BibTex RIS Kaynak Göster

FİLAMAN SARIM KOMPOZİT BORULARIN DÜŞÜK HIZLI DARBE DAVRANIŞININ SİMÜLASYONU

Yıl 2011, Cilt: 26 Sayı: 2, 55 - 66, 01.06.2011

Öz

Bu çalışmada düşük hızlı darbeye maruz E-camı/epoksi filaman sarım kompozit boruların dinamik cevabı araştırılmıştır. Uygulanacak yöntem Sonlu Elemanlar Yöntemi olup bu çalışma bilgisayar analizi sonuçlarının yorumlanmasına dayanmaktadır. Filaman sarım kompozit boru ve darbe olayı modellenmiştir. Benzeşim için ANSYS-LSDyna ticari yazılımı kullanılmıştır. Benzeşimde kullanılacak vurucu 24 mm çapında, küresel uçlu bir geometriye sahiptir. Vurucu kütlesi 6,35 kg’ dır. İnceleme 2, 2,5 ve 3 m/s’lik çarpma hızlarında yapılmıştır. Çalışmalarda [+55°,−55°]3 , [+55°,−55°]4 , ve [+55°,−55°]5 olmak üzere 6, 8 ve 10 tabakalı E-camı/epoksi malzemeden 72 mm iç çapında, bir V-yatağında dönmeden durabilen kompozit borular kullanılmış ve her bir borunun enine darbe yapılmıştır. Elde edilen bu veriler doğrultusunda, malzeme üzerine darbe esnasındaki kuvvet-zaman diyagramı, darbe enerjisi-yutulan enerji değişimi, hız-zaman değişimi grafikleri elde edilmiştir.

