ZEKİ BİR OTOMATİK PARMAKİZİ TANIMA SİSTEMİ TASARIMI VE GERÇEKLEŞTİRİLMESİ
Yıl 2005,
Cilt: 20 Sayı: 3, 1 - 16, 01.09.2005
Şeref Sağıroğlu
Necla Özkaya
Öz
Bu çalışmada, yapay sinir ağları (YSA) destekli zeki bir otomatik parmakizi tanıma sistemi başarıyla geliştirilmiş ve sunulmuştur. Sistem tasarlanırken işlemler adım adım yapılmıştır. Öncelikle bir parmakizi okuyucu yardımıyla alınan parmakizi resimleri sayısala çevrilmiştir. Resimler küçük parçalara bölünerek üzerinde işlem yapılacak alan arkaplandan ayrılmıştır. Gri seviye resimlerden referans noktalar elde edilmiştir. Parmakizi temizleme ve iyileştirme için YSA modeli geliştirilmiş, iyi sonuç veren momentumlu geriyayılım öğrenme algoritması kullanılarak bu model eğitilmiştir. Temizlenip iyileştirilen resimlere bölgesel ikili dönüşüm uygulanmış ve daha sonra siyah beyaz renkten oluşan ikili resim inceltilmiştir. İnceltilmiş resim üzerinde özellik noktaları olarak adlandırılan uç ve çatal noktalar ve bunlarla ilgili gerekli parametreler bulunmuş ve yalancı özellik noktaları elenmiştir. Son olarak karşılaştırma algoritması belirlenip karşılaştırma işlemi yapılmıştır. Sunulan çalışmada, belirtilen tüm adımlar başarıyla tamamlanmış ve bu işlemlerin kolaylıkla yapılabilmesi için Delphi programlama ortamında bir yazılım geliştirilmiştir. Hem tanıma, hem de onaylama/doğrulama modunda çalışabilen sistem, 100 parmakizi resminin bulunduğu bir veritabanında test edilmiş ve başarılı sonuçlar elde edilmiştir.
Kaynakça
- Alkaya, E., 1998, Enhancement and Preprocessing Techniques For Ridge Extraction in Fingerprint Images, Yüksek Lisans Tezi, Orta Doğu Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
- Congalton, R., Green, K., 1999, Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, CRC/Lewis Press, Boca Raton, FL. Espinosa-Duro, V., 2002, Minutiae detection algorithm for fingerprint recognition, IEEE Aero. El. Sys. Mag., 17 ,7-10.
- Greenberg, S., Aladjem, M., Kogan, D., Dimitrov, I., 2000, Fingerprint image enhancement using filtering techniques, 15th International Conference on Pattern Recognition, V3, 326 -329.
- Halici U., Jain L.C., Hayashi, I., Lee, S.B., Tsutsui T., 1999, Intelligent Biometric Techniques in Fingerprint and Face Recognition, CRC press, USA.
- Haykin, S., 1994, Neural Networks: A Comprehensive Foundation, ISBN 0-02-352761-7, Macmillan College Publishing Company, New York, USA.
- Hong, L., Wan, Y., Jain, A.K., 1998, Fingerprint image enhancement: algorithms and performance evaluation, IEEE T. Patern Anal., 20, 8, 777-789.
- Hsieh, C.T., Lu, Z.Y., Li, T.C., Mei, K.C., 2000, An effective method to extract fingerprint singular point, 4. Int. Conf./Exhibition on High Performance Computing in the Asia-Pacific Reg., V2, 696 -699.
- İnandık, Ö., 1998, Öznitelik Tabanlı Otomatik Parmakizi Eşleme, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul. Jain, A.K., Hong L., Bolle, R., 1997a, On-line fingerprint verification, IEEE T. Patern Anal., 19, 4, 302-314.
- Jain, A.K., Hong L., Pankanti, S., Bolle, R., 1997b, An identity authentication system using fingerprints, Proceedings of the IEEE, 85, 9, 1365-1388.
- Jain, A.K., Prabhakar S., Hong L., Pankanti, S. 1999, Finger code: a filterbank for fingerprint representation and matching, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, V2, 193-199.
