Araştırma Makalesi
BibTex RIS Kaynak Göster

FREKANS ANALİZİNDE ALTERNATİF BİR PARAMETRE TAHMİN METODU

Yıl 2017, Cilt: 5 Sayı: 4, 445 - 459, 01.12.2017
https://doi.org/10.15317/Scitech.2017.104

Öz

Taşkınlar, sağanaklar ve kurak akımlar gibi ekstrem hidrolojik olayların frekans analizi, su kaynakları sistemlerinin planlanması, boyutlandırılması ve işletilmesi açısından büyük önem arz ettiği gibi, bu ekstrem olayların ekonomik ve sosyal açıdan olumsuz sonuçlarından kaçınma konusunda da büyük fayda sağlamaktadır. Frekans analizinin önemli adımlarından biri uygun dağılım modelinin parametrelerinin tahmin edilmesidir. Bu makalede, merkezi eğilimin robust (sağlam) bir parametresi olan M (medyan), istatistiksel saçılmayı gösteren robust parametre IQR (kuartiller arası uzaklık) ve kuartil çarpıklık katsayısı QCs istatistiklerini kullanan alternatif bir parametre tahmin metodu (RİM) (Robust İstatistikler Metodu) anlatılmaktadır. Çalışma kapsamında, özellikle hidrolojik frekans analizinde yaygın bir şekilde kullanılan altı farklı olasılık dağılım fonksiyonuna (Normal, 2 ve 3 parametreli lognormal, Gamma, Gumbel, ve genelleştirilmiş ekstrem değer GEV) yer verilmiştir. Medyan ve kuartiller arası uzaklık gibi robust istatistiklerin kullanılmasının, aykırı gözlemlerin varlığından veya değişiminden kaynaklanan etkilere karşı daha güvenli parametre tahmini sağlayacağı düşünülmektedir. Çalışmada sayısal örnekler olarak, altı yağış istasyonunun 24 saat süreli yıllık maksimum yağış şiddeti verileri kullanılmıştır. Son olarak, Robust İstatistikler Metodu ile elde edilen parametreler kullanılarak hesaplanan belli olasılıklı tahminler (kuantiller), Maksimum Olabilirlik Metodu, Momentler Metodu ve Olasılık Ağırlıklı Momentler Metodu gibi geleneksel parametre tahmin metotlarıyla elde edilen sonuçlarla karşılaştırılmıştır.

