BibTex RIS Kaynak Göster

KUANTUM NOKTA YAPILARDA ELEKTRİK ALAN ETKİSİNİN PERTÜRBASYON YÖNTEMİYLE İNCELENMESİ

Yıl 2015, Sayı: 41, 124 - 146, 01.12.2015

Öz

Bu çalışmada Pertürbasyon metodu ile kuantum nokta yapılarının elektronik yapısına dış elektrik alan etkisi incelendi. Merkezinde hidrojen tipi bir safsızlık bulunan sonlu küresel simetrik sonlu potansiyelle sınırlandırılmış bir-elektronlu kuantum nokta yapısının taban ve bazı uyarılmış seviyelerin pertürbe olmamış enerji öz değerlerini ve dalga fonksiyonlarını KGA metodu ile Hartree-Fock-Roothaan (HFR) metodu birleştirilerek belirlendi. Dalga fonksiyonları, STO ların lineer bileşiminden oluşan tek-elektron spin orbitalleri alındı. Pertürbe olmamış enerji özdeğerleri ve dalga fonksiyonları kullanılarak, nokta yapısının elektronik yapısı üzerine dış elektrik alanının etkisi farklı nokta yarıçapı ve sınırlandırıcı potansiyel değerleri için pertürbasyon teorisi ile hesaplandı.

