Araştırma Makalesi
BibTex RIS Kaynak Göster

Room Temperature BTX Sensor Based on Zinc Phthalocyanine Thin Film

Yıl 2019, Cilt: 45 Sayı: 2, 136 - 148, 30.10.2019
https://doi.org/10.35238/sufefd.582395

Öz

This study deals with comparing
interaction mechanisms of 2(3), 9(10), 16(17),
23(24)-Tetra-((5-bromo-2-methoxyphenyl)diazenyl) phthalocyaninatozinc(II) (zinc phthalocyanine) thin film with
versatile chemical vapours: stable and electron donating aromatic vapours
namely; benzene, toluene and xylene. The variation in electrical conductivity
of zinc phthalocyanine is used
as an indicator of the BTX- zinc
phthalocyanine interactions. It was found that, unexpectedly, the exposure
of the sensor surface to BTX vapors cause an increase in sensor current. It was
observed for low concentrations of BTX vapours that, zinc phthalocyanine based sensor exhibits maximum and minimum
sensitivities towards toluene and xylene vapors, respectively. However, the
maximum and minimum sensitivities of the sensor gradually changes from xylene
to benzene for high concentrations of BTX vapors. These findings was concluded
in the framework of reaction activation energy and the presence of some water dissociated
species, such as H+ or OH.

Destekleyen Kurum

Yıldız Technical University Research Projects Coordination

Proje Numarası

2015-01-01-GEP01

Kaynakça

  • Bearzotti A, Macagnano A, Papa P, Venditti I, Zampetti E (2017). A study of a QCM sensor based on pentacene for the detection of BTXvapors in air. Sensors and Actuators 240: 1160–1164.
  • Im J, Sterner ES, Swager TM (2016). Integrated Gas Sensing System of SWCNT and Cellulose Polymer Concentrator for Benzene, Toluene, and Xylenes. Sensors 16: 183.
  • Ueno Y, Horiuchi T, Tomita M, Niwa O, Zhou H, Yamada T, Honma I (2002). Separate Detection of BTX Mixture Gas by a Microfluidic Device Using a Function of Nanosized Pores of Mesoporous Silica Adsorbent. Analytical Chemistry 74: 5257-5262.
  • Occupational Safety and Health Administration (OSHA Standard) 29 CFR 1910.1000.
  • Nizamidin P, Yimit A, Nurulla I, Itoh K (2012). Optical Waveguide BTX Gas Sensor Based on Yttrium-Doped Lithium Iron Phosphate Thin Film. ISRN Spectroscopy 2012: 1-6.
  • Kadir R, Yimit A, Ablat H, Mahmut M, Itoh K (2009). Optical Waveguide BTX Gas Sensor Based on Polyacrylate Resin Thin Film. Environmental Science and Technology 43: 5113-5116.
  • Sun Y, Cao X, Liu Y, Wang N, He R (2014). Research on benzene, toluene and dimethyl benzene detection based on a cataluminescence sensor. Luminescence 29: 122-126.
  • Rushi AD, Datta KP, Ghosh PS, Mulchandani A, Shirsat MD (2014). Selective discrimination among benzene, toluene, and xylene: 497 probing metalloporphyrin-functionalized single-walled carbon 498 nanotube-based field effect transistors. The Journal of Physical Chemistry C 18: 24034-2404.
  • Kim JH, Wu P, Kim HW, Kim SS (2016). Highly Selective Sensing of CO, C6H6, and C7H8 Gases by Catalytic Functionalization with Metal Nanoparticle. ACS Applied Material Interfaces 8: 7173-7183.
  • Geetha SA, Abhishek M, Albert VD, Vladimir PO, Kris AB, Norman AS, Mulpuri VR (2011). Highly selective GaN-nanowire/TiO2-nanocluster hybrid sensors for detection of benzene and related environment pollutants. Nanotechnology 22: 295503.
  • Sui L, Zhang X, Cheng X, Wang P, Xu Y, Gao S, Zhao H, Huo L (2017). Au-Loaded Hierarchical MoO3 Hollow Spheres with Enhanced Gas-Sensing Performance for the Detection of BTX (Benzene, Toluene, And Xylene) And the Sensing Mechanism. ACS Applied Material Interfaces 9 (2): 1661-1670.
  • Mirzaei A, Kim J, Kim HW, Kim SS. Resistive-based gas sensors for detection of benzene, tolueneand xylene (BTX) gases: A review. Journal of Physical Chemistry C 2018; 6: 4342-4370,
  • Şahin S, Altun S, Altındal A, Odabaş Z (2015). Synthesis of novel azo-bridged phthalocyanines and their toluene vapour sensing properties. Sensors and Actuators B 206: 601–608.
  • Altın Ş, Dumludağ F, Oruç Ç, Altındal A (2015). Influence of humidity on kinetics of xylene adsorption onto ball-type hexanuclear metallophthalocyanine thin film. Microelectronic Engineering 134: 7–13.
  • Yüzüak MM, Altun S, Altındal A, OdabaşZ (2015). Dielectric properties and electronic absorption: a comparison of novel azo- and oxo-bridged phthalocyanines. Dalton Transactions 44: 1397–1405.
  • Koch EE, Grobman WD (1977). Ultraviolet photoemission studies of phthalocyanines. The Journal of Chemical Physics 67: 837-839.
  • Pope M (1962). Surface Ionization Energies of Organic Compounds: Phthalocyanines. The Journal of Chemical Physics 36: 2810-2811.
  • Mirzaei A, Kim J, Kim HW, Kim SS (2018). Resistive-based gas sensors for detection of benzene, toluene and xylene (BTX) gases: A review. Journal of Materials Chemistry C 6: 4342-4370.
  • Shen Z, Zhang X, Ma X, Mi R, Chen Y, Ruan S (2018). The significant improvement for BTX (benzene, toluene and xylene) sensing performance based on Au-decorated hierarchical ZnO porousrose-like architecturesZ. Sensors and Actuators B: Chemical 262: 86-94.
  • Ridhi R, Saini GSS, Tripathi SK (2017). Sensing of Organic Vapours by Sulfonated Copper Phthalocyanine Salt Thin Films. Materials Focus 6: 386-393.

