Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Magnetic Field Effect onthe Quantum Dot with One Electron by Perturbation Method

Yıl 2017, Cilt: 43 Sayı: 1, 75 - 90, 28.04.2017

Öz

In this study we
investigated the effect of an external magnetic field on the electronic
properties of one-electron quantum dot using perturbation method. One electron
quantum dot structure with hydrogen-like impurities at the center confined by
finite parabolic potential was considered. Possible solutions of the
Schrödinger equation of this structure were determined by the Quantum Genetic
Algorithm (QGA), and energy eigenvaules of the quantum dot were calculated by
Hartree-Fock- Roothaan Method (HFR). The wave functions of the system were
constructed by linear combination of Slater Type Orbitals (STO). The
contribution due to the paramagnetism and diamagnetism terms to the ground and
some excited energies states of this structure were investigated depending on
the radius of this structures.

Kaynakça

  • Anderson RL (1962). Experiments on Ge-GaAs heterojunctions. Solid-State Electron 5: 341-344.
  • Arfken G (1985). Mathematical Methods for Physics, Third Edition, Academic Press Inc, Orlando.
  • Castro CF, António CA, Sousa LC (2004). Optimisation of shape and process parameters in metal forging using genetic algorithms. Journal of Materials Processing Technology 146: 356-364.
  • Cho AY, Arthur JR (1975). Molecular beam epitaxy. Progress in Solid State Chemistry 10: 157-191.
  • Cibert J, Petroff PM, Dolan GJ, Pearton SJ, Gossard, AC, English JH (1986). Optically detected carrier confinement to one and zero dimension in GaAs quantum well wires and boxes. Journal Applied Physics Letters 49: 1275-1277.
  • Cakir B, Ozmen A, Sahin M, Yakar Y, Atav U, Yüksel H (2006). Determination of wave functions of a quantum dot using the genetic algorithm. Proceedings of the international conference on modeling and simulation, Konya.
  • Çakır B (2007). Çok elektronlu kuantum nokta yapıların elektronik özelliklerinin incelenmesi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.
  • Cakir B, Ozmen A, Atav U, Yüksel H, Yakar Y (2007). Investigation of electronic structure of a quantum dot using slater-type orbitals and quantum genetic algorithm. International Journal Of Modern Physics C 18: 61-72.
  • Cakir B, Ozmen A, Atav U, Yüksel H, ve Yakar Y (2008). Calculation of electronic structure of a spherical quantum dot using a combination of quantum genetic algorithm and Hartree-Fock-Roothaan method. International Journal of Modern Physics C 19(4): 599-609.
  • Cakir B, Yakar Y, Ozmen A, (2012). Refractive index changes and absorption coefficients in a spherical quantum dot with parabolic potential. Journal of Luminescence 132: 26-59.
  • Cakir B, Yakar Y, Ozmen A (2013). Calculation of oscillator strength and the effects of electric field on energy states, static and dynamic polarizabilities of the confined hydrogen atom. Optics Communications 311: 222–228.
  • Cakir B, Yakar Y, Ozmen A (2015). Linear and nonlinear optical absorption coefficients of two-electron spherical quantum dot with parabolic potential. Physica B 458: 138–143.
  • Dineykhan M, Nazmitdinov RG (1997). Two-electron quantum dot in a magnetic field: analytical results. Phyical Review B 55: 13707-13714.
  • Fal’ko VI, Efetov KB (1994). Statistics of fluctuations of wave functions of chaotic electrons in a quantum dot in an arbitrary magnetic field. Physical Review B 50(15): 11267-11270.
