Derleme
BibTex RIS Kaynak Göster

Microbiota Metabolite: Short Chain Fatty Acids

Yıl 2024, Cilt: 5 Sayı: 3, 393 - 419, 20.12.2024
https://doi.org/10.70813/ssd.1521172

Öz

The gut microbiota is an ecological community that is one of the key components of the intestinal ecosystem, including bacteria, yeasts, viruses and parasites, and plays an important role in human health, including barrier action against microbes, shaping and maturation of immunity, regulation of metabolic uptake and absorption of nutrients. One of the mechanisms by which microbiota influence human health and disease is the capacity of microbiota to produce either harmful metabolites associated with the development of disease or beneficial metabolites that protect against disease. Recent advances in the study of short-chain fatty acids, a microbiota metabolite, have revealed their effects on various systems at both cellular and molecular levels. The aim of this study is to evaluate the various physiological functions of short-chain fatty acids in the human body.

Kaynakça

  • Abdalkareem Jasim, S., Jade Catalan Opulencia, M., Alexis Ramírez-Coronel, A., Kamal Abdelbasset, W., Hasan Abed, M., Markov, A., Raheem Lateef Al-Awsi, G., Azamatovich Shamsiev, J., Thaeer Hammid, A., Nader Shalaby, M., Karampoor, S., Mirzaei, R. (2022). The emerging role of microbiota-derived short-chain fatty acids in immunometabolism. Int Immunopharmacol, 110:108983.
  • Aoyama, M., Kotani, J., Usami, M. (2010). Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways. Nutrition, 26(6):653-61.
  • Balmer, M.L., Ma, E.H., Bantug, G.R., Grählert, J., Pfister, S., Glatter, T., Jauch, A., Dimeloe, S., Slack, E., Dehio, P., Krzyzaniak, M.A., King, C.G., Burgener, A.V., Fischer, M., Develioglu, L., Belle, R., Recher, M., Bonilla, W.V., Macpherson, A.J., Hapfelmeier, S., Jones, R.G., Hess, C. (2016). Memory CD8(+) T cells require increased concentrations of acetate induced by stress for optimal function. Immunity, 21;44(6):1312-24.
  • Barrea, L., Muscogiuri, G., Annunziata, G., Laudisio, D., Pugliese, G., Salzano, C., Colao, A., Savastano, S. (2019). From gut microbiota dysfunction to obesity: could short-chain fatty acids stop this dangerous course? Hormones (Athens), 18(3):245-250.
  • Campos-Perez, W., Martinez-Lopez, E. (2021). Effects of short chain fatty acids on metabolic and inflammatory processes in human health. Biochim Biophys Acta Mol Cell Biol Lipids, 1866(5):158900.
  • Cheng, Y., Liu, J., Ling, Z. (2022). Short-chain fatty acids-producing probiotics: A novel source of psychobiotics. Crit Rev Food Sci Nutr, 62(28):7929-7959.
  • Cong, J., Zhou, P., Zhang, R. (2022). Intestinal Microbiota-Derived Short Chain Fatty Acids in Host Health and Disease. Nutrients, 14(9):1977. doi: 10.3390/nu14091977.
  • Cordeiro, A., Costa, R., Andrade, N., Silva, C., Canabrava, N., Pena, M.J., Rodrigues, I., Andrade, S., Ramalho, A. (2020). Does adipose tissue inflammation drive the development of non-alcoholic fatty liver disease in obesity? Clin Res Hepatol Gastroenterol, 44:394–402.
