Araştırma Makalesi
BibTex RIS Kaynak Göster

Novel Zinc(II) and Cobalt(II) Phthalocyanines Bearing Piperazine Derivative: Spectroscopic and Electrochemical Properties

Yıl 2017, Cilt: 43 Sayı: 1, 41 - 57, 28.04.2017

Öz

In this manuscript, novel zinc (II) and cobalt (II) phthalocyanine
complexes (ZnPc and CoPc) modified with tert-butyl
4-(4-(3,4-dicyanophenoxy)phenyl)piperazine-1-carboxylate substituents have been
prepared and characterized. These complexes are solouble in many organic
solvents such as DMF, DMSO, THF and CHCl3. Aggregation properties of
complexes were examinated in different solvents and different concentrations.
Spectroscopic evaluation of the Pcs showed a monomeric behaviour evidenced by a
single Q band for ZnPc and CoPc up to 1 .10-5  mol dm-3 in DMF, DMSO and
THF as typical of metallo Pcs. In all studied organic solvents except CHCl3,
ZnPc and CoPc complexes were non-aggregated. Cyclic and square wave
voltammetries were used to evaluate the electrochemical properties of the
synthesized complexes. Cyclic voltammetry showed two reduction couples and one
oxidation peak for the two phthalocyanine complexes.