  • Hall RN, Fenner GE, Kingsley JD, Soltys TJ (1962). Coherent light elemission from GaAs junctions. Physical Review Letters 9: 366-368.
  • Halonen V, Chakraborty T, Pietiläinen P (1992). Excitons in a parabolic quantum dot in magnetic fields. Physical Review B 45(11): 5980-5985.
  • Homaifar A, Lai HY, Cormick E (1994). System optimization of turbofan engines using genetic algorithms. Applied Mathematical Modelling 18: 72-83.
  • Kulkarni AJ, Krishnamurthy K, Deshmukh SP (2004). Microstructural optimization of alloys using a genetic algorithm. Materials Science and Engineering A 372: 213-220.
  • Nomura S, Segawa Y, Kobayashi T (1994). Confined excitons in a semiconductor quantum dot in a magnetic field. Physical Review B 49(19): 13571-13582.
  • Oaknin JH, Palacios JJ, Brey L, Tejedor C (1994). Self-consistent Hartree description of N electrons in a quantum dot with a magnetic field. Physical Review B 49(8): 5718-5721.
  • Schrieffer JR (1957). In Semiconductor surface physics. University of Pennsylvania Press, Philadelphia.
  • Sharkey J, Yoo C, Peter AJ (2010). Magnetic field induced diamagnetic susceptibility of a hydrogenic donor in a GaN/AlGaN quantum dot. Superlattices and Microstructures 48(2): 248-255.
  • Shunji A, Masami C, Tachishige H, Shojiro N, Yuki N, Toshiyuki S (1994). Precise measurements of e+e− annihilation at rest into four photons and the search for exotic particles. Physical Review A: 3201.
  • Sahin O, Sayan P, Bulutcu AN (2000). Application of genetic algorithm for determination of mass transfer coefficients. Journal of Crystal Growth 216: 475-482.
  • Temkin H, Dolan GJ, Panish MB, Chu SN (1987). Low-temperature photoluminescence from InGaAs/InP quantum wires and boxes. Applied Physics Letters 50: 413-415.
  • Venugopal V, Narendran TT (1992). A genetic algorithm approach to the machine-component grouping problem with multiple objectives. Computers & Industrial Engineering 22: 469-480.
  • Wojs A, Hawrylak P (1996). Charging and infrared spectroscopy of self-assembled quantum dots in a magnetic field. Physical Review B 53: 10841-10845.
  • Yakar Y, Ozmen A, Cakir B, Yüksel H (2007). Computation of rotation matrices making lined-up to the local Cartesian coordinates. Journal of the Chinese Chemical Society 54(5): 1139-1144.
  • Yakar Y, Cakir B, Ozmen A, (2010a). Calculation of linear and nonlinear optical absorption coefficients of a spherical quantum dot with parabolic potential. Optics Communications 283: 1795-1800.
  • Yakar Y, Cakir B, Ozmen A (2010b). Linear and nonlinear optical properties in spherical quantum dots. Communications in Theoretical Physics 53: 1185–1189.
  • Yakar Y, Cakir B, Ozmen A (2011). Computation of ionization and various excited state energies of helium and helium-like quantum dots. International Journal of Quantum Chemistry 111: 4139-4149.
  • Yakar Y, Cakir B, Ozmen A, (2013a). Computation of relativistic terms in a spherical quantum dot. Journal of Luminescence 134: 778-783.
  • Yakar Y, Cakir B, Ozmen A (2013b). Off-center hydrogenic impurity in spherical quantum dot with parabolic potential. Superlattices and Microstructures 60: 389-397.
  • Yakar Y, Cakir B, Ozmen A (2015a) Linear and nonlinear absorption coefficients of spherical two-electron quantum dot. Computer Physics Communications 188: 88–93.
  • Yakar Y, Cakir B, Ozmen A (2015b). Electronic structure of two-electron quantum dot with parabolic potential. Philosophical Magazine 95: 311–325.