  • den Besten, G., Bleeker, A., Gerding, A., van Eunen, K., Havinga, R., van Dijk, T.H., Oosterveer, M.H., Jonker, J.W., Groen, A.K., Reijngoud, D.J., Bakker, B.M. (2015). Short-Chain Fatty Acids Protect Against High-Fat Diet-Induced Obesity via a PPARγ Dependent Switch from Lipogenesis to Fat Oxidation. Diabetes, 64:2398–2408.
  • Elangovan, S., Pathania, R., Ramachandran, S., Ananth, S., Padia, R.N., Lan, L., Singh, N., Martin, P.M., Hawthorn, L., Prasad, P.D., Ganapathy, V., Thangaraju, M. (2014). The niacin/butyrate receptor GPR109A suppresses mammary tumorigenesis by inhibiting cell survival. Cancer Res, 74: 1166–1178.
  • Fabiano GA, Shinn LM, Antunes AEC (2023). Relationship between Oat Consumption, Gut Microbiota Modulation, and Short-Chain Fatty Acid Synthesis: An Integrative Review. Nutrients, 15(16):3534.
  • Fernandes, J., Vogt, J., Wolever, T.M. (2012). Intravenous acetate elicits a greater free fatty acid rebound in normal than hyperinsulinaemic humans. Eur J Clin Nutr, 66(9):1029-34. doi: 10.1038/ejcn.2012.98.
  • Fu, S.P., Liu, B.R., Wang, J.F., Xue, W.J., Liu, H.M., Zeng, Y.L., Huang, B.X., Li, S.N., Lv, Q.K., Wang, W., Liu, J.X. (2015). beta-Hydroxybutyric acid inhibits growth hormone-releasing hormone synthesis and secretion through the GPR109A/extracellular signal-regulated 1/2 signalling pathway in the hypothalamus. J Neuroendocrinol, 27: 212–222.
  • Fu, S.P., Wang, J.F., Xue, W.J., Liu, H.M., Liu, B.R., Zeng, Y.L., Li, S.N., Huang, B.X., Lv, Q.K., Wang, W., Liu, J.X. (2015). Anti-inflammatory effects of BHBA in both in vivo and in vitro Parkinson’s disease models are mediated by GPR109A-dependent mechanisms. J Neuroinflammation, 12:9.
  • Fusco, W., Lorenzo, M.B., Cintoni, M., Porcari, S., Rinninella, E., Kaitsas, F., Lener, E., Mele, M.C., Gasbarrini, A., Collado, M.C., Cammarota, G., Ianiro, G. (2023). Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients, 15(9):2211.
  • Gambhir, D., Ananth, S., Veeranan-Karmegam, R., Elangovan, S., Hester, S., Jennings, E., Offermanns, S., Nussbaum, J.J., Smith, S.B., Thangaraju, M., Ganapathy, V., Martin, P.M. (2012). GPR109A as an anti-inflammatory receptor in retinal pigment epithelial cells and its relevance to diabetic retinopathy. Invest Ophthalmol Vis Sci, 53(4):2208-17.
  • Gao, Z., Yin, J., Zhang, J., Ward, R.E., Martin, R.J., Lefevre, M., Cefalu, W.T., Ye, J. (2009). Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes, 58:1509–1517.
  • González-Bosch, C., Boorman, E., Zunszain, P.A., Mann, G.E. (2021) Short-chain fatty acids as modulators of redox signaling in health and disease. Redox Biol, 47:102165.
  • Hammami, R., Fernandez, B., Lacroix, C., Fliss, I. (2013). Anti-infective properties of bacteriocins: an update. Cell Mol Life Sci, 70(16):2947-67. doi: 10.1007/s00018-012-1202-3.
  • Hill, J.H., Round, J.L. (2021). SnapShot: Microbiota effects on host physiology. Cell, 184:2796.
  • Jocken, J.W.E., González Hernández, M.A., Hoebers, N.T.H., van der Beek, C.M., Essers, Y.P.G., Blaak, E.E., Canfora, E.E. (2017). Short-Chain Fatty Acids Differentially Affect Intracellular Lipolysis in a Human White Adipocyte Model. Front Endocrinol, 8:372.