Kaynakça

  • Abatan, A., Hu, H. and Olowokere, D., 1998, “Impact Resistance Modeling of Hybrid Laminated Composites”, Journal of Thermoplastic Composite Materials, 11, 249-260.
  • Abrate, S., 1998, Impact on Composite Structures, Cambridge, Cambridge University Press. 135-160.
  • ANSYS® Release 12.1, ANSYS, Inc. Yardım dosyaları
  • Aslan, Z., Karakuzu, R. and Okutan, B., 2003, “The Response of Laminated Composite Plates under Low-Velocity Impact Loading”, Composite Structures, 59, 119-126.
  • Aslan, Z. and Karakuzu, R., 2002, “Transient Dynamic Analysis of Laminated Composite Plate Subjected to Low-Velocity Impact”, Mathematical and Computational Applications, Vol. 7, No.1, 73-82.
  • Baucom, J.N., and Zikry, M.A., 2005, “Low Velocity Impact Damage Progression in Woven E-glass Composite Systems”, Composites, 36, 658-664.
  • Belingardi, G., Vadori, R., 2002, “Low Velocity Impact Tests of Laminate Glass-Fiber-Epoxy Matrix Composite Material Plates”, International Journal of Impact Engineering, 27, 213-229.
  • Belingardi, G., Vadori, R., 2003, “Influence of Laminate Thickness in Low Velocity Impact Behavior of Composite Material Plate”, Composite Structures, 61, 27-38.
  • Christoforou, A.P. and Yiğit, A.S., 1996, “Impact of Composite Structures-The Momentum Balance Method”, Journal of Composite Materials, 30,1068-1086.
  • Dobyns, A.L., 1981, “Analysis of Simply Supported Orthotropic Plates Subjected to Static and Dynamic Loads”, AIAA Journal, 19,642-680.
  • Gibson R.F., 1994, Principles of Composite Material Mechanics, Mc-Graw Hill. 392-393.
  • Gong, S.W. and Lam, K.Y., 1999, “Transient Response of Stiffened Composite Plates Subjected to Low Velocity Impact”, Composites Part B, 30, 473-484.
  • Goo, N.S. and Kim, S.J., 1997, “Dynamic Contact Analysis of Laminated Composite Plates under Low Velocity Impact” AIAA Journal, 35, 1518-1521.
  • Güvensoy, S., 2010, Filaman Sarım Kompozit Boruların Düşük Hızlı Darbe Davranışının Simülasyonu, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Konya.
  • Husseinzadeh, R., Shokrieh, M.M. and Lessard, L., 2006, “Damage Behavior of Fiber Reinforced Composite Plates Subjected to Drop Weight Impacts”, Composite Science and Technology, 66, 6168.
  • Kim, J.K. and Kang, K.W., 2001, “An Analysis of Impact Force in Plain-weave Glass-epoxy Composite Plates Subjected to Transverse Impact”, Composite Science and Technology, 61, 135-143.
  • Lal, K.M., 1982, “Prediction of Residual Tensile Strength of Transversely Impacted Composite Laminates”, Structure Solid Mech. NASA CP-2245, pp.97-111.
  • Lal, K.M., 1983, “Low Velocity Transverse Impact Behavior of 8-Ply Graphite-Epoxy Laminates” Journal of Reinforced Plastics and Composites, 2, 216-225.
  • Lee, L.J., Huang, K.Y. and Fann, Y.J., 1993, “Dynamic Responses of Composite Sandwich Plate Impacted By Rigid Ball”, Journal of Composite Materials, 27, 1238-1256
  • Lee, Y.S., Kang, K.H. and Park, O., 1997, “Response of Hybrid Laminated Composite Plates under Low Velocity Impact”, Computers and Structures, 65, 965-974.
  • Lifshitz, J.M., 1976, “Impact Strength of Angle Ply Fiber Reinforced Materials”, Journal of Composite Materials, 10, 92-101.
  • Mili, F. and Necip, B., 2001, “Impact Behavior of Cross-Ply Laminated Composite Plates under Low Velocities”, Composite Structures, 51, 237-224.
  • Mitrevski, T., Marshall, I.H., Thomson, R., Jones, R. Whittingham, B., 2004, “The Effect of Impactor Shape on the Impact Response of Composite Laminates”, Composite Structures, 67, 139-148.
  • Prasad, C.B., Ambur, D.R., ve Starnes, J.H.Jr., 1994, “Response of Laminated Composite Plates to Low Speed Impact By Different Impactors” AIAA Journal, 32, 1270-1276.
  • Ramkumar, R.L., ve Chen, P.C., 1982, “Low Velocity Impact Response of Laminated Plates” AIAA Journal, 21, 1448-1452.
  • Rotem, A., ve Lifshitz, J.M., 1971, “Longitudinal Strength Of Unidirectional Fibrous Composite Under High Rate Of Loading”, Proc. 26th Annual Tech. Conf. Soc. Plastics Industry Reinforced Plastics, Composites Division, Washington, DC, Section 10-G: pp. 1-10.
  • Samancı, A., Tarakçıoğlu, N., Uyaner, M., 2004, “Yüzey Çatlaklı Filaman Sarım CTP Borularda Sarım Açısı ve Çentik Derinliğinin İç Basınç Yorulma Davranışına Etkisi”, 11. Uluslararası Malzeme Sempozyumu, 19-21 Nisan 2006, Denizli, TÜRKİYE.
  • Sankar, B.V., 1992, “Scaling of Low Velocity Impact for Symmetric Composite Laminates”, Journal of Reinforced Plastics Composites, 11, 297-305.
  • Sierakowski, R.L., Nevil, G.E., Ross, A., and Jones, E.R., 1971, “Dynamic Compressive Strength and Failure of Steel Reinforced Epoxy Composites”, Journal of Composite Materials, 5, 362-377.
  • Sierakowski, R.L., and Chaturvedi, S.K., 1997, Dynamic Loading and Characterization of Fiber-Reinforced Composites. New York, Wiley.
  • Sun, C.T., ve Chattopadhyay, S., 1975, “Dynamic Response of Anisotropic Laminated Plates under Initial Stress to Impact of a Mass”, ASME Journal of Mechanics, 42, 693-698.
  • Stronge, W.J., 2000, Impact Mechanics, Cambridge, Cambridge University Press. 1-26.
  • Şahin, A., 2011, Düşük Hızlı Darbe Görmüş Filaman Sarım E-Camı/Epoksi Boruların İç Basınç Altında Yorulma Davranışlarının İncelenmesi, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Konya.
  • Uyaner, M., Kara, M., Gemi, L., "Filaman Sarım E-Camı/Epoksi Kompozit Boruların Düşük Hızlı Darbe Sonrası Mukavemeti", 13th International Materials Symposium (IMSP’2010), 13-15th October 2010, Pamukkale University, Denizli, Turkey.
  • Wang, H., ve Vukhanh, T., 1994, “Damage Extension in Carbon Fiber/PEEK Cross Ply Laminates under Low-Velocity Impact”, Journal of Composite Materials, 28,684-704.
  • Whittingham, B., Marshall, I.H., Mitrevski, T., Jones, R., 2004, “The Response of Composite Structures with Pre-Stress Subject to Low Velocity Impact Damage”, Composite Structures, 66, 685-698.
  • Whitney, J.M. and Pagano, N.J., 1970, “Shear Deformation in Heterogeneous Anisotropic Plates”, Journal of Applied Mechanics, 37, 1026-1031.