Kaynakça

  • Adachi, S., 1994 GaAs and Relati Materials, World Scientific, Singapare.
  • Anderson, R. L., 1962, Experiments on Ge-GaAs heterojunctions, Solid-State Electron, 5, 341-344.
  • Arfken, G., 1985, Mathematical Methods for Physics, Third Edition, Academic Press Inc., Orlando.
  • Bardeen, J., Brattain, W. H., 1948, The transistor, a semi-conductor triode, Physical Review, 74: 230-231.
  • Chaudhury, P. and Bhattacharyya, S. P., 1998, Numerical solutions of the Schrödinger equation directly or perturbatively by a genetic algorithm: test cases, Chemical Physics Letters, 296: 51-60.
  • Cho, A. Y., Arthur, J. R., 1975, Molecular beam epitaxy, Progress in Solid State Chemistry, 10, 157-191.
  • Choi, B. H., Hwang, S. W., Kim, I. G., Shin, H. C., Kim, Y., Kim, E.K., 1998, Fabrication and room-temperature characterization of a silicon self-assembled quantum-dot transistor, Applied Physics Letters,73: 3129-3131.
  • Çakır, B., Özmen, A., Şahin, M., Yakar, Y., Atav, Ü. and Yüksel, H., 28-30 August. 2006, Determination of wave functions of a quantum dot using the genetic algorithm, Proceedings of the international conference on modeling and simulation, Konya,Turkey, paper No:B032
  • Çakır, B., 2007, Çok Elektronlu Kuantum Nokta Yapıların Elektronik Özelliklerinin İncelenmesi, Doktora Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya
  • Çakır, B., Özmen, A., Atav, Ü., Yüksel, H. and Yakar, Y., 2007, Investigation of electronic structure of a quantum nokta using Slater-type orditals and quantum genetic algorithm, International Journal of Modern Physics C, 18, 61-72.
  • Çakir, B., Özmen, A., Atav, Ü., Yüksel, H., Yakar, Y., 2008, Calculatıon Of Electronıc Structure Of A Spherıcal Quantum Nokta Usıng A Combınatıon Of Quantum Genetıc Algorıthm And Hartree Fock Roothaan Method,International Journal of Modern Physics C, 19(4) ,599-609.
  • Çakır, B., Yakar, Y., Özmen, A., Sezer, M. Ö., Şahin, M.,2010, Linear and nonlinear optical absorption coefficients and binding energy of a spherical quantum nokta, Superlattices and Microstructures ,47, 556-566 .
  • Çakır, B., (2013), Calculation of oscillator strength and the effects of electric Şeld on energy states, static and dynamic polarizabilities of the con Optics Communications 311(2013)222–228
  • Fujito, M., Natori, A.,and Yasunaga, H., 1996, Many-electron ground states in anisotropic parabolic quantum dots, Physical Rewiev B , 53: 9952-9958.
  • Gammon, D., 2000, Semiconductor physics: Electrons in artificial atoms, Nature, 405: 899- 900.
  • Gerardo J. Vázquez, (2004), Spherical quantum dot under an electric field, phys. stat. sol. (c) 1, No. S1, S54– S57.
  • Grigorenko, I., Garcia M. E., 2000, An evolutionary algorithm to calculate the ground state of a quantum system, Physica A, 284: 131-139. Grigorenko, I., Garcia M. E., 2001, Ground-state wavefunctions of two-particle systems determined using quantum genetic algorithms, Physica A, 291: 439-448.
  • Grigorenko, I., Garcia M. E., 2001, Ground-state wavefunctions of two-particle systems determined using quantum genetic algorithms, Physica A, 291: 439-448.
  • Grigorenko, I., Garcia M. E., 2002, Calculation of the parttition function using quantum genetic algorithms, Physica A, 313: 463-470.
  • Holland, J. H., 1975, Adaptation in Natural and Artificial Systems, University of Michigan, Ann Arbor, MI.
  • Homaifar, A., Lai, H. Y., McCormick, E., 1994, System optimization of turbofan engines using genetic algorithms, Applied Mathematical Modelling, 18: 72-83.
  • Huangfu, Y.F., Z.W. Yan, (2008) , Bound polaron in a spherical quantum dot under an electric field, Physica E ,Low-dimensional Systems and Nanostructures, Volume 40, Issue 9 Pages 2982-2987
  • Kirak,M., Altınok, Y., Yılmaz,S.,2013, The effects of the hydrostatic pressure and temperature on binding energy and optical properties of a donor impurity in a spherical quantum nokta under external electric field, Journal of Luminescence,136,415-421.