  • Kim, K.N., Yao, Y., Ju, S.Y. (2019). Short Chain Fatty Acids and Fecal Microbiota Abundance in Humans with Obesity: A Systematic Review and Meta-Analysis. Nutrients , 11, 2512.
  • Koh, A., De, Vadder, F., Kovatcheva-Datchary, P., Bäckhed, F. (2016) From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell, 165(6):1332-1345.
  • Layden, B.T., Angueira,.A.R., Brodsky, M., Durai, V., Lowe, W.L. (2013). Short chain fatty acids and their receptors: new metabolic targets. Transl Res, 161(3):131-40.
  • Liu, L., Fu, C. (2019). Acetate Affects the Process of Lipid Metabolism in Rabbit Liver, Skeletal Muscle and Adipose Tissue. Animals, 9:799.
  • Luu, M., Pautz, S., Kohl, V., Singh, R., Romero, R., Lucas, S., Hofmann, J., Raifer, H., Vachharajani, N., Carrascosa, L.C., Lamp, B., Nist, A., Stiewe, T., Shaul, Y., Adhikary, T., Zaiss, M.M., Lauth, M., Steinhoff, U., Visekruna, A. (2019). The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nat Commun, 10(1):760.
  • Machate, D.J., Figueiredo, P.S., Marcelino, G., Guimarães, R.C.A., Hiane, P.A., Bogo, D., Pinheiro, V.A.Z., Oliveira, L.C.S., Pott, A. (2020). Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis. Int J Mol Sci, 21(11):4093.
  • Macia, L., Tan, J., Vieira, A.T., Leach, K., Stanley, D., Luong, S., Maruya, M., Ian McKenzie, C., Hijikata, A., Wong, C., Binge, L., Thorburn, A.N., Chevalier, N., Ang, C., Marino, E., Robert, R., Offermanns, S., Teixeira, M.M., Moore, R.J., Flavell, RA., Fagarasan, S., Mackay, C.R. (2015). Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun, 6:6734.
  • Matt, S.M., Allen, J.M., Lawson, M.A., Mailing, L.J., Woods, J.A., Johnson, R.W. (2018). Butyrate and dietary soluble fiber improve neuroinflammation associated with aging in mice. Front Immunol, 9:1832.
  • May, K.S., den Hartigh, L.J. (2023). Gut Microbial-Derived Short Chain Fatty Acids: Impact on Adipose Tissue Physiology. Nutrients, 15(2):272.
  • Miranda, V.P.N., Dos Santos Amorim, P.R., Bastos, R.R., de Faria, E.R., de Castro Moreira, M.E., do Carmo Castro Franceschini, S., do Carmo Gouveia Peluzio, M., de Luces Fortes Ferreira, C.L., Priore, S.E. (2019). Abundance of Gut Microbiota, Concentration of Short-Chain Fatty Acids, and Inflammatory Markers Associated with Elevated Body Fat, Overweight, and Obesity in Female Adolescents. Mediat. Inflamm, 2019, 7346863.
  • Nowarski, R., Jackson, R., Gagliani, N., de Zoete, M.R., Palm, N.W., Bailis, W., Low, J.S., Harman, C.C., Graham, M., Elinav, E., Flavell, R.A. (2015). Epithelial IL-18 Equilibrium Controls Barrier Function in Colitis. Cell, 163(6):1444-56.
  • Overby, H.B., Ferguson, J.F. (2021). Gut microbiota-derived short chain fatty acids facilitate microbiota:host crosstalk and modulate obesity and hypertension. Curr Hypertens Rep, 23(2):8.
  • Peng, M., Biswas, D. (2017). Short chain and polyunsaturated fatty acids in host gut health and foodborne bacterial pathogen inhibition. Crit Rev Food Sci Nutr, 57(18):3987-4002.
  • Priyadarshini, M. Kotlo, K.U., Dudeja, P.K., Layden, B.T. (2018). Role of Short Chain Fatty Acid Receptors in Intestinal Physiology and Pathophysiology. Compr Physiol, 8(3):1091-1115.