Low-Velocity Impact Simulation of Open Ended Filament Wound Composite Tubes

Yıl 2011, Cilt: 26 Sayı: 2, 55 - 66, 01.06.2011

Öz

In this study, dynamic response of low-velocity impact of E-glass/epoxy filament wound composite tubes was investigated. Applied method is Finite Element Method and it is based on theoretical studies and interpreting computer analyses results. A commercial software (ANSYS-LSDyna) was used for the simulation. Open ended filament wound composite tube and impact phenomenon were modeled. Diameter of hemispherical impactor is 24 mm and mass is 6.35 kg. Investigation has been carried out for 2, 2,5 and 3 m/s impact velocities. 6, 8 and 10 plies filament wound composite tubes with [+55°,−55°]3 , [+55°,−55°]4, [+55°,−55°]5 stacking sequences and 72 mm in diameter were used. They were positioned in V-block. Force-time history, energy, velocity-time diagram that depend on the base of data will be plotted. Obtained values were interpreted.

Kaynakça

  • Abatan, A., Hu, H. and Olowokere, D., 1998, “Impact Resistance Modeling of Hybrid Laminated Composites”, Journal of Thermoplastic Composite Materials, 11, 249-260.
  • Abrate, S., 1998, Impact on Composite Structures, Cambridge, Cambridge University Press. 135-160.
  • ANSYS® Release 12.1, ANSYS, Inc. Yardım dosyaları
  • Aslan, Z., Karakuzu, R. and Okutan, B., 2003, “The Response of Laminated Composite Plates under Low-Velocity Impact Loading”, Composite Structures, 59, 119-126.
  • Aslan, Z. and Karakuzu, R., 2002, “Transient Dynamic Analysis of Laminated Composite Plate Subjected to Low-Velocity Impact”, Mathematical and Computational Applications, Vol. 7, No.1, 73-82.
  • Baucom, J.N., and Zikry, M.A., 2005, “Low Velocity Impact Damage Progression in Woven E-glass Composite Systems”, Composites, 36, 658-664.
  • Belingardi, G., Vadori, R., 2002, “Low Velocity Impact Tests of Laminate Glass-Fiber-Epoxy Matrix Composite Material Plates”, International Journal of Impact Engineering, 27, 213-229.
  • Belingardi, G., Vadori, R., 2003, “Influence of Laminate Thickness in Low Velocity Impact Behavior of Composite Material Plate”, Composite Structures, 61, 27-38.
  • Christoforou, A.P. and Yiğit, A.S., 1996, “Impact of Composite Structures-The Momentum Balance Method”, Journal of Composite Materials, 30,1068-1086.
  • Dobyns, A.L., 1981, “Analysis of Simply Supported Orthotropic Plates Subjected to Static and Dynamic Loads”, AIAA Journal, 19,642-680.
  • Gibson R.F., 1994, Principles of Composite Material Mechanics, Mc-Graw Hill. 392-393.
  • Gong, S.W. and Lam, K.Y., 1999, “Transient Response of Stiffened Composite Plates Subjected to Low Velocity Impact”, Composites Part B, 30, 473-484.
  • Goo, N.S. and Kim, S.J., 1997, “Dynamic Contact Analysis of Laminated Composite Plates under Low Velocity Impact” AIAA Journal, 35, 1518-1521.
  • Güvensoy, S., 2010, Filaman Sarım Kompozit Boruların Düşük Hızlı Darbe Davranışının Simülasyonu, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Konya.
  • Husseinzadeh, R., Shokrieh, M.M. and Lessard, L., 2006, “Damage Behavior of Fiber Reinforced Composite Plates Subjected to Drop Weight Impacts”, Composite Science and Technology, 66, 6168.
  • Kim, J.K. and Kang, K.W., 2001, “An Analysis of Impact Force in Plain-weave Glass-epoxy Composite Plates Subjected to Transverse Impact”, Composite Science and Technology, 61, 135-143.
  • Lal, K.M., 1982, “Prediction of Residual Tensile Strength of Transversely Impacted Composite Laminates”, Structure Solid Mech. NASA CP-2245, pp.97-111.