  • Kulkarni, A. J., Krishnamurthy, K., Deshmukh, S. P., Mishra R. S., 2004, Microstructural optimization of alloys using a genetic algorithm, Materials Science and Engineering A, 372: 213-220.
  • Maksym, P. A., Chakraborty, T., 1990, Quantum dots in a magnetic field: role of electron- electron interactions, American Physical Society, 65: 108-111
  • Nakanishi, H., Sugawara, M., 2000, Numerical solution of the Schrodinger equation by a microgenetic algorithm, Chemical Physics Letters, 327 429-438.
  • Nomoto, K., Ugajin, R., Suzuki, T., Taira, K., Hase, I., 1998, Quantum-dot based opto- electronic device, IEICE Transactions on Electronics E, 81C: 8-15.
  • Özmen, A., Yakar, Y., Cakır B., Atav, U., 2009, Computation of the oscillator strength and absorption coefficients for theintersubband transitions of the spherical quantum nokta, Optics Communications, 282, 3999–4004.
  • Özmen A., Yakar, Y., Cakır B., 2013, Electronic structure and relativistic terms of one- electron spherical quantum dot.
  • Reed, M.A., Bate, R. T., Bradshaw, K., Duncan, W. M., Frensley, W. M., Lee, J. W., Smith, H. D., 1986, Spatial quantization in GaAs-AlGaAs multiple quantum noktas, Journal of Vacuum Science & Technology B, 4, 358-360.
  • Ryzhii, V., 1996, The theory of quantum-dot infrared phototransistors, Semiconductor Science and Technology, 11: 759-765.
  • Saha, R., Chaudhury, P., Bhattacharyya, S. P., 2001, Direct solution of Schrodinger equation by genetic algorithm: test cases, Physics Letters A, 291: 397-406.
  • Schrieffer, J. R., 1957, In Semiconductor Surface Physics, Kingston, R. H. (ed), p.55, University of Pennsylvania Press, Philadelphia.
  • Shockleey, W., 1949, Bell System, Technical Journal, 28, 435-489.
  • Sim, J. S., Kong, J., Lee, J. D., Park, B. G., 2004, Monte Carlo simulation of single-electron nanocrystal memories, Japanese Journal of Applied Physics, 43: 2041-2045.
  • Smith, W., 1873, J.Soc.Telegr. Eng.2:31
  • Şafak, H., Şahin, M., Gülveren, B., Tomak, M., 2003, Efficiency of genetic algorithm and determination of ground state energy of impurity in a spherical quantum dot, International Journal of Modern Physics C, 14: 775-784.
  • Şahin, Ö., Sayan, P., Bulutcu, A. N., 2000, Application of genetic algorithm for determination of mass transfer coefficients. Journal of Crystal Growth 216: 475-482.
  • Şahin, M., Tomak, M., 2002, Self-consistent calculation of semiconductor heterojunctions using quantum genetic algorithm, International Journal of Modern Physics B, 16: 3883-3893.
  • Şahin, M. and Tomak, M. 2005, Electronic structure of a many-electron spherical quantum dot with an impurity, Physical rewiev B, 72: 125323(1-6).
  • Venugopal, V., Narendran, T.T., 1992, A genetic algorithm approach to the machine- component grouping problem with multiple objectives, Computers & Industrial Engineering, 22: 469-480.
  • Yakar, Y., Çakır, B., Özmen, A., 2010, Calculation of linear and nonlinear optical absorption coefficients of a spherical quantum nokta with parabolic potential, Optics Communications, 283, 1795–1800.
  • Yakar, Y., Cakır, B., Ozmen, A., 2010, Linear and Nonlinear Optical Properties in Spherical Quantum Noktas, Communications in Theoretical Physics, 53, 1185–1189.
  • Yakar, Y., Çakır, B., Özmen, A., 2013, Computation of relativistic terms in a spherical quantum nokta ,Journal of Luminescence, 134, 778-783.
  • Yakar, Y., Çakır, B., Özmen, A., 2013,Off-center hydrogenic impurity in spherical quantum nokta with parabolic potential, Superlattices and Microstructures ,60, 389-397.
  • Yusa, G., Sakaki, H., 1999, InAs quantum dot field effect transistors, Superlattices and Microstructures, 25: 247-250. SELÇUK ÜNİVERİSTESİ
  • BİLİMSEL DERGİLER KOORDİNATÖRLÜĞÜ SELCUK UNIVERSITY
  • COORDINATION UNIT OF SCIENTIFIC JOURNALS
  • © 2015 Reproduction is free for scientific studies