  • Ramos Meyers, G., Samouda, H., Bohn, T. (2022). Short Chain Fatty Acid Metabolism in Relation to Gut Microbiota and Genetic Variability. Nutrients, 14(24):5361.
  • Rezq, S., Abdel-Rahman, A.A. (2016). Central GPR109A activation mediates glutamate-dependent pressor response in conscious rats. J Pharmacol Exp Ther 356: 456–465.
  • Sakata, T. (2019). Pitfalls in short‐chain fatty acid research: A methodological review. Anim Sci J, 90(1):3-13.
  • Samuel, B.S., Shaito A, Motoike T., Rey, F.E., Backhed, F., Manchester, J.K., Hammer, R.E., Williams, S.C., Crowley, J., Yanagisawa, M., Gordon, J.I. (2008). Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A, 105(43):16767-72.
  • Sanna, S., van Zuydam, N.R., Mahajan, A., Kurilshikov, A., Vich Vila, A., Võsa, U., Mujagic, Z., Masclee, A.A.M., Jonkers, D.M.A.E., Oosting, M., Joosten, L.A.B., Netea, M.G., Franke, L., Zhernakova, A., Fu, J., Wijmenga, C., McCarthy, M.I. (2019). Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet, 51:600–605.
  • Singh, N., Gurav, A., Sivaprakasam, S., Brady, E., Padia, R., Shi, H., Thangaraju, M., Prasad, P.D., Manicassamy, S., Munn, D.H., Lee, J.R., Offermanns, S., Ganapathy, V. (2014) Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity, 40,128-139, 10.1016/j.immuni.2013.12.007
  • Tan, J., McKenzie, C., Potamitis, M., Thorburn, A.N., Mackay, C.R., Macia, L. (2014) Chapter Three - The Role of Short-Chain Fatty Acids in Health and Disease. Adv Immunol, 121:91-119.
  • Topping, D.L., Clifton, P.M. (2001). Short-Chain Fatty Acids and Human Colonic Function: Roles of Resistant Starch and Nonstarch Polysaccharides. Physiol Rev, 81(3):1031-64.
  • Unger, M.M., Spiegel, J., Dillmann, K.U., Grundmann, D., Philippeit, H., Bürmann, J., Faßbender, K., Schwiertz, A., Schäfer, K.H. (2016). Short chain fatty acids and gut microbiota differ between patients with Parkinson's disease and age-matched controls. Parkinsonism Relat Disord, 32:66-72.
  • Usuda, H., Okamoto, T., Wada, K. (2021). Leaky Gut: Effect of Dietary Fiber and Fats on Microbiome and Intestinal Barrier. Int J Mol Sci, 22(14):7613.
  • Wang, A., Li, Z., Sun, Z., Zhang, D., Ma, X. (2023). Gut-derived short-chain fatty acids bridge cardiac and systemic metabolism and immunity in heart failure. J Nutr Biochem, 120:109370.
  • Wang, Y., Wang, H., Howard, A.G., Meyer, K.A., Tsilimigras, M.C.B., Avery, C.L., Sha, W., Sun, S., Zhang, J., Su, C., Wang, Z., Zhang, B., Fodor, A.A., Gordon-Larsen, P. (2020). Circulating Short-Chain Fatty Acids Are Positively Associated with Adiposity Measures in Chinese Adults. Nutrients, 12, 2127.
  • Wu, W., Sun, M., Chen, F., Cao, A.T., Liu, H., Zhao, Y., Huang, X., Xiao, Y., Yao, S., Zhao, Q., Liu, Z., Cong, Y. (2017). Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunol, 10(4):946-956.
  • Yin, X.Q., An, Y.X., Yu, C.G., Ke, J., Zhao, D., Yu, K. (2022). The Association Between Fecal Short-Chain Fatty Acids, Gut Microbiota, and Visceral Fat in Monozygotic Twin Pairs. Diabetes Metab Syndr Obes, 15, 359–368.
  • Zhang, D., Jian, Y.P., Zhang, Y.N., Li, Y., Gu, L.T., Sun, H.H., Liu, M.D., Zhou, H.L., Wang, Y.S., Xu, Z.X. (2023). Short-chain fatty acids in diseases. Cell Commun Signal, 21(1):212.