- Jin, A.L.H., Chekima A., Dargham J.A., Liau C.F., 2002, Fingerprint identification and recognition using back propagation neural network SCOReD, Student Conf. on Research and Develop., 98-101.
- Luo, X., Tian J., Wu, Y., 2000, A minutiae matching algorithm in fingerprint verification, 15th International Conference on Pattern Recognition, V4, 833 -836.
- Matlab_701 NN Toolbox Userʹs Guide, www.mathworks.com/access/helpdesk/help/toolbox/ nnet/nnet_ug.html. Maio, D., Maltoni, D., 1998, Neural network based minutiae filtering in fingerprints, Fourteenth International Conference on Pattern Recognition, V2, 1654 -1658.
- Ongun, G., 1995, An Automatic Fingerprint Identification System based on Self organizing Feature Maps Classifier, Yüksek Lisans Tezi, Orta Doğu Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
- Özkaya, N., 2003, Otomatik Parmakizi Tanıma Sistemi, Yüksek Lisans Tezi, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Kayseri.
- Ramo, P., Tico, M., Onnia, V., Saarinen, J., 2001, Optimized singular point detection algorithm for fingerprint images, International Conference on Image Processing, V2, 242 -245.
- Rusyn, B., Prudyus, I., Ostap, V., 2001, Fingerprint image enhancement algorithm, 6th International Conference The Experience of Designing and Application of CAD Systems in Microelectronics, CADSM 2001, 193-194.
- Saatci, E., Tavsanoglu, V., 2002, Fingerprint image enhancement using CNN gabor-type filters, 7th IEEE International Workshop on Cellular Neural Networks and Their Applications, (CNNA 2002), 377-382.
- Sagar, V.K., Alex, Beng, K.J., 1999a, Hybrid fuzzy logic and neural network model for fingerprint minutiae extraction, International Joint Conference on Neural Networks, IJCNN ʹ99., V5, 3255 -3259.
- Sagar, V.K., Beng, K.J.A., 1999b, Fingerprint feature extraction by fuzzy logic and neural networks, ICONIPʹ99, 6th International Conference on Neural Information Processing, V3, 1138 -1142.
- Sağıroğlu, Ş., Beşdok, E., ve Erler, M., 2003, Mühendislikte Yapay Zeka Uygulamaları I: Yapay Sinir Ağları, Ufuk Kitabevi, Kayseri, Türkiye.
- Xiao, Q., Raafat, H., 1991, Fingerprint image post-processing: a combined statistical and structural approach, Pattern Recogn., 24, 10, 985-992
An Intelligent Automatic Fingerprint Identification and Verification System Design
Yıl 2005,
Cilt: 20 Sayı: 3, 1 - 16, 01.09.2005
Şeref Sağıroğlu
Necla Özkaya
Öz
This work presents an intelligent automatic fingerprint identification and verification system based on Artificial Neural Networks (ANNs). In this work, the design processes of the system have been presented step by step. Fingerprints were first converted into digital images using a specific hardware. They were then processed by a computer. Fingerprint images were divided into grid blocks, and these blocks were classified as image area and background. An effective algorithm was used to detect the fingerprint singularities from gray level fingerprint images. In order to improve the performance of the system, fingerprint image enhancement was performed by using ANN. The adaptive backpropagation with momentum learning algorithm was used to train the ANN models. Binary images were obtained from the enhancement images using a regional binarization algorithm. Binary images were converted to thinned images. Ridge endings and ridge bifurcations of the fingerprints (minutiae) were extracted. A postprocessing algorithm was used to eliminate false minutiae patterns and the fingerprint matching process was finally applied. In order to automatise the system, a software for fingerprint identification and verification was developed in Delphi. The system developed in this work was tested 100 fingerprint images for identification and verification; it achieves the task with high accuracy. It is assumed that the developed system can be used in many security applications.
Kaynakça
- Alkaya, E., 1998, Enhancement and Preprocessing Techniques For Ridge Extraction in Fingerprint Images, Yüksek Lisans Tezi, Orta Doğu Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
- Congalton, R., Green, K., 1999, Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, CRC/Lewis Press, Boca Raton, FL. Espinosa-Duro, V., 2002, Minutiae detection algorithm for fingerprint recognition, IEEE Aero. El. Sys. Mag., 17 ,7-10.