Tek Elektronlu Kuantum Nokta Yapılarda Manyetik Alan Etkisinin Pertürbasyon Yöntemiyle İncelenmesi

Yıl 2017, Cilt: 43 Sayı: 1, 75 - 90, 28.04.2017

Öz

Bu çalışmada dış manyetik
alan içinde tek elektronlu kuantum nokta yapının elektronik özellikleri
pertürbasyon yöntemiyle incelendi. Sonlu derinlikli potansiyelle
sınırlandırılmış merkezinde hidrojen benzeri safsızlık olan tek elektronlu
kuantum nokta yapı ele alındı. Kuantum Genetik Algoritma (KGA) tekniği ile bu
yapı için Schrödinger denkleminin olası çözümleri bulundu. Bu çözümler
kullanılarak tek elektronlu kuantum nokta yapının enerjilerinin beklenen
değerleri Hartree-Fock-Roothaan Metodu (HFR) kullanılarak hesaplandı.
Sistemin dalga
fonksiyonları Slater Tipi Orbitallerin (STO) lineer kombinasyonu şeklinde
kuruldu. Bu nokta yapının taban ve bazı uyarılmış enerji seviyelerine
paramanyetik ve diamanyetik terimden gelen katkılar kuantum nokta yarıçapına
bağlı olarak incelendi.