INVESTIGATED OF THE ELECTRIC FIELD EFFECT ON QUANTUM DOTS WITH PERTURBATION METHOD

Yıl 2015, Sayı: 41, 124 - 146, 01.12.2015

Öz

In this thesis, electronic properties of Quantum dots was examined according to the position of impurity using perturbation method. Spherical quantum dot with one electron on-center hydrogenic impurity confined finite spherical potential the non-perturbed energy eigenvalues and the wave functions ground and some excited states were determined by a method consisting of a combination of the KGA method with HartreeFock-Roothaan (HFR) method. Wave functions were created a single electron spin orbitals that consist of the linear combination of Slater type orditals (STOs). The effect of the external electric field applied on the electronic structure for different dot radius and confining potential were calculated by perturbation theory using the energy eigenvalues and wave functions unperturbed

Kaynakça

  • Adachi, S., 1994 GaAs and Relati Materials, World Scientific, Singapare.
  • Anderson, R. L., 1962, Experiments on Ge-GaAs heterojunctions, Solid-State Electron, 5, 341-344.
  • Arfken, G., 1985, Mathematical Methods for Physics, Third Edition, Academic Press Inc., Orlando.
  • Bardeen, J., Brattain, W. H., 1948, The transistor, a semi-conductor triode, Physical Review, 74: 230-231.
  • Chaudhury, P. and Bhattacharyya, S. P., 1998, Numerical solutions of the Schrödinger equation directly or perturbatively by a genetic algorithm: test cases, Chemical Physics Letters, 296: 51-60.
  • Cho, A. Y., Arthur, J. R., 1975, Molecular beam epitaxy, Progress in Solid State Chemistry, 10, 157-191.
  • Choi, B. H., Hwang, S. W., Kim, I. G., Shin, H. C., Kim, Y., Kim, E.K., 1998, Fabrication and room-temperature characterization of a silicon self-assembled quantum-dot transistor, Applied Physics Letters,73: 3129-3131.
  • Çakır, B., Özmen, A., Şahin, M., Yakar, Y., Atav, Ü. and Yüksel, H., 28-30 August. 2006, Determination of wave functions of a quantum dot using the genetic algorithm, Proceedings of the international conference on modeling and simulation, Konya,Turkey, paper No:B032
  • Çakır, B., 2007, Çok Elektronlu Kuantum Nokta Yapıların Elektronik Özelliklerinin İncelenmesi, Doktora Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya
  • Çakır, B., Özmen, A., Atav, Ü., Yüksel, H. and Yakar, Y., 2007, Investigation of electronic structure of a quantum nokta using Slater-type orditals and quantum genetic algorithm, International Journal of Modern Physics C, 18, 61-72.
  • Çakir, B., Özmen, A., Atav, Ü., Yüksel, H., Yakar, Y., 2008, Calculatıon Of Electronıc Structure Of A Spherıcal Quantum Nokta Usıng A Combınatıon Of Quantum Genetıc Algorıthm And Hartree Fock Roothaan Method,International Journal of Modern Physics C, 19(4) ,599-609.
  • Çakır, B., Yakar, Y., Özmen, A., Sezer, M. Ö., Şahin, M.,2010, Linear and nonlinear optical absorption coefficients and binding energy of a spherical quantum nokta, Superlattices and Microstructures ,47, 556-566 .
  • Çakır, B., (2013), Calculation of oscillator strength and the effects of electric Şeld on energy states, static and dynamic polarizabilities of the con Optics Communications 311(2013)222–228
  • Fujito, M., Natori, A.,and Yasunaga, H., 1996, Many-electron ground states in anisotropic parabolic quantum dots, Physical Rewiev B , 53: 9952-9958.
  • Gammon, D., 2000, Semiconductor physics: Electrons in artificial atoms, Nature, 405: 899- 900.
  • Gerardo J. Vázquez, (2004), Spherical quantum dot under an electric field, phys. stat. sol. (c) 1, No. S1, S54– S57.
  • Grigorenko, I., Garcia M. E., 2000, An evolutionary algorithm to calculate the ground state of a quantum system, Physica A, 284: 131-139. Grigorenko, I., Garcia M. E., 2001, Ground-state wavefunctions of two-particle systems determined using quantum genetic algorithms, Physica A, 291: 439-448.
  • Grigorenko, I., Garcia M. E., 2001, Ground-state wavefunctions of two-particle systems determined using quantum genetic algorithms, Physica A, 291: 439-448.
  • Grigorenko, I., Garcia M. E., 2002, Calculation of the parttition function using quantum genetic algorithms, Physica A, 313: 463-470.
  • Holland, J. H., 1975, Adaptation in Natural and Artificial Systems, University of Michigan, Ann Arbor, MI.
  • Homaifar, A., Lai, H. Y., McCormick, E., 1994, System optimization of turbofan engines using genetic algorithms, Applied Mathematical Modelling, 18: 72-83.