Kaynakça

  • Abramczyk H, Brozek-Pluska B, Surmacki J, Tondusson M Freysz E (2017). Photostability of biological systems—Femtosecond dynamics of zinc tetrasulfonated phthalocyanine at cancerous and noncancerous human Breast tissues. Journal of Photochemistry and Photobiology A: Chemistry 332: 10-24.
  • Acar İ, Arslan T, Topçu S, Aktaş A, Şen S Serencam H (2014). Synthesis and electrochemistry of metallophthalocyanines bearing {4-[(2E)-3-(3,4,5-trimethoxyphenyl)prop-2-enoyl]phenoxy} groups. J Organomet Chem 752: 25-29.
  • Arul A, Christy M, Oh MY, Lee YS Nahm KS (2016). Nanofiber Carbon-Supported Phthalocyanine Metal Complexes as Solid Electrocatalysts for Lithium-Air Batteries. Electrochimica Acta 218: 335-344.
  • Belekoukia M, Ploumistos A, Sygellou L, Nouri E, Tasis D Lianos P (2016). Co–N doped reduced graphene oxide used as efficient electrocatalyst for dye-sensitized solar cells. Solar Energy Materials and Solar Cells 157: 591-598.
  • Bilgin A, Ertem B Gök Y (2007). Highly Organosoluble Metal-Free Phthalocyanines and Metallophthalocyanines: Synthesis and Characterization. European Journal of Inorganic Chemistry 2007: 1703-1712.
  • Cong F, Wei Z, Huang Z, Yu F, Liu H, Cui J, Yu H, Chu X, Du X, Xing K Lai J (2015). Characteristic absorption band split of symmetrically tetra-octyloxy metal phthalocyanines. Dyes and Pigments 120: 1-7.
  • Çakır D, Bekircan O Biyiklioglu Z (2015). 1,2,4-Triazole-substituted metallophthalocyanines carrying redox active cobalt(II), manganese(III), titanium(IV) center and their electrochemical studies. Synthetic Metals 201: 18-24.
  • Duchi S, Ramos-Romero S, Dozza B, Guerra-Rebollo M, Cattini L, Ballestri M, Dambruoso P, Guerrini A, Sotgiu G, Varchi G, Lucarelli E Blanco J (2016). Development of near-infrared photoactivable phthalocyanine-loaded nanoparticles to kill tumor cells: An improved tool for photodynamic therapy of solid cancers. Nanomedicine: Nanotechnology, Biology, And Medicine.
  • Franc G, Turrin C-O, Cavero E, Costes J-P, Duhayon C, Caminade A-M Majoral J-P (2009). gem-Bisphosphonate-Ended Group Dendrimers: Design and Gadolinium Complexing Properties. European Journal of Organic Chemistry 2009: 4290-4299.
  • Fukui H, Nakano S, Uno T, Dao Q-D, Saito T, Fujii A, Shimizu Y Ozaki M (2014). Miscibility in binary blends of non-peripheral alkylphthalocyanines and their application for bulk-heterojunction solar cells. Organic Electronics 15: 1189-1196.
  • Goksel M (2016). Synthesis of asymmetric zinc(II) phthalocyanines with two different functional groups & spectroscopic properties and photodynamic activity for photodynamic therapy. Bioorganic & Medicinal Chemistry 24: 4152-4164.
  • Kantar C, Akal H, Kaya B, Islamoğlu F, Türk M Şaşmaz S (2015). Novel phthalocyanines containing resorcinol azo dyes; synthesis, determination of pKa values, antioxidant, antibacterial and anticancer activity. J Organomet Chem 783: 28-39.
  • Karaca H (2016). Redox chemistry, spectroelectrochemistry and catalytic activity of novel synthesized phthalocyanines bearing four schiff bases on the periphery. J Organomet Chem 822: 39-45.
  • Klyamer DD, Sukhikh AS, Krasnov PO, Gromilov SA, Morozova NB Basova TV (2016). Thin films of tetrafluorosubstituted cobalt phthalocyanine: Structure and sensor properties. Applied Surface Science 372: 79-86.
  • Kumar A, Brunet J, Varenne C, Ndiaye A, Pauly A, Penza M Alvisi M (2015). Tetra-tert-butyl copper phthalocyanine-based QCM sensor for toluene detection in air at room temperature. Sensors and Actuators B: Chemical 210: 398-407.