- Greenberg, S., Aladjem, M., Kogan, D., Dimitrov, I., 2000, Fingerprint image enhancement using filtering techniques, 15th International Conference on Pattern Recognition, V3, 326 -329.
- Halici U., Jain L.C., Hayashi, I., Lee, S.B., Tsutsui T., 1999, Intelligent Biometric Techniques in Fingerprint and Face Recognition, CRC press, USA.
- Haykin, S., 1994, Neural Networks: A Comprehensive Foundation, ISBN 0-02-352761-7, Macmillan College Publishing Company, New York, USA.
- Hong, L., Wan, Y., Jain, A.K., 1998, Fingerprint image enhancement: algorithms and performance evaluation, IEEE T. Patern Anal., 20, 8, 777-789.
- Hsieh, C.T., Lu, Z.Y., Li, T.C., Mei, K.C., 2000, An effective method to extract fingerprint singular point, 4. Int. Conf./Exhibition on High Performance Computing in the Asia-Pacific Reg., V2, 696 -699.
- İnandık, Ö., 1998, Öznitelik Tabanlı Otomatik Parmakizi Eşleme, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul. Jain, A.K., Hong L., Bolle, R., 1997a, On-line fingerprint verification, IEEE T. Patern Anal., 19, 4, 302-314.
- Jain, A.K., Hong L., Pankanti, S., Bolle, R., 1997b, An identity authentication system using fingerprints, Proceedings of the IEEE, 85, 9, 1365-1388.
- Jain, A.K., Prabhakar S., Hong L., Pankanti, S. 1999, Finger code: a filterbank for fingerprint representation and matching, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, V2, 193-199.
- Jin, A.L.H., Chekima A., Dargham J.A., Liau C.F., 2002, Fingerprint identification and recognition using back propagation neural network SCOReD, Student Conf. on Research and Develop., 98-101.
- Luo, X., Tian J., Wu, Y., 2000, A minutiae matching algorithm in fingerprint verification, 15th International Conference on Pattern Recognition, V4, 833 -836.
- Matlab_701 NN Toolbox Userʹs Guide, www.mathworks.com/access/helpdesk/help/toolbox/ nnet/nnet_ug.html. Maio, D., Maltoni, D., 1998, Neural network based minutiae filtering in fingerprints, Fourteenth International Conference on Pattern Recognition, V2, 1654 -1658.
- Ongun, G., 1995, An Automatic Fingerprint Identification System based on Self organizing Feature Maps Classifier, Yüksek Lisans Tezi, Orta Doğu Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
- Özkaya, N., 2003, Otomatik Parmakizi Tanıma Sistemi, Yüksek Lisans Tezi, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Kayseri.
- Ramo, P., Tico, M., Onnia, V., Saarinen, J., 2001, Optimized singular point detection algorithm for fingerprint images, International Conference on Image Processing, V2, 242 -245.
- Rusyn, B., Prudyus, I., Ostap, V., 2001, Fingerprint image enhancement algorithm, 6th International Conference The Experience of Designing and Application of CAD Systems in Microelectronics, CADSM 2001, 193-194.
- Saatci, E., Tavsanoglu, V., 2002, Fingerprint image enhancement using CNN gabor-type filters, 7th IEEE International Workshop on Cellular Neural Networks and Their Applications, (CNNA 2002), 377-382.
- Sagar, V.K., Alex, Beng, K.J., 1999a, Hybrid fuzzy logic and neural network model for fingerprint minutiae extraction, International Joint Conference on Neural Networks, IJCNN ʹ99., V5, 3255 -3259.
- Sagar, V.K., Beng, K.J.A., 1999b, Fingerprint feature extraction by fuzzy logic and neural networks, ICONIPʹ99, 6th International Conference on Neural Information Processing, V3, 1138 -1142.
- Sağıroğlu, Ş., Beşdok, E., ve Erler, M., 2003, Mühendislikte Yapay Zeka Uygulamaları I: Yapay Sinir Ağları, Ufuk Kitabevi, Kayseri, Türkiye.
- Xiao, Q., Raafat, H., 1991, Fingerprint image post-processing: a combined statistical and structural approach, Pattern Recogn., 24, 10, 985-992