  • Huangfu, Y.F., Z.W. Yan, (2008) , Bound polaron in a spherical quantum dot under an electric field, Physica E ,Low-dimensional Systems and Nanostructures, Volume 40, Issue 9 Pages 2982-2987
  • Kirak,M., Altınok, Y., Yılmaz,S.,2013, The effects of the hydrostatic pressure and temperature on binding energy and optical properties of a donor impurity in a spherical quantum nokta under external electric field, Journal of Luminescence,136,415-421.
  • Kulkarni, A. J., Krishnamurthy, K., Deshmukh, S. P., Mishra R. S., 2004, Microstructural optimization of alloys using a genetic algorithm, Materials Science and Engineering A, 372: 213-220.
  • Maksym, P. A., Chakraborty, T., 1990, Quantum dots in a magnetic field: role of electron- electron interactions, American Physical Society, 65: 108-111
  • Nakanishi, H., Sugawara, M., 2000, Numerical solution of the Schrodinger equation by a microgenetic algorithm, Chemical Physics Letters, 327 429-438.
  • Nomoto, K., Ugajin, R., Suzuki, T., Taira, K., Hase, I., 1998, Quantum-dot based opto- electronic device, IEICE Transactions on Electronics E, 81C: 8-15.
  • Özmen, A., Yakar, Y., Cakır B., Atav, U., 2009, Computation of the oscillator strength and absorption coefficients for theintersubband transitions of the spherical quantum nokta, Optics Communications, 282, 3999–4004.
  • Özmen A., Yakar, Y., Cakır B., 2013, Electronic structure and relativistic terms of one- electron spherical quantum dot.
  • Reed, M.A., Bate, R. T., Bradshaw, K., Duncan, W. M., Frensley, W. M., Lee, J. W., Smith, H. D., 1986, Spatial quantization in GaAs-AlGaAs multiple quantum noktas, Journal of Vacuum Science & Technology B, 4, 358-360.
  • Ryzhii, V., 1996, The theory of quantum-dot infrared phototransistors, Semiconductor Science and Technology, 11: 759-765.
  • Saha, R., Chaudhury, P., Bhattacharyya, S. P., 2001, Direct solution of Schrodinger equation by genetic algorithm: test cases, Physics Letters A, 291: 397-406.
  • Schrieffer, J. R., 1957, In Semiconductor Surface Physics, Kingston, R. H. (ed), p.55, University of Pennsylvania Press, Philadelphia.
  • Shockleey, W., 1949, Bell System, Technical Journal, 28, 435-489.
  • Sim, J. S., Kong, J., Lee, J. D., Park, B. G., 2004, Monte Carlo simulation of single-electron nanocrystal memories, Japanese Journal of Applied Physics, 43: 2041-2045.
  • Smith, W., 1873, J.Soc.Telegr. Eng.2:31
  • Şafak, H., Şahin, M., Gülveren, B., Tomak, M., 2003, Efficiency of genetic algorithm and determination of ground state energy of impurity in a spherical quantum dot, International Journal of Modern Physics C, 14: 775-784.
  • Şahin, Ö., Sayan, P., Bulutcu, A. N., 2000, Application of genetic algorithm for determination of mass transfer coefficients. Journal of Crystal Growth 216: 475-482.
  • Şahin, M., Tomak, M., 2002, Self-consistent calculation of semiconductor heterojunctions using quantum genetic algorithm, International Journal of Modern Physics B, 16: 3883-3893.
  • Şahin, M. and Tomak, M. 2005, Electronic structure of a many-electron spherical quantum dot with an impurity, Physical rewiev B, 72: 125323(1-6).
  • Venugopal, V., Narendran, T.T., 1992, A genetic algorithm approach to the machine- component grouping problem with multiple objectives, Computers & Industrial Engineering, 22: 469-480.
  • Yakar, Y., Çakır, B., Özmen, A., 2010, Calculation of linear and nonlinear optical absorption coefficients of a spherical quantum nokta with parabolic potential, Optics Communications, 283, 1795–1800.
  • Yakar, Y., Cakır, B., Ozmen, A., 2010, Linear and Nonlinear Optical Properties in Spherical Quantum Noktas, Communications in Theoretical Physics, 53, 1185–1189.
  • Yakar, Y., Çakır, B., Özmen, A., 2013, Computation of relativistic terms in a spherical quantum nokta ,Journal of Luminescence, 134, 778-783.
  • Yakar, Y., Çakır, B., Özmen, A., 2013,Off-center hydrogenic impurity in spherical quantum nokta with parabolic potential, Superlattices and Microstructures ,60, 389-397.
  • Yusa, G., Sakaki, H., 1999, InAs quantum dot field effect transistors, Superlattices and Microstructures, 25: 247-250. SELÇUK ÜNİVERİSTESİ
  • BİLİMSEL DERGİLER KOORDİNATÖRLÜĞÜ SELCUK UNIVERSITY
  • COORDINATION UNIT OF SCIENTIFIC JOURNALS
  • © 2015 Reproduction is free for scientific studies
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA57YV26AB
Bölüm Araştırma Makaleleri
Yazarlar