  • Medyouni R, Elgabsi W, Naouali O, Romerosa A, Sulaiman Al-Ayed A, Baklouti L Hamdi N (2016). One-pot three-component Biginelli-type reaction to synthesize 3,4-dihydropyrimidine-2-(1H)-ones catalyzed by Co phthalocyanines: Synthesis, characterization, aggregation behavior and antibacterial activity. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 167: 165-174.
  • Oluwole DO, Uddin I, Prinsloo E Nyokong T (2016). The effects of silica based nanoparticles on the photophysicochemical properties, in vitro dark viability and photodynamic therapy study of zinc monocarboxyphenoxy phthalocyanine. Journal of Photochemistry and Photobiology A: Chemistry 329: 221-231.
  • Ömeroğlu İ, Arslan T, Bıyıklıoğlu Z Tosun G (2014). Novel pthalocyanines bearing 4-ferrocenylphenoxy substituents and their electrochemistry. J Organomet Chem 749: 261-265.
  • Prakash Singh S, Emin S Loukanov A (2010). Synthesis Of Highly Soluble Phthalocyanine From A New Phthalonitrile Under Mild Conditions. Advanced Materials Letters 1: 148-150.
  • Pucelik B, Gurol I, Ahsen V, Dumoulin F Dabrowski JM (2016). Fluorination of phthalocyanine substituents: Improved photoproperties and enhanced photodynamic efficacy after optimal micellar formulations. European Journal of Medicinal Chemistry 124: 284-298.
  • Saka ETb, Acar İ, Biyiklioğ lu Z, Kantekin H Kani İ (2013). Synthesis and characterization of peripheral and non-peripheral substituted Co(II) phthalocyanines and their catalytic activity in styrene oxidation. Synthetic Metals 169: 12-17.
  • Shivashimpi GM, Pandey SS, Hayat A, Fujikawa N, Ogomi Y, Yamaguchi Y Hayase S (2014). Far-red sensitizing octatrifluorobutoxy phosphorous triazatetrabenzocorrole: Synthesis, spectral characterization and aggregation studies. Journal of Photochemistry and Photobiology A: Chemistry 289: 53-59.
  • Shumba M Nyokong T (2016). Development of nanocomposites of phosphorus-nitrogen co-doped graphene oxide nanosheets and nanosized cobalt phthalocyanines for electrocatalysis. Electrochimica Acta 213: 529-539.
  • Sokolov VS, Gavrilchik AN, Kulagina AO, Meshkov IN, Pohl P Gorbunova YG (2016). Voltage-sensitive styryl dyes as singlet oxygen targets on the surface of bilayer lipid membrane. Journal of Photochemistry and Photobiology B, Biology 161: 162-169.
  • Williams G, Sutty S, Klenkler R Aziz H (2014). Renewed interest in metal phthalocyanine donors for small molecule organic solar cells. Solar Energy Materials and Solar Cells 124: 217-226.
  • Wu H, Guo L, Zhang J, Miao S, He C, Wang B, Wu Y Chen Z (2016). Polyelectrolyte-free layer by layer self-assembled multilayer films of cationic phthalocyanine cobalt(II) and carbon nanotube for the efficient detection of 4-nitrophenol. Sensors and Actuators B: Chemical 230: 359-366.
  • Yanık H, Al-Raqa SY, Aljuhani A Durmuş M (2016). The synthesis of novel directly conjugated zinc(II) phthalocyanine via palladium-catalyzed Suzuki–Miyaura cross-coupling reaction and its quaternized water-soluble derivative: Investigation of photophysical and photochemical properties. Dyes and Pigments 134: 531-540.
  • Young JG Onyebuagu W (1988). Synthesis and Characterization of Di-disubstituted Phthalocyanines. The Journal of Organic Chemistry 55: 2155-2159.
  • Zheng B-Y, Zhang H-P, Ke M-R Huang J-D (2013). Synthesis and antifungal photodynamic activities of a series of novel zinc(II) phthalocyanines substituted with piperazinyl moieties. Dyes and Pigments 99: 185-191.