Kaynakça

  • Abramowitz, M., Stegun, I. A., 1984, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, A Wiley - Interscience Publication, John Wiley & Sons, Inc., New York.
  • Ahmad, I., Fawad, M., Akbar, M., Abbas, A., Zafar, H. 2016, “Regional Frequency Analysis of Annual Peak Flows in Pakistan Using Linear Combination of Order Statistics”, Polish Journal of Environmental Studies, Vol. 25, 6.
  • Atroosh, K.B., Moustafa, A. T., 2012, “An Estimation of the Probability Distribution of Wadi Bana Flow in the Abyan Delta of Yemen”, Journal of Agricultural Science, Vol. 4, No. 6
  • Chow, V. T., Maidment, D. R., Mays, L. W., 1988, Applied Hydrology, McGraw-Hill, New York. Greenwood, J. A., J. M. Landwehr, N. C. Matalas, J. R. Wallis, 1979, “Probability Weighted Moments: Definition and Relation to Parameters of Several Distributions Expressible in Inverse Form”, Water Resources Research, Vol. 15, pp. 1049-1054.
  • Gumbel, E. J., 1958, Statistics of Extreme, Columbia University Press, 375 pp.
  • Haktanır, T, Cobaner, M., Kisi O., 2010, “Frequency Analyses of Annual Extreme Rainfall Series from 5 Min to 24 h”, Hydrological Processes, Vol. 24, pp. 3574–3588.
  • Hosking, J. R. M. 1986, The Theory of Probability Weighted Moments Research Report RC12210, IBM Research Division, Yorktown Heights, N.Y.
  • Jee, H. K, Yeo, W. K, Kim, J. H, Lee, S., 2008, Rainfall Intensity Duration Frequency (IDF) Analysis for the Asia Pasific Region ,Chapter 8, 76-81, ‘Technical Documents in Hydrology’, No:2, Asian Pasific FRIEND, International Hydrological Programme, UNESCO Jakarta Office, Indonesia.
  • Kendall, M. G., Stuart, A., 1961, The Advance Theory of Statistics, II, Griffin, London.
  • Koutsoyiannis, D., Kozonis, D., Manetas, A., 1998, “A Mathematical Framework for Studying Rainfall Intensity-Duration-Frequency Relationships”, Journal of Hydrology, Vol. 206, pp. 118-135.
  • Kottegoda, N. T., Rosso, R. 2008, Applied Statistics for Civil and Environmental Engineers, Second Edition, Blackwell Publishing.
  • Kumar, R., Chatterjee, C., Kumar, S., Lohani, A. K,. Singh, R. D. 2003, “Development of Regional Flood Frequency Relationships using L-moments for Middle Ganga Plains Subzone 1(f) of India”, Water Resources Management, Vol. 17, pp. 243–257.
  • Landwehr, J.M., Matalas, N.C., Wallis, J.R. 1979, “Probability Weighted Moments Compared with Some Traditional Techniques in Estimating Gumbel Parameters and Quantiles”, Water Resources Research, Vol. 15 (5), pp. 1055-1064.
  • Opere, A. O.; Mkhandi, S.; Willems, P. 2006, “At Site Flood Frequency Analysis for the Nile Equatorial Basins”, Physics and Chemistry of the Earth, Vol. 31, Issue 15-16, pp. 919-927.
  • Panda S. N. Panda, S. N., Dey, G. K., Kumar, S., 2005, “Flood Frequency Analysis in the Mahanadi River Basin (Eastern India)” - Developing an Interactive Software FLOOD”, ICID 21st European Regional Conference, Frankfurt (Oder) and Slubice – Germany and Poland, 15-19 May, 2005.
  • Rahman, A. S., Rahman, A., Zaman, M. A., Haddad, K., Ahsan, A., Imteaz, M. 2013, “A Study on Selection of Probability Distributions for at-site Flood Frequency Analysis in Australia”, Natural Hazards, Vol. 69 (3).
  • Rao, A. R., Hamed, K. H., 2000, Flood Frequency Analysis, CRC Pres, Boca Raton, USA.
  • Reimann, C., Filzmoser, P., Garrett, R. G., Dutter R., 2008, Statistical Data Analysis Explained: Applied Environmental Statistics with R, John Wiley & Sons, Ltd. ISBN: 978-0-470-98581-6
  • Saf, B., 2009, “Regional Flood Frequency Analysis Using L-Moments for the West Mediterranean Region of Turkey”, Water Resources Management, Vol. 23, pp. 531-551.
  • Salinas, J. L., Castellarin, A., Kohnova, S., Kjeldsen, T. R. 2014, “Regional Parent Flood Frequency Distributions in Europe – Part 1: Is the GEV Model Suitable as a Pan-European Parent?” Hydrology and Earth System Sciences, Vol. 18, pp. 4381-4389.
  • Stedinger, J. R., Vogel, R.M., Fofoula-Georgiou, E., 1993, Frequency Analysis of Extreme Events, In: D. R. Maidment, Handbook of Hydrology, Chapter 18, McGraw-Hill, New York .
  • Stephenson, D., 2005, Data Analysis Methods in Weather and Climate Research, Course in University of Reading.
  • Strupczewski, W. G, Singh, V. P, Weglarczyk, S., 2002, “Asymptotic Bias of Estimation Methods Caused by the Assumption of False Probability Distribution”, Journal of Hydrology, Vol. 258, Issues 1–4, 28 pp. 122–148.
  • Van Gelder, P.H.A.J.M, 2004, “Statistical Estimation Methods in Hydrological Engineering, In: Analysis and Stochastic Modelling of Extreme Runoff in Euroasian Rivers under Conditions of Climate Change”, Proceedings International Scientific Seminar, Irkutsk, pp. 11-57, 16-23 June 2003 Publishing House of the Institute of Geography Editors: L.M. Korytny and W.M. Luxemburg, ISBN 5-94797-040-6.