Mikrobiyota Metaboliti: Kısa Zincirli Yağ Asitleri

Yıl 2024, Cilt: 5 Sayı: 3, 393 - 419, 20.12.2024
https://doi.org/10.70813/ssd.1521172

Öz

Bağırsak mikrobiyotası, bakterileri, mayaları, virüsleri ve parazitleri içeren bağırsak ekosisteminin temel bileşenlerinden biri olan ve mikroplara karşı bariyer etkisi, bağışıklığın şekillenmesi ve olgunlaşması, metabolik alımın düzenlenmesi ve besinlerin emilimi de dahil olmak üzere insan sağlığında önemli bir rol oynayan ekolojik bir topluluktur. Mikrobiyotanın insan sağlığını ve hastalıklarını etkilediği mekanizmalardan biri, mikrobiyotanın ya hastalığın gelişimiyle ilişkili zararlı metabolitler ya da hastalığa karşı koruma sağlayan faydalı metabolitler üretme kapasitesidir. Mikrobiyota metaboliti olan kısa zincirli yağ asitlerinin, incelenmesindeki son gelişmeler, bunların hem hücresel hem de moleküler düzeyde çeşitli sistemler üzerindeki etkilerini ortaya çıkarmıştır. Bu çalışmanın amacı kısa zincirli yağ asitlerinin insan vücudundaki çeşitli fizyolojik işlevleri üzerine bir değerlendirme yapmaktır.