Oda Sıcaklığında Çinko Ftalosiyaninin BTX Gazlarına Duyarlılığı

Yıl 2019, Cilt: 45 Sayı: 2, 136 - 148, 30.10.2019
https://doi.org/10.35238/sufefd.582395

Öz

Bu çalışmada; benzen, toluen ve ksilen gibi elektron veren stabil aromatik
buharların
2(3), 9(10), 16(17), 23(24)-Tetra-((5-bromo-2-methoxyphenyl)diazenyl)
phthalocyaninatozinc(II) (Çinko ftalosiyanine) ince film mekanizması ile
etkileşimi karşılaştırılmıştır. Çinko ftalosiyanine’in elektriksel
iletkenlikteki değişimi, BTX- çinko ftalosiyanine
etkileşiminin bir göstergesi olarak kullanılır. Sensör yüzeyinin BTX
buharlarına maruz kalması, sensör akımında beklenmedik bir artışa neden
olmaktadır. Düşük BTX buhar konsantrasyonlarında, çinko ftalosiyanine sensörü toluen buharlarına maksimum, ksilen
buharına minimum hassasiyet göstermektedir. Ancak, yüksek BTX buhar
konsantrsanyonlarında ksilen için maksimum, benzene için minimum duyarlılık
görülmüştür. Bu bulgular, H+ ve OH gibi bazı ayrışmış su
moleküllerinin varlığı ve reaksiyon aktivasyon enerjisinin sonucudur.