Piperazin Türevi İçeren Yeni Çinko (II) ve Kobalt (II) Ftalosiyaninlerin Sentezi, Spektroskopik ve Elektrokimyasal Özelliklerinin İncelenmesi

Yıl 2017, Cilt: 43 Sayı: 1, 41 - 57, 28.04.2017

Öz

Bu çalışmada,
ter-butil4-(4-(3,4-disiyanofenoksi)fenil)piperazin-1-karboksilat grubu ihtiva
eden yeni Zn(II) ve kobalt(II) ftalosiyanin kompleksleri elde edilerek,
yapıları karakterize edilmiştir. Her iki kompleks te, DMF, DMSO, THF ve CHCl3
gibi polar çözücülerde çözünmektedir. Komplekslerin farklı çözücü ve
konsantrasyonlarda agregasyon özellikleri de incelenmiştir. DMF, DMSO ve THF
çözücülerinde 1.10-5 M konsantrasyona kadar her iki kompleksinde
agregasyona uğramadığı, fakat CHCl3 çözücüsünde agregasyona
uğradıkları gözlenmiştir. Ayrıca komplekslerin elektrokimyasal özellikleri
dönüşümlü voltametri ve kare dalga voltametri teknikleriyle incelenmiştir.

Kaynakça

  • Abramczyk H, Brozek-Pluska B, Surmacki J, Tondusson M Freysz E (2017). Photostability of biological systems—Femtosecond dynamics of zinc tetrasulfonated phthalocyanine at cancerous and noncancerous human Breast tissues. Journal of Photochemistry and Photobiology A: Chemistry 332: 10-24.
  • Acar İ, Arslan T, Topçu S, Aktaş A, Şen S Serencam H (2014). Synthesis and electrochemistry of metallophthalocyanines bearing {4-[(2E)-3-(3,4,5-trimethoxyphenyl)prop-2-enoyl]phenoxy} groups. J Organomet Chem 752: 25-29.
  • Arul A, Christy M, Oh MY, Lee YS Nahm KS (2016). Nanofiber Carbon-Supported Phthalocyanine Metal Complexes as Solid Electrocatalysts for Lithium-Air Batteries. Electrochimica Acta 218: 335-344.
  • Belekoukia M, Ploumistos A, Sygellou L, Nouri E, Tasis D Lianos P (2016). Co–N doped reduced graphene oxide used as efficient electrocatalyst for dye-sensitized solar cells. Solar Energy Materials and Solar Cells 157: 591-598.
  • Bilgin A, Ertem B Gök Y (2007). Highly Organosoluble Metal-Free Phthalocyanines and Metallophthalocyanines: Synthesis and Characterization. European Journal of Inorganic Chemistry 2007: 1703-1712.
  • Cong F, Wei Z, Huang Z, Yu F, Liu H, Cui J, Yu H, Chu X, Du X, Xing K Lai J (2015). Characteristic absorption band split of symmetrically tetra-octyloxy metal phthalocyanines. Dyes and Pigments 120: 1-7.
  • Çakır D, Bekircan O Biyiklioglu Z (2015). 1,2,4-Triazole-substituted metallophthalocyanines carrying redox active cobalt(II), manganese(III), titanium(IV) center and their electrochemical studies. Synthetic Metals 201: 18-24.
  • Duchi S, Ramos-Romero S, Dozza B, Guerra-Rebollo M, Cattini L, Ballestri M, Dambruoso P, Guerrini A, Sotgiu G, Varchi G, Lucarelli E Blanco J (2016). Development of near-infrared photoactivable phthalocyanine-loaded nanoparticles to kill tumor cells: An improved tool for photodynamic therapy of solid cancers. Nanomedicine: Nanotechnology, Biology, And Medicine.
  • Franc G, Turrin C-O, Cavero E, Costes J-P, Duhayon C, Caminade A-M Majoral J-P (2009). gem-Bisphosphonate-Ended Group Dendrimers: Design and Gadolinium Complexing Properties. European Journal of Organic Chemistry 2009: 4290-4299.
  • Fukui H, Nakano S, Uno T, Dao Q-D, Saito T, Fujii A, Shimizu Y Ozaki M (2014). Miscibility in binary blends of non-peripheral alkylphthalocyanines and their application for bulk-heterojunction solar cells. Organic Electronics 15: 1189-1196.
  • Goksel M (2016). Synthesis of asymmetric zinc(II) phthalocyanines with two different functional groups & spectroscopic properties and photodynamic activity for photodynamic therapy. Bioorganic & Medicinal Chemistry 24: 4152-4164.
  • Kantar C, Akal H, Kaya B, Islamoğlu F, Türk M Şaşmaz S (2015). Novel phthalocyanines containing resorcinol azo dyes; synthesis, determination of pKa values, antioxidant, antibacterial and anticancer activity. J Organomet Chem 783: 28-39.
  • Karaca H (2016). Redox chemistry, spectroelectrochemistry and catalytic activity of novel synthesized phthalocyanines bearing four schiff bases on the periphery. J Organomet Chem 822: 39-45.