Kaynakça

  • Anderson RL (1962). Experiments on Ge-GaAs heterojunctions. Solid-State Electron 5: 341-344.
  • Arfken G (1985). Mathematical Methods for Physics, Third Edition, Academic Press Inc, Orlando.
  • Castro CF, António CA, Sousa LC (2004). Optimisation of shape and process parameters in metal forging using genetic algorithms. Journal of Materials Processing Technology 146: 356-364.
  • Cho AY, Arthur JR (1975). Molecular beam epitaxy. Progress in Solid State Chemistry 10: 157-191.
  • Cibert J, Petroff PM, Dolan GJ, Pearton SJ, Gossard, AC, English JH (1986). Optically detected carrier confinement to one and zero dimension in GaAs quantum well wires and boxes. Journal Applied Physics Letters 49: 1275-1277.
  • Cakir B, Ozmen A, Sahin M, Yakar Y, Atav U, Yüksel H (2006). Determination of wave functions of a quantum dot using the genetic algorithm. Proceedings of the international conference on modeling and simulation, Konya.
  • Çakır B (2007). Çok elektronlu kuantum nokta yapıların elektronik özelliklerinin incelenmesi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.
  • Cakir B, Ozmen A, Atav U, Yüksel H, Yakar Y (2007). Investigation of electronic structure of a quantum dot using slater-type orbitals and quantum genetic algorithm. International Journal Of Modern Physics C 18: 61-72.
  • Cakir B, Ozmen A, Atav U, Yüksel H, ve Yakar Y (2008). Calculation of electronic structure of a spherical quantum dot using a combination of quantum genetic algorithm and Hartree-Fock-Roothaan method. International Journal of Modern Physics C 19(4): 599-609.
  • Cakir B, Yakar Y, Ozmen A, (2012). Refractive index changes and absorption coefficients in a spherical quantum dot with parabolic potential. Journal of Luminescence 132: 26-59.
  • Cakir B, Yakar Y, Ozmen A (2013). Calculation of oscillator strength and the effects of electric field on energy states, static and dynamic polarizabilities of the confined hydrogen atom. Optics Communications 311: 222–228.
  • Cakir B, Yakar Y, Ozmen A (2015). Linear and nonlinear optical absorption coefficients of two-electron spherical quantum dot with parabolic potential. Physica B 458: 138–143.
  • Dineykhan M, Nazmitdinov RG (1997). Two-electron quantum dot in a magnetic field: analytical results. Phyical Review B 55: 13707-13714.
  • Fal’ko VI, Efetov KB (1994). Statistics of fluctuations of wave functions of chaotic electrons in a quantum dot in an arbitrary magnetic field. Physical Review B 50(15): 11267-11270.
  • Hall RN, Fenner GE, Kingsley JD, Soltys TJ (1962). Coherent light elemission from GaAs junctions. Physical Review Letters 9: 366-368.
  • Halonen V, Chakraborty T, Pietiläinen P (1992). Excitons in a parabolic quantum dot in magnetic fields. Physical Review B 45(11): 5980-5985.
  • Homaifar A, Lai HY, Cormick E (1994). System optimization of turbofan engines using genetic algorithms. Applied Mathematical Modelling 18: 72-83.
  • Kulkarni AJ, Krishnamurthy K, Deshmukh SP (2004). Microstructural optimization of alloys using a genetic algorithm. Materials Science and Engineering A 372: 213-220.
  • Nomura S, Segawa Y, Kobayashi T (1994). Confined excitons in a semiconductor quantum dot in a magnetic field. Physical Review B 49(19): 13571-13582.
  • Oaknin JH, Palacios JJ, Brey L, Tejedor C (1994). Self-consistent Hartree description of N electrons in a quantum dot with a magnetic field. Physical Review B 49(8): 5718-5721.
  • Schrieffer JR (1957). In Semiconductor surface physics. University of Pennsylvania Press, Philadelphia.
  • Sharkey J, Yoo C, Peter AJ (2010). Magnetic field induced diamagnetic susceptibility of a hydrogenic donor in a GaN/AlGaN quantum dot. Superlattices and Microstructures 48(2): 248-255.
  • Shunji A, Masami C, Tachishige H, Shojiro N, Yuki N, Toshiyuki S (1994). Precise measurements of e+e− annihilation at rest into four photons and the search for exotic particles. Physical Review A: 3201.
  • Sahin O, Sayan P, Bulutcu AN (2000). Application of genetic algorithm for determination of mass transfer coefficients. Journal of Crystal Growth 216: 475-482.
  • Temkin H, Dolan GJ, Panish MB, Chu SN (1987). Low-temperature photoluminescence from InGaAs/InP quantum wires and boxes. Applied Physics Letters 50: 413-415.
  • Venugopal V, Narendran TT (1992). A genetic algorithm approach to the machine-component grouping problem with multiple objectives. Computers & Industrial Engineering 22: 469-480.
  • Wojs A, Hawrylak P (1996). Charging and infrared spectroscopy of self-assembled quantum dots in a magnetic field. Physical Review B 53: 10841-10845.
  • Yakar Y, Ozmen A, Cakir B, Yüksel H (2007). Computation of rotation matrices making lined-up to the local Cartesian coordinates. Journal of the Chinese Chemical Society 54(5): 1139-1144.
  • Yakar Y, Cakir B, Ozmen A, (2010a). Calculation of linear and nonlinear optical absorption coefficients of a spherical quantum dot with parabolic potential. Optics Communications 283: 1795-1800.
  • Yakar Y, Cakir B, Ozmen A (2010b). Linear and nonlinear optical properties in spherical quantum dots. Communications in Theoretical Physics 53: 1185–1189.
  • Yakar Y, Cakir B, Ozmen A (2011). Computation of ionization and various excited state energies of helium and helium-like quantum dots. International Journal of Quantum Chemistry 111: 4139-4149.
  • Yakar Y, Cakir B, Ozmen A, (2013a). Computation of relativistic terms in a spherical quantum dot. Journal of Luminescence 134: 778-783.
  • Yakar Y, Cakir B, Ozmen A (2013b). Off-center hydrogenic impurity in spherical quantum dot with parabolic potential. Superlattices and Microstructures 60: 389-397.
  • Yakar Y, Cakir B, Ozmen A (2015a) Linear and nonlinear absorption coefficients of spherical two-electron quantum dot. Computer Physics Communications 188: 88–93.
  • Yakar Y, Cakir B, Ozmen A (2015b). Electronic structure of two-electron quantum dot with parabolic potential. Philosophical Magazine 95: 311–325.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Bölüm Araştırma Makaleleri
Yazarlar

Mustafa Doğan Sarıkaya

Bekir Çakır Bu kişi benim

Ayhan Özmen Bu kişi benim

Yusuf Yakar Bu kişi benim

Yayımlanma Tarihi 28 Nisan 2017
Gönderilme Tarihi 28 Nisan 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 43 Sayı: 1