Emine Şeyma Doğan Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2015
Gönderilme Tarihi 1 Aralık 2015
Yayımlandığı Sayı Yıl 2015 Sayı: 41

Kaynak Göster

APA Doğan, E. Ş. (2015). KUANTUM NOKTA YAPILARDA ELEKTRİK ALAN ETKİSİNİN PERTÜRBASYON YÖNTEMİYLE İNCELENMESİ. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi(41), 124-146.
AMA Doğan EŞ. KUANTUM NOKTA YAPILARDA ELEKTRİK ALAN ETKİSİNİN PERTÜRBASYON YÖNTEMİYLE İNCELENMESİ. sufefd. Aralık 2015;(41):124-146.
Chicago Doğan, Emine Şeyma. “KUANTUM NOKTA YAPILARDA ELEKTRİK ALAN ETKİSİNİN PERTÜRBASYON YÖNTEMİYLE İNCELENMESİ”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, sy. 41 (Aralık 2015): 124-46.
EndNote Doğan EŞ (01 Aralık 2015) KUANTUM NOKTA YAPILARDA ELEKTRİK ALAN ETKİSİNİN PERTÜRBASYON YÖNTEMİYLE İNCELENMESİ. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 41 124–146.
IEEE E. Ş. Doğan, “KUANTUM NOKTA YAPILARDA ELEKTRİK ALAN ETKİSİNİN PERTÜRBASYON YÖNTEMİYLE İNCELENMESİ”, sufefd, sy. 41, ss. 124–146, Aralık 2015.
ISNAD Doğan, Emine Şeyma. “KUANTUM NOKTA YAPILARDA ELEKTRİK ALAN ETKİSİNİN PERTÜRBASYON YÖNTEMİYLE İNCELENMESİ”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 41 (Aralık 2015), 124-146.
JAMA Doğan EŞ. KUANTUM NOKTA YAPILARDA ELEKTRİK ALAN ETKİSİNİN PERTÜRBASYON YÖNTEMİYLE İNCELENMESİ. sufefd. 2015;:124–146.
MLA Doğan, Emine Şeyma. “KUANTUM NOKTA YAPILARDA ELEKTRİK ALAN ETKİSİNİN PERTÜRBASYON YÖNTEMİYLE İNCELENMESİ”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, sy. 41, 2015, ss. 124-46.
Vancouver Doğan EŞ. KUANTUM NOKTA YAPILARDA ELEKTRİK ALAN ETKİSİNİN PERTÜRBASYON YÖNTEMİYLE İNCELENMESİ. sufefd. 2015(41):124-46.

Dergi Sahibi: Selçuk Üniversitesi Fen Fakültesi Adına Rektör Prof. Dr. Hüseyin YILMAZ
Selçuk Üniversitesi Fen Fakültesi Fen Dergisi temel bilimlerde ve diğer uygulamalı bilimlerde özgün sonuçları olan Türkçe ve İngilizce makaleleri kabul eder. Dergide ayrıca güncel yenilikleri içeren derlemelere de yer verilebilir.
Selçuk Üniversitesi Fen Fakültesi Fen Dergisi;
İlk olarak 1981 yılında S.Ü. Fen-Edebiyat Fakültesi Dergisi olarak yayın hayatına başlamış; 1984 yılına kadar (Sayı 1-4) bu adla yayınlanmıştır.
1984 yılında S.Ü. Fen-Edeb. Fak. Fen Dergisi olarak adı değiştirilmiş 5. sayıdan itibaren bu isimle yayınlanmıştır.
3 Aralık 2008 tarih ve 27073 sayılı Resmi Gazetede yayımlanan 2008/4344 sayılı Bakanlar Kurulu Kararı ile Fen-Edebiyat Fakültesi; Fen Fakültesi ve Edebiyat Fakültesi olarak ayrılınca 2009 yılından itibaren dergi Fen Fakültesi Fen Dergisi olarak çıkmıştır.
2016 yılından itibaren DergiPark’ta taranmaktadır.


88x31.png

Selçuk Üniversitesi Fen Fakültesi Fen Dergisi Creative Commons Atıf 4.0 Uluslararası Lisansı (CC BY-NC 4.0) ile lisanslanmıştır.