  • Klyamer DD, Sukhikh AS, Krasnov PO, Gromilov SA, Morozova NB Basova TV (2016). Thin films of tetrafluorosubstituted cobalt phthalocyanine: Structure and sensor properties. Applied Surface Science 372: 79-86.
  • Kumar A, Brunet J, Varenne C, Ndiaye A, Pauly A, Penza M Alvisi M (2015). Tetra-tert-butyl copper phthalocyanine-based QCM sensor for toluene detection in air at room temperature. Sensors and Actuators B: Chemical 210: 398-407.
  • Medyouni R, Elgabsi W, Naouali O, Romerosa A, Sulaiman Al-Ayed A, Baklouti L Hamdi N (2016). One-pot three-component Biginelli-type reaction to synthesize 3,4-dihydropyrimidine-2-(1H)-ones catalyzed by Co phthalocyanines: Synthesis, characterization, aggregation behavior and antibacterial activity. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 167: 165-174.
  • Oluwole DO, Uddin I, Prinsloo E Nyokong T (2016). The effects of silica based nanoparticles on the photophysicochemical properties, in vitro dark viability and photodynamic therapy study of zinc monocarboxyphenoxy phthalocyanine. Journal of Photochemistry and Photobiology A: Chemistry 329: 221-231.
  • Ömeroğlu İ, Arslan T, Bıyıklıoğlu Z Tosun G (2014). Novel pthalocyanines bearing 4-ferrocenylphenoxy substituents and their electrochemistry. J Organomet Chem 749: 261-265.
  • Prakash Singh S, Emin S Loukanov A (2010). Synthesis Of Highly Soluble Phthalocyanine From A New Phthalonitrile Under Mild Conditions. Advanced Materials Letters 1: 148-150.
  • Pucelik B, Gurol I, Ahsen V, Dumoulin F Dabrowski JM (2016). Fluorination of phthalocyanine substituents: Improved photoproperties and enhanced photodynamic efficacy after optimal micellar formulations. European Journal of Medicinal Chemistry 124: 284-298.
  • Saka ETb, Acar İ, Biyiklioğ lu Z, Kantekin H Kani İ (2013). Synthesis and characterization of peripheral and non-peripheral substituted Co(II) phthalocyanines and their catalytic activity in styrene oxidation. Synthetic Metals 169: 12-17.
  • Shivashimpi GM, Pandey SS, Hayat A, Fujikawa N, Ogomi Y, Yamaguchi Y Hayase S (2014). Far-red sensitizing octatrifluorobutoxy phosphorous triazatetrabenzocorrole: Synthesis, spectral characterization and aggregation studies. Journal of Photochemistry and Photobiology A: Chemistry 289: 53-59.
  • Shumba M Nyokong T (2016). Development of nanocomposites of phosphorus-nitrogen co-doped graphene oxide nanosheets and nanosized cobalt phthalocyanines for electrocatalysis. Electrochimica Acta 213: 529-539.
  • Sokolov VS, Gavrilchik AN, Kulagina AO, Meshkov IN, Pohl P Gorbunova YG (2016). Voltage-sensitive styryl dyes as singlet oxygen targets on the surface of bilayer lipid membrane. Journal of Photochemistry and Photobiology B, Biology 161: 162-169.
  • Williams G, Sutty S, Klenkler R Aziz H (2014). Renewed interest in metal phthalocyanine donors for small molecule organic solar cells. Solar Energy Materials and Solar Cells 124: 217-226.
  • Wu H, Guo L, Zhang J, Miao S, He C, Wang B, Wu Y Chen Z (2016). Polyelectrolyte-free layer by layer self-assembled multilayer films of cationic phthalocyanine cobalt(II) and carbon nanotube for the efficient detection of 4-nitrophenol. Sensors and Actuators B: Chemical 230: 359-366.
  • Yanık H, Al-Raqa SY, Aljuhani A Durmuş M (2016). The synthesis of novel directly conjugated zinc(II) phthalocyanine via palladium-catalyzed Suzuki–Miyaura cross-coupling reaction and its quaternized water-soluble derivative: Investigation of photophysical and photochemical properties. Dyes and Pigments 134: 531-540.
  • Young JG Onyebuagu W (1988). Synthesis and Characterization of Di-disubstituted Phthalocyanines. The Journal of Organic Chemistry 55: 2155-2159.
  • Zheng B-Y, Zhang H-P, Ke M-R Huang J-D (2013). Synthesis and antifungal photodynamic activities of a series of novel zinc(II) phthalocyanines substituted with piperazinyl moieties. Dyes and Pigments 99: 185-191.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Bölüm Araştırma Makaleleri
Yazarlar