Proje Numarası

2015-01-01-GEP01

Kaynakça

  • Bearzotti A, Macagnano A, Papa P, Venditti I, Zampetti E (2017). A study of a QCM sensor based on pentacene for the detection of BTXvapors in air. Sensors and Actuators 240: 1160–1164.
  • Im J, Sterner ES, Swager TM (2016). Integrated Gas Sensing System of SWCNT and Cellulose Polymer Concentrator for Benzene, Toluene, and Xylenes. Sensors 16: 183.
  • Ueno Y, Horiuchi T, Tomita M, Niwa O, Zhou H, Yamada T, Honma I (2002). Separate Detection of BTX Mixture Gas by a Microfluidic Device Using a Function of Nanosized Pores of Mesoporous Silica Adsorbent. Analytical Chemistry 74: 5257-5262.
  • Occupational Safety and Health Administration (OSHA Standard) 29 CFR 1910.1000.
  • Nizamidin P, Yimit A, Nurulla I, Itoh K (2012). Optical Waveguide BTX Gas Sensor Based on Yttrium-Doped Lithium Iron Phosphate Thin Film. ISRN Spectroscopy 2012: 1-6.
  • Kadir R, Yimit A, Ablat H, Mahmut M, Itoh K (2009). Optical Waveguide BTX Gas Sensor Based on Polyacrylate Resin Thin Film. Environmental Science and Technology 43: 5113-5116.
  • Sun Y, Cao X, Liu Y, Wang N, He R (2014). Research on benzene, toluene and dimethyl benzene detection based on a cataluminescence sensor. Luminescence 29: 122-126.
  • Rushi AD, Datta KP, Ghosh PS, Mulchandani A, Shirsat MD (2014). Selective discrimination among benzene, toluene, and xylene: 497 probing metalloporphyrin-functionalized single-walled carbon 498 nanotube-based field effect transistors. The Journal of Physical Chemistry C 18: 24034-2404.
  • Kim JH, Wu P, Kim HW, Kim SS (2016). Highly Selective Sensing of CO, C6H6, and C7H8 Gases by Catalytic Functionalization with Metal Nanoparticle. ACS Applied Material Interfaces 8: 7173-7183.
  • Geetha SA, Abhishek M, Albert VD, Vladimir PO, Kris AB, Norman AS, Mulpuri VR (2011). Highly selective GaN-nanowire/TiO2-nanocluster hybrid sensors for detection of benzene and related environment pollutants. Nanotechnology 22: 295503.
  • Sui L, Zhang X, Cheng X, Wang P, Xu Y, Gao S, Zhao H, Huo L (2017). Au-Loaded Hierarchical MoO3 Hollow Spheres with Enhanced Gas-Sensing Performance for the Detection of BTX (Benzene, Toluene, And Xylene) And the Sensing Mechanism. ACS Applied Material Interfaces 9 (2): 1661-1670.
  • Mirzaei A, Kim J, Kim HW, Kim SS. Resistive-based gas sensors for detection of benzene, tolueneand xylene (BTX) gases: A review. Journal of Physical Chemistry C 2018; 6: 4342-4370,
  • Şahin S, Altun S, Altındal A, Odabaş Z (2015). Synthesis of novel azo-bridged phthalocyanines and their toluene vapour sensing properties. Sensors and Actuators B 206: 601–608.
  • Altın Ş, Dumludağ F, Oruç Ç, Altındal A (2015). Influence of humidity on kinetics of xylene adsorption onto ball-type hexanuclear metallophthalocyanine thin film. Microelectronic Engineering 134: 7–13.
  • Yüzüak MM, Altun S, Altındal A, OdabaşZ (2015). Dielectric properties and electronic absorption: a comparison of novel azo- and oxo-bridged phthalocyanines. Dalton Transactions 44: 1397–1405.
  • Koch EE, Grobman WD (1977). Ultraviolet photoemission studies of phthalocyanines. The Journal of Chemical Physics 67: 837-839.
  • Pope M (1962). Surface Ionization Energies of Organic Compounds: Phthalocyanines. The Journal of Chemical Physics 36: 2810-2811.
  • Mirzaei A, Kim J, Kim HW, Kim SS (2018). Resistive-based gas sensors for detection of benzene, toluene and xylene (BTX) gases: A review. Journal of Materials Chemistry C 6: 4342-4370.
  • Shen Z, Zhang X, Ma X, Mi R, Chen Y, Ruan S (2018). The significant improvement for BTX (benzene, toluene and xylene) sensing performance based on Au-decorated hierarchical ZnO porousrose-like architecturesZ. Sensors and Actuators B: Chemical 262: 86-94.
  • Ridhi R, Saini GSS, Tripathi SK (2017). Sensing of Organic Vapours by Sulfonated Copper Phthalocyanine Salt Thin Films. Materials Focus 6: 386-393.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Bilimleri
Bölüm Araştırma Makaleleri
Yazarlar