  • Lal, K.M., 1983, “Low Velocity Transverse Impact Behavior of 8-Ply Graphite-Epoxy Laminates” Journal of Reinforced Plastics and Composites, 2, 216-225.
  • Lee, L.J., Huang, K.Y. and Fann, Y.J., 1993, “Dynamic Responses of Composite Sandwich Plate Impacted By Rigid Ball”, Journal of Composite Materials, 27, 1238-1256
  • Lee, Y.S., Kang, K.H. and Park, O., 1997, “Response of Hybrid Laminated Composite Plates under Low Velocity Impact”, Computers and Structures, 65, 965-974.
  • Lifshitz, J.M., 1976, “Impact Strength of Angle Ply Fiber Reinforced Materials”, Journal of Composite Materials, 10, 92-101.
  • Mili, F. and Necip, B., 2001, “Impact Behavior of Cross-Ply Laminated Composite Plates under Low Velocities”, Composite Structures, 51, 237-224.
  • Mitrevski, T., Marshall, I.H., Thomson, R., Jones, R. Whittingham, B., 2004, “The Effect of Impactor Shape on the Impact Response of Composite Laminates”, Composite Structures, 67, 139-148.
  • Prasad, C.B., Ambur, D.R., ve Starnes, J.H.Jr., 1994, “Response of Laminated Composite Plates to Low Speed Impact By Different Impactors” AIAA Journal, 32, 1270-1276.
  • Ramkumar, R.L., ve Chen, P.C., 1982, “Low Velocity Impact Response of Laminated Plates” AIAA Journal, 21, 1448-1452.
  • Rotem, A., ve Lifshitz, J.M., 1971, “Longitudinal Strength Of Unidirectional Fibrous Composite Under High Rate Of Loading”, Proc. 26th Annual Tech. Conf. Soc. Plastics Industry Reinforced Plastics, Composites Division, Washington, DC, Section 10-G: pp. 1-10.
  • Samancı, A., Tarakçıoğlu, N., Uyaner, M., 2004, “Yüzey Çatlaklı Filaman Sarım CTP Borularda Sarım Açısı ve Çentik Derinliğinin İç Basınç Yorulma Davranışına Etkisi”, 11. Uluslararası Malzeme Sempozyumu, 19-21 Nisan 2006, Denizli, TÜRKİYE.
  • Sankar, B.V., 1992, “Scaling of Low Velocity Impact for Symmetric Composite Laminates”, Journal of Reinforced Plastics Composites, 11, 297-305.
  • Sierakowski, R.L., Nevil, G.E., Ross, A., and Jones, E.R., 1971, “Dynamic Compressive Strength and Failure of Steel Reinforced Epoxy Composites”, Journal of Composite Materials, 5, 362-377.
  • Sierakowski, R.L., and Chaturvedi, S.K., 1997, Dynamic Loading and Characterization of Fiber-Reinforced Composites. New York, Wiley.
  • Sun, C.T., ve Chattopadhyay, S., 1975, “Dynamic Response of Anisotropic Laminated Plates under Initial Stress to Impact of a Mass”, ASME Journal of Mechanics, 42, 693-698.
  • Stronge, W.J., 2000, Impact Mechanics, Cambridge, Cambridge University Press. 1-26.
  • Şahin, A., 2011, Düşük Hızlı Darbe Görmüş Filaman Sarım E-Camı/Epoksi Boruların İç Basınç Altında Yorulma Davranışlarının İncelenmesi, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Konya.
  • Uyaner, M., Kara, M., Gemi, L., "Filaman Sarım E-Camı/Epoksi Kompozit Boruların Düşük Hızlı Darbe Sonrası Mukavemeti", 13th International Materials Symposium (IMSP’2010), 13-15th October 2010, Pamukkale University, Denizli, Turkey.
  • Wang, H., ve Vukhanh, T., 1994, “Damage Extension in Carbon Fiber/PEEK Cross Ply Laminates under Low-Velocity Impact”, Journal of Composite Materials, 28,684-704.
  • Whittingham, B., Marshall, I.H., Mitrevski, T., Jones, R., 2004, “The Response of Composite Structures with Pre-Stress Subject to Low Velocity Impact Damage”, Composite Structures, 66, 685-698.
  • Whitney, J.M. and Pagano, N.J., 1970, “Shear Deformation in Heterogeneous Anisotropic Plates”, Journal of Applied Mechanics, 37, 1026-1031.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA47FY32UJ
Bölüm Makaleler
Yazarlar