Kaynakça

  • Abdalkareem Jasim, S., Jade Catalan Opulencia, M., Alexis Ramírez-Coronel, A., Kamal Abdelbasset, W., Hasan Abed, M., Markov, A., Raheem Lateef Al-Awsi, G., Azamatovich Shamsiev, J., Thaeer Hammid, A., Nader Shalaby, M., Karampoor, S., Mirzaei, R. (2022). The emerging role of microbiota-derived short-chain fatty acids in immunometabolism. Int Immunopharmacol, 110:108983.
  • Aoyama, M., Kotani, J., Usami, M. (2010). Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways. Nutrition, 26(6):653-61.
  • Balmer, M.L., Ma, E.H., Bantug, G.R., Grählert, J., Pfister, S., Glatter, T., Jauch, A., Dimeloe, S., Slack, E., Dehio, P., Krzyzaniak, M.A., King, C.G., Burgener, A.V., Fischer, M., Develioglu, L., Belle, R., Recher, M., Bonilla, W.V., Macpherson, A.J., Hapfelmeier, S., Jones, R.G., Hess, C. (2016). Memory CD8(+) T cells require increased concentrations of acetate induced by stress for optimal function. Immunity, 21;44(6):1312-24.
  • Barrea, L., Muscogiuri, G., Annunziata, G., Laudisio, D., Pugliese, G., Salzano, C., Colao, A., Savastano, S. (2019). From gut microbiota dysfunction to obesity: could short-chain fatty acids stop this dangerous course? Hormones (Athens), 18(3):245-250.
  • Campos-Perez, W., Martinez-Lopez, E. (2021). Effects of short chain fatty acids on metabolic and inflammatory processes in human health. Biochim Biophys Acta Mol Cell Biol Lipids, 1866(5):158900.
  • Cheng, Y., Liu, J., Ling, Z. (2022). Short-chain fatty acids-producing probiotics: A novel source of psychobiotics. Crit Rev Food Sci Nutr, 62(28):7929-7959.
  • Cong, J., Zhou, P., Zhang, R. (2022). Intestinal Microbiota-Derived Short Chain Fatty Acids in Host Health and Disease. Nutrients, 14(9):1977. doi: 10.3390/nu14091977.
  • Cordeiro, A., Costa, R., Andrade, N., Silva, C., Canabrava, N., Pena, M.J., Rodrigues, I., Andrade, S., Ramalho, A. (2020). Does adipose tissue inflammation drive the development of non-alcoholic fatty liver disease in obesity? Clin Res Hepatol Gastroenterol, 44:394–402.
  • den Besten, G., Bleeker, A., Gerding, A., van Eunen, K., Havinga, R., van Dijk, T.H., Oosterveer, M.H., Jonker, J.W., Groen, A.K., Reijngoud, D.J., Bakker, B.M. (2015). Short-Chain Fatty Acids Protect Against High-Fat Diet-Induced Obesity via a PPARγ Dependent Switch from Lipogenesis to Fat Oxidation. Diabetes, 64:2398–2408.
  • Elangovan, S., Pathania, R., Ramachandran, S., Ananth, S., Padia, R.N., Lan, L., Singh, N., Martin, P.M., Hawthorn, L., Prasad, P.D., Ganapathy, V., Thangaraju, M. (2014). The niacin/butyrate receptor GPR109A suppresses mammary tumorigenesis by inhibiting cell survival. Cancer Res, 74: 1166–1178.
  • Fabiano GA, Shinn LM, Antunes AEC (2023). Relationship between Oat Consumption, Gut Microbiota Modulation, and Short-Chain Fatty Acid Synthesis: An Integrative Review. Nutrients, 15(16):3534.
  • Fernandes, J., Vogt, J., Wolever, T.M. (2012). Intravenous acetate elicits a greater free fatty acid rebound in normal than hyperinsulinaemic humans. Eur J Clin Nutr, 66(9):1029-34. doi: 10.1038/ejcn.2012.98.
  • Fu, S.P., Liu, B.R., Wang, J.F., Xue, W.J., Liu, H.M., Zeng, Y.L., Huang, B.X., Li, S.N., Lv, Q.K., Wang, W., Liu, J.X. (2015). beta-Hydroxybutyric acid inhibits growth hormone-releasing hormone synthesis and secretion through the GPR109A/extracellular signal-regulated 1/2 signalling pathway in the hypothalamus. J Neuroendocrinol, 27: 212–222.
  • Fu, S.P., Wang, J.F., Xue, W.J., Liu, H.M., Liu, B.R., Zeng, Y.L., Li, S.N., Huang, B.X., Lv, Q.K., Wang, W., Liu, J.X. (2015). Anti-inflammatory effects of BHBA in both in vivo and in vitro Parkinson’s disease models are mediated by GPR109A-dependent mechanisms. J Neuroinflammation, 12:9.
  • Fusco, W., Lorenzo, M.B., Cintoni, M., Porcari, S., Rinninella, E., Kaitsas, F., Lener, E., Mele, M.C., Gasbarrini, A., Collado, M.C., Cammarota, G., Ianiro, G. (2023). Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients, 15(9):2211.
