Ionic Conductivity Measurements of Ga-doped Li2MnO3 Cathode Material
Yıl 2021,
Cilt: 47 Sayı: 2, 150 - 157, 30.10.2021
Hadi Baveghar
Gültekin Çelik
,
Serdar Dalkılıç
Öz
In this study, 1% and 3% Ga doping was applied to the Li2MnO3 cathode material. The effects of small amounts of doping on the crystal structure and conductivity properties of the new cathode material were investigated. The materials were prepared by mechanical grinding method using a ball mill. After the samples were baked and re-grinded at different temperatures, they were turned into pellets. XRD and SEM images of the produced powder samples were examined. The prepared samples were coated with silver paste and electrochemical impedance spectroscopy measurements were taken for conductivity measurements. The results obtained showed that the additives increased the conductivity of the cathode material.
Kaynakça
- Baveghar H (2019). Katkılı Li2MnO3 katot nano malzemelerin sentezi ve karakterizasyonu.Yüksek Lisans Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya, 67-68.
- Beran L (2018). Strong growth to drive lithium-ion battery market, rechargeable battery special report. https://omdia.tech.informa.com/OM004697/Lithium-ion-batteries-and-distributed-compute-drive-UPS-market-momentum (Erişim tarihi: 17.5.2021)
- Guerrini N, Jin L, Lozano J, Luo K, Sobkowiak A, Tsuruta K, Massel F, Duda L, Roberts M, Bruce P (2020). Charging Mechanism of Li2MnO3. Chemistry of Materials 32; 3733-3740.
- Leifer N, Matlahov I, Erickson E, Sclar H, Schipper F, Shin J, Erk C, Chesneau F, Lampert J, Markovsky B, Aurbach D, Goobes G (2018). Ammonia treatment of 0.35Li2MnO3·0.65LiNi0.35Mn0.45Co0.20O2 material: insights from solid-state nmr analysis. The Journal of Physical Chemistry 122; 3773-3779.
- Nakamura H, Park G, Lee Y, Yoshio M (2009). The important role of additives for improved lithium ion battery safety. Journal of Power Sources 189; 602-606.
- Scrosati B, Hassoun J, Sun YK (2011). Lithium-ion batteries. a look into the future. Energy &Environmental Science 4; 3287-3295.
- Thackeray MM (1999). Spinel electrodes for lithium batteries. Journal of American Ceramic Society 82; 3347-3354.
- Yang Y and Xia Y (2016). Suppressing the phase transition of the layered Ni-rich oxide cathode during high-voltage cycling by introducing low-content Li2MnO3. American Chemical Society 1297-1308.
- Ye D, Zeng G, Nogita K, Ozawa K, Hankel M, Searles D, Wang L (2015). Understanding the origin of Li2MnO3 activation in Li-rich cathode materials for lithium-ion batteries. Advanced Material 25; 7488-7496.
- Yılmaz, S (2008). Dy2O3, Eu2O3, Sm2O3 Katkılanmış Β-Bi2O3 tipi katı elektrolitlerin sentezlenmesi, karakterizasyonları ve katı hal oksijen iyonik iletkenliklerinin araştırılması. Doktora Tezi. Gazi Üniversitesi Fen Bilimleri Enstitüsü. Ankara. 22-29.
- Yin Z, Peng X, Li J, Shen C, Deng Y, Wu ZT, Zhang Q, Mo Y, Wang K, Huang L, Zheng H, Sun S (2019). Revealing of the activation pathway and cathode electrolyte interphase evolution of Li-rich 0.5Li2MnO3·0.5LiNi0.3Co0.3Mn0.4O2 cathode by in situ electrochemical quartz crystal microbalance. American Chemical Society 16214-16222.