Emine Bayraktaroğlu Bu kişi benim

Pervin Deveci

Yayımlanma Tarihi 28 Nisan 2017
Gönderilme Tarihi 28 Nisan 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 43 Sayı: 1

Kaynak Göster

APA Bayraktaroğlu, E., & Deveci, P. (2017). Piperazin Türevi İçeren Yeni Çinko (II) ve Kobalt (II) Ftalosiyaninlerin Sentezi, Spektroskopik ve Elektrokimyasal Özelliklerinin İncelenmesi. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 43(1), 41-57.
AMA Bayraktaroğlu E, Deveci P. Piperazin Türevi İçeren Yeni Çinko (II) ve Kobalt (II) Ftalosiyaninlerin Sentezi, Spektroskopik ve Elektrokimyasal Özelliklerinin İncelenmesi. sufefd. Nisan 2017;43(1):41-57.
Chicago Bayraktaroğlu, Emine, ve Pervin Deveci. “Piperazin Türevi İçeren Yeni Çinko (II) Ve Kobalt (II) Ftalosiyaninlerin Sentezi, Spektroskopik Ve Elektrokimyasal Özelliklerinin İncelenmesi”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 43, sy. 1 (Nisan 2017): 41-57.
EndNote Bayraktaroğlu E, Deveci P (01 Nisan 2017) Piperazin Türevi İçeren Yeni Çinko (II) ve Kobalt (II) Ftalosiyaninlerin Sentezi, Spektroskopik ve Elektrokimyasal Özelliklerinin İncelenmesi. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 43 1 41–57.
IEEE E. Bayraktaroğlu ve P. Deveci, “Piperazin Türevi İçeren Yeni Çinko (II) ve Kobalt (II) Ftalosiyaninlerin Sentezi, Spektroskopik ve Elektrokimyasal Özelliklerinin İncelenmesi”, sufefd, c. 43, sy. 1, ss. 41–57, 2017.
ISNAD Bayraktaroğlu, Emine - Deveci, Pervin. “Piperazin Türevi İçeren Yeni Çinko (II) Ve Kobalt (II) Ftalosiyaninlerin Sentezi, Spektroskopik Ve Elektrokimyasal Özelliklerinin İncelenmesi”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 43/1 (Nisan 2017), 41-57.
JAMA Bayraktaroğlu E, Deveci P. Piperazin Türevi İçeren Yeni Çinko (II) ve Kobalt (II) Ftalosiyaninlerin Sentezi, Spektroskopik ve Elektrokimyasal Özelliklerinin İncelenmesi. sufefd. 2017;43:41–57.
MLA Bayraktaroğlu, Emine ve Pervin Deveci. “Piperazin Türevi İçeren Yeni Çinko (II) Ve Kobalt (II) Ftalosiyaninlerin Sentezi, Spektroskopik Ve Elektrokimyasal Özelliklerinin İncelenmesi”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, c. 43, sy. 1, 2017, ss. 41-57.
Vancouver Bayraktaroğlu E, Deveci P. Piperazin Türevi İçeren Yeni Çinko (II) ve Kobalt (II) Ftalosiyaninlerin Sentezi, Spektroskopik ve Elektrokimyasal Özelliklerinin İncelenmesi. sufefd. 2017;43(1):41-57.

Dergi Sahibi: Selçuk Üniversitesi Fen Fakültesi Adına Rektör Prof. Dr. Metin AKSOY
Selçuk Üniversitesi Fen Fakültesi Fen Dergisi temel bilimlerde ve diğer uygulamalı bilimlerde özgün sonuçları olan Türkçe ve İngilizce makaleleri kabul eder. Dergide ayrıca güncel yenilikleri içeren derlemelere de yer verilebilir.
Selçuk Üniversitesi Fen Fakültesi Fen Dergisi;
İlk olarak 1981 yılında S.Ü. Fen-Edebiyat Fakültesi Dergisi olarak yayın hayatına başlamış; 1984 yılına kadar (Sayı 1-4) bu adla yayınlanmıştır.
1984 yılında S.Ü. Fen-Edeb. Fak. Fen Dergisi olarak adı değiştirilmiş 5. sayıdan itibaren bu isimle yayınlanmıştır.
3 Aralık 2008 tarih ve 27073 sayılı Resmi Gazetede yayımlanan 2008/4344 sayılı Bakanlar Kurulu Kararı ile Fen-Edebiyat Fakültesi; Fen Fakültesi ve Edebiyat Fakültesi olarak ayrılınca 2009 yılından itibaren dergi Fen Fakültesi Fen Dergisi olarak çıkmıştır.
2016 yılından itibaren DergiPark’ta taranmaktadır.


88x31.png

Selçuk Üniversitesi Fen Fakültesi Fen Dergisi Creative Commons Atıf 4.0 Uluslararası Lisansı (CC BY-NC 4.0) ile lisanslanmıştır.