  • Gambhir, D., Ananth, S., Veeranan-Karmegam, R., Elangovan, S., Hester, S., Jennings, E., Offermanns, S., Nussbaum, J.J., Smith, S.B., Thangaraju, M., Ganapathy, V., Martin, P.M. (2012). GPR109A as an anti-inflammatory receptor in retinal pigment epithelial cells and its relevance to diabetic retinopathy. Invest Ophthalmol Vis Sci, 53(4):2208-17.
  • Gao, Z., Yin, J., Zhang, J., Ward, R.E., Martin, R.J., Lefevre, M., Cefalu, W.T., Ye, J. (2009). Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes, 58:1509–1517.
  • González-Bosch, C., Boorman, E., Zunszain, P.A., Mann, G.E. (2021) Short-chain fatty acids as modulators of redox signaling in health and disease. Redox Biol, 47:102165.
  • Hammami, R., Fernandez, B., Lacroix, C., Fliss, I. (2013). Anti-infective properties of bacteriocins: an update. Cell Mol Life Sci, 70(16):2947-67. doi: 10.1007/s00018-012-1202-3.
  • Hill, J.H., Round, J.L. (2021). SnapShot: Microbiota effects on host physiology. Cell, 184:2796.
  • Jocken, J.W.E., González Hernández, M.A., Hoebers, N.T.H., van der Beek, C.M., Essers, Y.P.G., Blaak, E.E., Canfora, E.E. (2017). Short-Chain Fatty Acids Differentially Affect Intracellular Lipolysis in a Human White Adipocyte Model. Front Endocrinol, 8:372.
  • Kim, K.N., Yao, Y., Ju, S.Y. (2019). Short Chain Fatty Acids and Fecal Microbiota Abundance in Humans with Obesity: A Systematic Review and Meta-Analysis. Nutrients , 11, 2512.
  • Koh, A., De, Vadder, F., Kovatcheva-Datchary, P., Bäckhed, F. (2016) From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell, 165(6):1332-1345.
  • Layden, B.T., Angueira,.A.R., Brodsky, M., Durai, V., Lowe, W.L. (2013). Short chain fatty acids and their receptors: new metabolic targets. Transl Res, 161(3):131-40.
  • Liu, L., Fu, C. (2019). Acetate Affects the Process of Lipid Metabolism in Rabbit Liver, Skeletal Muscle and Adipose Tissue. Animals, 9:799.
  • Luu, M., Pautz, S., Kohl, V., Singh, R., Romero, R., Lucas, S., Hofmann, J., Raifer, H., Vachharajani, N., Carrascosa, L.C., Lamp, B., Nist, A., Stiewe, T., Shaul, Y., Adhikary, T., Zaiss, M.M., Lauth, M., Steinhoff, U., Visekruna, A. (2019). The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nat Commun, 10(1):760.
  • Machate, D.J., Figueiredo, P.S., Marcelino, G., Guimarães, R.C.A., Hiane, P.A., Bogo, D., Pinheiro, V.A.Z., Oliveira, L.C.S., Pott, A. (2020). Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis. Int J Mol Sci, 21(11):4093.
  • Macia, L., Tan, J., Vieira, A.T., Leach, K., Stanley, D., Luong, S., Maruya, M., Ian McKenzie, C., Hijikata, A., Wong, C., Binge, L., Thorburn, A.N., Chevalier, N., Ang, C., Marino, E., Robert, R., Offermanns, S., Teixeira, M.M., Moore, R.J., Flavell, RA., Fagarasan, S., Mackay, C.R. (2015). Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun, 6:6734.
  • Matt, S.M., Allen, J.M., Lawson, M.A., Mailing, L.J., Woods, J.A., Johnson, R.W. (2018). Butyrate and dietary soluble fiber improve neuroinflammation associated with aging in mice. Front Immunol, 9:1832.
  • May, K.S., den Hartigh, L.J. (2023). Gut Microbial-Derived Short Chain Fatty Acids: Impact on Adipose Tissue Physiology. Nutrients, 15(2):272.
  • Miranda, V.P.N., Dos Santos Amorim, P.R., Bastos, R.R., de Faria, E.R., de Castro Moreira, M.E., do Carmo Castro Franceschini, S., do Carmo Gouveia Peluzio, M., de Luces Fortes Ferreira, C.L., Priore, S.E. (2019). Abundance of Gut Microbiota, Concentration of Short-Chain Fatty Acids, and Inflammatory Markers Associated with Elevated Body Fat, Overweight, and Obesity in Female Adolescents. Mediat. Inflamm, 2019, 7346863.
  • Nowarski, R., Jackson, R., Gagliani, N., de Zoete, M.R., Palm, N.W., Bailis, W., Low, J.S., Harman, C.C., Graham, M., Elinav, E., Flavell, R.A. (2015). Epithelial IL-18 Equilibrium Controls Barrier Function in Colitis. Cell, 163(6):1444-56.
  • Overby, H.B., Ferguson, J.F. (2021). Gut microbiota-derived short chain fatty acids facilitate microbiota:host crosstalk and modulate obesity and hypertension. Curr Hypertens Rep, 23(2):8.