Mesut Uyaner Bu kişi benim

Serdar Güvensoy Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2011
Yayımlandığı Sayı Yıl 2011 Cilt: 26 Sayı: 2

Kaynak Göster

APA Uyaner, M., & Güvensoy, S. (2011). FİLAMAN SARIM KOMPOZİT BORULARIN DÜŞÜK HIZLI DARBE DAVRANIŞININ SİMÜLASYONU. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, 26(2), 55-66.
AMA Uyaner M, Güvensoy S. FİLAMAN SARIM KOMPOZİT BORULARIN DÜŞÜK HIZLI DARBE DAVRANIŞININ SİMÜLASYONU. sujest. Haziran 2011;26(2):55-66.
Chicago Uyaner, Mesut, ve Serdar Güvensoy. “FİLAMAN SARIM KOMPOZİT BORULARIN DÜŞÜK HIZLI DARBE DAVRANIŞININ SİMÜLASYONU”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 26, sy. 2 (Haziran 2011): 55-66.
EndNote Uyaner M, Güvensoy S (01 Haziran 2011) FİLAMAN SARIM KOMPOZİT BORULARIN DÜŞÜK HIZLI DARBE DAVRANIŞININ SİMÜLASYONU. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 26 2 55–66.
IEEE M. Uyaner ve S. Güvensoy, “FİLAMAN SARIM KOMPOZİT BORULARIN DÜŞÜK HIZLI DARBE DAVRANIŞININ SİMÜLASYONU”, sujest, c. 26, sy. 2, ss. 55–66, 2011.
ISNAD Uyaner, Mesut - Güvensoy, Serdar. “FİLAMAN SARIM KOMPOZİT BORULARIN DÜŞÜK HIZLI DARBE DAVRANIŞININ SİMÜLASYONU”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 26/2 (Haziran 2011), 55-66.
JAMA Uyaner M, Güvensoy S. FİLAMAN SARIM KOMPOZİT BORULARIN DÜŞÜK HIZLI DARBE DAVRANIŞININ SİMÜLASYONU. sujest. 2011;26:55–66.
MLA Uyaner, Mesut ve Serdar Güvensoy. “FİLAMAN SARIM KOMPOZİT BORULARIN DÜŞÜK HIZLI DARBE DAVRANIŞININ SİMÜLASYONU”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, c. 26, sy. 2, 2011, ss. 55-66.
Vancouver Uyaner M, Güvensoy S. FİLAMAN SARIM KOMPOZİT BORULARIN DÜŞÜK HIZLI DARBE DAVRANIŞININ SİMÜLASYONU. sujest. 2011;26(2):55-66.

MAKALELERINIZI 

http://sujest.selcuk.edu.tr

uzerinden gonderiniz