Asuman Aşıkoğlu Bozkurt 0000-0002-6981-5780

Proje Numarası 2015-01-01-GEP01
Yayımlanma Tarihi 30 Ekim 2019
Gönderilme Tarihi 26 Haziran 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 45 Sayı: 2

Kaynak Göster

APA Aşıkoğlu Bozkurt, A. (2019). Room Temperature BTX Sensor Based on Zinc Phthalocyanine Thin Film. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 45(2), 136-148. https://doi.org/10.35238/sufefd.582395
AMA Aşıkoğlu Bozkurt A. Room Temperature BTX Sensor Based on Zinc Phthalocyanine Thin Film. sufefd. Ekim 2019;45(2):136-148. doi:10.35238/sufefd.582395
Chicago Aşıkoğlu Bozkurt, Asuman. “Room Temperature BTX Sensor Based on Zinc Phthalocyanine Thin Film”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 45, sy. 2 (Ekim 2019): 136-48. https://doi.org/10.35238/sufefd.582395.
EndNote Aşıkoğlu Bozkurt A (01 Ekim 2019) Room Temperature BTX Sensor Based on Zinc Phthalocyanine Thin Film. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 45 2 136–148.
IEEE A. Aşıkoğlu Bozkurt, “Room Temperature BTX Sensor Based on Zinc Phthalocyanine Thin Film”, sufefd, c. 45, sy. 2, ss. 136–148, 2019, doi: 10.35238/sufefd.582395.
ISNAD Aşıkoğlu Bozkurt, Asuman. “Room Temperature BTX Sensor Based on Zinc Phthalocyanine Thin Film”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 45/2 (Ekim 2019), 136-148. https://doi.org/10.35238/sufefd.582395.
JAMA Aşıkoğlu Bozkurt A. Room Temperature BTX Sensor Based on Zinc Phthalocyanine Thin Film. sufefd. 2019;45:136–148.
MLA Aşıkoğlu Bozkurt, Asuman. “Room Temperature BTX Sensor Based on Zinc Phthalocyanine Thin Film”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, c. 45, sy. 2, 2019, ss. 136-48, doi:10.35238/sufefd.582395.
Vancouver Aşıkoğlu Bozkurt A. Room Temperature BTX Sensor Based on Zinc Phthalocyanine Thin Film. sufefd. 2019;45(2):136-48.

Dergi Sahibi: Selçuk Üniversitesi Fen Fakültesi Adına Rektör Prof. Dr. Metin AKSOY
Selçuk Üniversitesi Fen Fakültesi Fen Dergisi temel bilimlerde ve diğer uygulamalı bilimlerde özgün sonuçları olan Türkçe ve İngilizce makaleleri kabul eder. Dergide ayrıca güncel yenilikleri içeren derlemelere de yer verilebilir.
Selçuk Üniversitesi Fen Fakültesi Fen Dergisi;
İlk olarak 1981 yılında S.Ü. Fen-Edebiyat Fakültesi Dergisi olarak yayın hayatına başlamış; 1984 yılına kadar (Sayı 1-4) bu adla yayınlanmıştır.
1984 yılında S.Ü. Fen-Edeb. Fak. Fen Dergisi olarak adı değiştirilmiş 5. sayıdan itibaren bu isimle yayınlanmıştır.
3 Aralık 2008 tarih ve 27073 sayılı Resmi Gazetede yayımlanan 2008/4344 sayılı Bakanlar Kurulu Kararı ile Fen-Edebiyat Fakültesi; Fen Fakültesi ve Edebiyat Fakültesi olarak ayrılınca 2009 yılından itibaren dergi Fen Fakültesi Fen Dergisi olarak çıkmıştır.
2016 yılından itibaren DergiPark’ta taranmaktadır.


88x31.png

Selçuk Üniversitesi Fen Fakültesi Fen Dergisi Creative Commons Atıf 4.0 Uluslararası Lisansı (CC BY-NC 4.0) ile lisanslanmıştır.