas. The British journal of nutrition, 65(2), 105-114.
  • Deurenberg, P. (1996). Limitations of the bioelectrical impedance method for the assessment of body fat in severe obesity. The American Journal of Clinical Nutrition, 64(3), 449S–452S.
  • Genc, Y., Sertkaya, D., & Demirtas, S. (2003). Klinik Araştırmalarda İki Ölçüm Tekniğinin Uyumunu İncelemede Kullanılan İstatistiksel Yöntemler. Ankara Üniversitesi Tıp Fakültesi Mecmuası. 56(1), 1-6.
  • Gropper, S. A. S., & Smith, J. L. (2013). Advanced Nutrition and Human Metabolism. Sixth edition ed. Belmont, CA : Wadsworth/Cengage Learning.
  • Henry, J., Ponnalagu, S., Bi, X., & Tan, S.-Y. (2018). New Equations to Predict Body Fat in Asian-Chinese Adults Using Age, Height, Skinfold Thickness, and Waist Circumference. Journal of the Academy of Nutrition and Dietetics, 118 (7), 1263-1269.
  • Hume, R., & Weyers, E. (1971). Relation between total body water and surface area in normal and obese subjects. Journal of clinical pathology, 24(3), 234-238.
  • Khan, A., Aggarwala, J., & Dhingra, M. (2017). Application of bioelectrical impedance analysis and anthropometry as interchangeable methods to assess body composition of sportspersons. Biomedical and Advance Research, 8(11), 400-406.
  • Lee, S., Song, J., Kim, G. A., Lee, K., & Kim, M. (2001). Assessment of total body water from anthropometry-based equations using bioelectrical impedance as reference in Korean controls and haemodialysis patients. Nephrol Dial Transplant, 16(1), 91-97.
  • Lohman, T. G., Roche, A. F., & Martorell, R. (1988). Anthropometric standardization reference manual. Champaign, IL: Human Kinetics Books.
  • Lopez-Taylor, J., González-Mendoza, R., Gaytán-González, A., Jiménez-Alvarado, J. A., Villegas-Balcázar, M., Jáuregui-Ulloa, E. E., & Torres-Naranjo, F. (2018). Accuracy of Anthropometric Equations for Estimating Body Fat in Professional Male Soccer Players Compared with DXA. Journal of Sports Medicine, 2018 (6843792), 1-7.
  • Montagnani, M., Montomoli, M., Mulinari, M., Guzzo, G., Scopetani, N., & Gennari, C. (1998). Relevance of hydration state of the fat free mass in estimating fat mass by body impedance analysis. Applied Radiation and Isotopes, 49(5-6), 499-500.
  • Ndagire, C., Muyonga, J., Odur, B., & Nakimbugwe, D. (2018). Prediction equations for body composition of children and adolescents aged 8–19 years in Uganda using deuterium dilution as the reference technique. Clinical Nutrition ESPEN, 28, 103-109.
  • Pimentel, G., Bernhard, A., Frezza, M., Rinaldi, A., & Burini, R. (2010). Bioelectric impedance overestimates the body fat in overweight and underestimates in Brazilian obese women: a comparison with Segal equation 1. Nutrición hospitalaria, 25(5), 741-745.
  • Salamat, M., Shanei, A., Salamat, A. H., Khoshhali, M., & Asgari, M. (2015). Anthropometric predictive equations for estimating body composition. Advanced biomedical research, 4 (34), 1-6.
  • Saxena, A., Gupta, A., Abraham, G., Sakhuja, V., & Jha, V. (2015). Non-invasive screening tool for chronic kidney disease. Saudi Journal of Kidney Diseases and Transplantation, 26(6), 1311-1313.
  • Silva, B., Mialich, M., Albuquerque de Paula, F., & Jordao, A. (2017). Comparison of New Adiposity Indices for the Prediction of Body Fat in Hospitalized Patients. Nutrition, 42, 99-105.
  • TEMD. (2018). Obezite Tanı ve Tedavi Klavuzu. Ankara: Miki Matbaacılık.
  • Tovar-Gálvez, M. I., González-Jiménez, E., Martí-García, C., & Schmidt-RioValle, J. (2017). Body composition in a population of school adolescents: A comparison of simple anthropometric methods and bioelectrical impedance. Endocrinología, Diabetes y Nutrición (English ed), 64 (8), 424-431.
  • Watson, P. E., Watson, I. D., & Batt, R. D. (1980). Total body water volumes for adult males and females estimated from simple anthropometric measurements. The American journal of clinical nutrition, 33(1), 27-39.
  • WHO. (1995). Physical Status: The Use and Interpretation of Anthropometry. Report of a WHO Expert Committee.
  • WHO. BMI classification Erişim: http://www.assessmentpsychology.com/icbmi.htm Erişim tarihi: 11.05.2020
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Beslenme ve Diyetetik
Bölüm Araştırma Makaleleri
Yazarlar

Aziz Kılınç 0000-0002-6526-9102

Eda Köksal 0000-0002-7930-9910

Proje Numarası -
Yayımlanma Tarihi 29 Mart 2023
Gönderilme Tarihi 23 Eylül 2022
Kabul Tarihi 16 Ocak 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 4 Sayı: 1

Kaynak Göster

APA Kılınç, A., & Köksal, E. (2023). ANTROPOMETRİ TEMELLİ DENKLEMLERLE TAHMİN EDİLEN VÜCUT BİLEŞİMİNİN BİYOELEKTRİK İMPEDANS ANALİZİ SONUÇLARI İLE UYUMLULUĞU. Selçuk Sağlık Dergisi, 4(1), 15-30.