Kaynak Göster

APA Sarıkaya, M. D., Çakır, B., Özmen, A., Yakar, Y. (2017). Tek Elektronlu Kuantum Nokta Yapılarda Manyetik Alan Etkisinin Pertürbasyon Yöntemiyle İncelenmesi. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 43(1), 75-90.
AMA Sarıkaya MD, Çakır B, Özmen A, Yakar Y. Tek Elektronlu Kuantum Nokta Yapılarda Manyetik Alan Etkisinin Pertürbasyon Yöntemiyle İncelenmesi. sufefd. Nisan 2017;43(1):75-90.
Chicago Sarıkaya, Mustafa Doğan, Bekir Çakır, Ayhan Özmen, ve Yusuf Yakar. “Tek Elektronlu Kuantum Nokta Yapılarda Manyetik Alan Etkisinin Pertürbasyon Yöntemiyle İncelenmesi”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 43, sy. 1 (Nisan 2017): 75-90.
EndNote Sarıkaya MD, Çakır B, Özmen A, Yakar Y (01 Nisan 2017) Tek Elektronlu Kuantum Nokta Yapılarda Manyetik Alan Etkisinin Pertürbasyon Yöntemiyle İncelenmesi. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 43 1 75–90.
IEEE M. D. Sarıkaya, B. Çakır, A. Özmen, ve Y. Yakar, “Tek Elektronlu Kuantum Nokta Yapılarda Manyetik Alan Etkisinin Pertürbasyon Yöntemiyle İncelenmesi”, sufefd, c. 43, sy. 1, ss. 75–90, 2017.
ISNAD Sarıkaya, Mustafa Doğan vd. “Tek Elektronlu Kuantum Nokta Yapılarda Manyetik Alan Etkisinin Pertürbasyon Yöntemiyle İncelenmesi”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 43/1 (Nisan 2017), 75-90.
JAMA Sarıkaya MD, Çakır B, Özmen A, Yakar Y. Tek Elektronlu Kuantum Nokta Yapılarda Manyetik Alan Etkisinin Pertürbasyon Yöntemiyle İncelenmesi. sufefd. 2017;43:75–90.
MLA Sarıkaya, Mustafa Doğan vd. “Tek Elektronlu Kuantum Nokta Yapılarda Manyetik Alan Etkisinin Pertürbasyon Yöntemiyle İncelenmesi”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, c. 43, sy. 1, 2017, ss. 75-90.
Vancouver Sarıkaya MD, Çakır B, Özmen A, Yakar Y. Tek Elektronlu Kuantum Nokta Yapılarda Manyetik Alan Etkisinin Pertürbasyon Yöntemiyle İncelenmesi. sufefd. 2017;43(1):75-90.

Dergi Sahibi: Selçuk Üniversitesi Fen Fakültesi Adına Rektör Prof. Dr. Metin AKSOY
Selçuk Üniversitesi Fen Fakültesi Fen Dergisi temel bilimlerde ve diğer uygulamalı bilimlerde özgün sonuçları olan Türkçe ve İngilizce makaleleri kabul eder. Dergide ayrıca güncel yenilikleri içeren derlemelere de yer verilebilir.
Selçuk Üniversitesi Fen Fakültesi Fen Dergisi;
İlk olarak 1981 yılında S.Ü. Fen-Edebiyat Fakültesi Dergisi olarak yayın hayatına başlamış; 1984 yılına kadar (Sayı 1-4) bu adla yayınlanmıştır.
1984 yılında S.Ü. Fen-Edeb. Fak. Fen Dergisi olarak adı değiştirilmiş 5. sayıdan itibaren bu isimle yayınlanmıştır.
3 Aralık 2008 tarih ve 27073 sayılı Resmi Gazetede yayımlanan 2008/4344 sayılı Bakanlar Kurulu Kararı ile Fen-Edebiyat Fakültesi; Fen Fakültesi ve Edebiyat Fakültesi olarak ayrılınca 2009 yılından itibaren dergi Fen Fakültesi Fen Dergisi olarak çıkmıştır.
2016 yılından itibaren DergiPark’ta taranmaktadır.


88x31.png

Selçuk Üniversitesi Fen Fakültesi Fen Dergisi Creative Commons Atıf 4.0 Uluslararası Lisansı (CC BY-NC 4.0) ile lisanslanmıştır.