  • Peng, M., Biswas, D. (2017). Short chain and polyunsaturated fatty acids in host gut health and foodborne bacterial pathogen inhibition. Crit Rev Food Sci Nutr, 57(18):3987-4002.
  • Priyadarshini, M. Kotlo, K.U., Dudeja, P.K., Layden, B.T. (2018). Role of Short Chain Fatty Acid Receptors in Intestinal Physiology and Pathophysiology. Compr Physiol, 8(3):1091-1115.
  • Ramos Meyers, G., Samouda, H., Bohn, T. (2022). Short Chain Fatty Acid Metabolism in Relation to Gut Microbiota and Genetic Variability. Nutrients, 14(24):5361.
  • Rezq, S., Abdel-Rahman, A.A. (2016). Central GPR109A activation mediates glutamate-dependent pressor response in conscious rats. J Pharmacol Exp Ther 356: 456–465.
  • Sakata, T. (2019). Pitfalls in short‐chain fatty acid research: A methodological review. Anim Sci J, 90(1):3-13.
  • Samuel, B.S., Shaito A, Motoike T., Rey, F.E., Backhed, F., Manchester, J.K., Hammer, R.E., Williams, S.C., Crowley, J., Yanagisawa, M., Gordon, J.I. (2008). Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A, 105(43):16767-72.
  • Sanna, S., van Zuydam, N.R., Mahajan, A., Kurilshikov, A., Vich Vila, A., Võsa, U., Mujagic, Z., Masclee, A.A.M., Jonkers, D.M.A.E., Oosting, M., Joosten, L.A.B., Netea, M.G., Franke, L., Zhernakova, A., Fu, J., Wijmenga, C., McCarthy, M.I. (2019). Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet, 51:600–605.
  • Singh, N., Gurav, A., Sivaprakasam, S., Brady, E., Padia, R., Shi, H., Thangaraju, M., Prasad, P.D., Manicassamy, S., Munn, D.H., Lee, J.R., Offermanns, S., Ganapathy, V. (2014) Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity, 40,128-139, 10.1016/j.immuni.2013.12.007
  • Tan, J., McKenzie, C., Potamitis, M., Thorburn, A.N., Mackay, C.R., Macia, L. (2014) Chapter Three - The Role of Short-Chain Fatty Acids in Health and Disease. Adv Immunol, 121:91-119.
  • Topping, D.L., Clifton, P.M. (2001). Short-Chain Fatty Acids and Human Colonic Function: Roles of Resistant Starch and Nonstarch Polysaccharides. Physiol Rev, 81(3):1031-64.
  • Unger, M.M., Spiegel, J., Dillmann, K.U., Grundmann, D., Philippeit, H., Bürmann, J., Faßbender, K., Schwiertz, A., Schäfer, K.H. (2016). Short chain fatty acids and gut microbiota differ between patients with Parkinson's disease and age-matched controls. Parkinsonism Relat Disord, 32:66-72.
  • Usuda, H., Okamoto, T., Wada, K. (2021). Leaky Gut: Effect of Dietary Fiber and Fats on Microbiome and Intestinal Barrier. Int J Mol Sci, 22(14):7613.
  • Wang, A., Li, Z., Sun, Z., Zhang, D., Ma, X. (2023). Gut-derived short-chain fatty acids bridge cardiac and systemic metabolism and immunity in heart failure. J Nutr Biochem, 120:109370.
  • Wang, Y., Wang, H., Howard, A.G., Meyer, K.A., Tsilimigras, M.C.B., Avery, C.L., Sha, W., Sun, S., Zhang, J., Su, C., Wang, Z., Zhang, B., Fodor, A.A., Gordon-Larsen, P. (2020). Circulating Short-Chain Fatty Acids Are Positively Associated with Adiposity Measures in Chinese Adults. Nutrients, 12, 2127.
  • Wu, W., Sun, M., Chen, F., Cao, A.T., Liu, H., Zhao, Y., Huang, X., Xiao, Y., Yao, S., Zhao, Q., Liu, Z., Cong, Y. (2017). Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunol, 10(4):946-956.
  • Yin, X.Q., An, Y.X., Yu, C.G., Ke, J., Zhao, D., Yu, K. (2022). The Association Between Fecal Short-Chain Fatty Acids, Gut Microbiota, and Visceral Fat in Monozygotic Twin Pairs. Diabetes Metab Syndr Obes, 15, 359–368.
  • Zhang, D., Jian, Y.P., Zhang, Y.N., Li, Y., Gu, L.T., Sun, H.H., Liu, M.D., Zhou, H.L., Wang, Y.S., Xu, Z.X. (2023). Short-chain fatty acids in diseases. Cell Commun Signal, 21(1):212.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Klinik Tıp Bilimleri (Diğer)
Bölüm Derleme Makaleleri
Yazarlar

Fatma Hümeyra Yerlikaya 0000-0002-4107-5389

Yayımlanma Tarihi 20 Aralık 2024
Gönderilme Tarihi 23 Temmuz 2024
Kabul Tarihi 6 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 5 Sayı: 3

Kaynak Göster

APA Yerlikaya, F. H. (2024). Mikrobiyota Metaboliti: Kısa Zincirli Yağ Asitleri. Selçuk Sağlık Dergisi, 5(3), 393-419. https://doi.org/10.70813/ssd.1521172