Ga katkılı Li2MnO3 Katot Malzemesinin İyonik İletkenlik Ölçümleri
Yıl 2021,
Cilt: 47 Sayı: 2, 150 - 157, 30.10.2021
Hadi Baveghar
Gültekin Çelik
,
Serdar Dalkılıç
Öz
Bu çalışmada Li2MnO3 katot malzemesine %1 ve %3 oranlarında Ga katkılaması yapılmıştır. Yapılan küçük oranlardaki katkılamaların yeni katot malzemesinin kristal yapısına ve iletkenlik özelliklerine etkileri incelenmiştir. Malzemeler bilyalı öğütücü kullanılarak mekanik öğütme yöntemiyle hazırlanmıştır. Numuneler farklı sıcaklıklarda sinterlenip yeniden öğütüldükten sonra pelet haline getirilmiştir. Üretilen toz numunelerin XRD ve SEM görüntüleri incelenmiştir. Hazırlanan peletler gümüş pastayla kaplanmıştır. Kaplanan peletlerin iletkenlikleri, elektrokimyasal empedans spektroskopisi kullanılarak ölçülmüştür. Elde edilen sonuçlar yapılan Ga katkılarının katot malzemenin iletkenliğini arttırdığını göstermiştir.
Kaynakça
- Baveghar H (2019). Katkılı Li2MnO3 katot nano malzemelerin sentezi ve karakterizasyonu.Yüksek Lisans Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya, 67-68.
- Beran L (2018). Strong growth to drive lithium-ion battery market, rechargeable battery special report. https://omdia.tech.informa.com/OM004697/Lithium-ion-batteries-and-distributed-compute-drive-UPS-market-momentum (Erişim tarihi: 17.5.2021)
- Guerrini N, Jin L, Lozano J, Luo K, Sobkowiak A, Tsuruta K, Massel F, Duda L, Roberts M, Bruce P (2020). Charging Mechanism of Li2MnO3. Chemistry of Materials 32; 3733-3740.
- Leifer N, Matlahov I, Erickson E, Sclar H, Schipper F, Shin J, Erk C, Chesneau F, Lampert J, Markovsky B, Aurbach D, Goobes G (2018). Ammonia treatment of 0.35Li2MnO3·0.65LiNi0.35Mn0.45Co0.20O2 material: insights from solid-state nmr analysis. The Journal of Physical Chemistry 122; 3773-3779.
- Nakamura H, Park G, Lee Y, Yoshio M (2009). The important role of additives for improved lithium ion battery safety. Journal of Power Sources 189; 602-606.
- Scrosati B, Hassoun J, Sun YK (2011). Lithium-ion batteries. a look into the future. Energy &Environmental Science 4; 3287-3295.
- Thackeray MM (1999). Spinel electrodes for lithium batteries. Journal of American Ceramic Society 82; 3347-3354.
- Yang Y and Xia Y (2016). Suppressing the phase transition of the layered Ni-rich oxide cathode during high-voltage cycling by introducing low-content Li2MnO3. American Chemical Society 1297-1308.
- Ye D, Zeng G, Nogita K, Ozawa K, Hankel M, Searles D, Wang L (2015). Understanding the origin of Li2MnO3 activation in Li-rich cathode materials for lithium-ion batteries. Advanced Material 25; 7488-7496.
- Yılmaz, S (2008). Dy2O3, Eu2O3, Sm2O3 Katkılanmış Β-Bi2O3 tipi katı elektrolitlerin sentezlenmesi, karakterizasyonları ve katı hal oksijen iyonik iletkenliklerinin araştırılması. Doktora Tezi. Gazi Üniversitesi Fen Bilimleri Enstitüsü. Ankara. 22-29.
- Yin Z, Peng X, Li J, Shen C, Deng Y, Wu ZT, Zhang Q, Mo Y, Wang K, Huang L, Zheng H, Sun S (2019). Revealing of the activation pathway and cathode electrolyte interphase evolution of Li-rich 0.5Li2MnO3·0.5LiNi0.3Co0.3Mn0.4O2 cathode by in situ electrochemical quartz crystal microbalance. American Chemical Society 16214-16222.