An Alternative Parameter Estimation Method in Frequency Analysis

Yıl 2017, Cilt: 5 Sayı: 4, 445 - 459, 01.12.2017
https://doi.org/10.15317/Scitech.2017.104

Öz

Frequency analysis of extreme hydrologic events such as floods, storms, and droughts provides important information on planning, design, and management of water resources systems, and this information is helpful in avoiding negative economic and social consequences. An important step of the frequency analysis is to estimate the appropriate distribution's parameters. This paper shows the application of an alternative parameter-estimation method, RSM (Robust Statistics Method), which calculates the robust measure of central tendency M (median), statistical dispersion IQR (interquartile range) and quartile coefficient of skewness QCs; and uses these robust statistics by the estimation of the parameters of various distribution functions. Six probability distributions (Normal, 2- and 3- parameter lognormal, Gamma, Gumbel and generalized extreme value GEV), which are commonly used in hydrological frequency analysis were discussed within the study. The advantage of using robust statistics like median and interquartile range in parameter estimation is to ensure the resistance to the effect of a change in value or presence of outlying observations. Numerical analyses as part of this research were carried out on the annual maximum 24h rainfall intensities of rainfall gages in the Aegean Region (Turkey). Eventually, the quantile estimations calculated with the parameters of Robust Statistics Method were compared with the results of conventional methods like Maximum Likelihood, Method of Moments, and Probability-Weighted Moments.

Kaynakça

  • Abramowitz, M., Stegun, I. A., 1984, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, A Wiley - Interscience Publication, John Wiley & Sons, Inc., New York.
  • Ahmad, I., Fawad, M., Akbar, M., Abbas, A., Zafar, H. 2016, “Regional Frequency Analysis of Annual Peak Flows in Pakistan Using Linear Combination of Order Statistics”, Polish Journal of Environmental Studies, Vol. 25, 6.
  • Atroosh, K.B., Moustafa, A. T., 2012, “An Estimation of the Probability Distribution of Wadi Bana Flow in the Abyan Delta of Yemen”, Journal of Agricultural Science, Vol. 4, No. 6
  • Chow, V. T., Maidment, D. R., Mays, L. W., 1988, Applied Hydrology, McGraw-Hill, New York. Greenwood, J. A., J. M. Landwehr, N. C. Matalas, J. R. Wallis, 1979, “Probability Weighted Moments: Definition and Relation to Parameters of Several Distributions Expressible in Inverse Form”, Water Resources Research, Vol. 15, pp. 1049-1054.
  • Gumbel, E. J., 1958, Statistics of Extreme, Columbia University Press, 375 pp.
  • Haktanır, T, Cobaner, M., Kisi O., 2010, “Frequency Analyses of Annual Extreme Rainfall Series from 5 Min to 24 h”, Hydrological Processes, Vol. 24, pp. 3574–3588.
  • Hosking, J. R. M. 1986, The Theory of Probability Weighted Moments Research Report RC12210, IBM Research Division, Yorktown Heights, N.Y.
  • Jee, H. K, Yeo, W. K, Kim, J. H, Lee, S., 2008, Rainfall Intensity Duration Frequency (IDF) Analysis for the Asia Pasific Region ,Chapter 8, 76-81, ‘Technical Documents in Hydrology’, No:2, Asian Pasific FRIEND, International Hydrological Programme, UNESCO Jakarta Office, Indonesia.
  • Kendall, M. G., Stuart, A., 1961, The Advance Theory of Statistics, II, Griffin, London.
  • Koutsoyiannis, D., Kozonis, D., Manetas, A., 1998, “A Mathematical Framework for Studying Rainfall Intensity-Duration-Frequency Relationships”, Journal of Hydrology, Vol. 206, pp. 118-135.
  • Kottegoda, N. T., Rosso, R. 2008, Applied Statistics for Civil and Environmental Engineers, Second Edition, Blackwell Publishing.
  • Kumar, R., Chatterjee, C., Kumar, S., Lohani, A. K,. Singh, R. D. 2003, “Development of Regional Flood Frequency Relationships using L-moments for Middle Ganga Plains Subzone 1(f) of India”, Water Resources Management, Vol. 17, pp. 243–257.
  • Landwehr, J.M., Matalas, N.C., Wallis, J.R. 1979, “Probability Weighted Moments Compared with Some Traditional Techniques in Estimating Gumbel Parameters and Quantiles”, Water Resources Research, Vol. 15 (5), pp. 1055-1064.
  • Opere, A. O.; Mkhandi, S.; Willems, P. 2006, “At Site Flood Frequency Analysis for the Nile Equatorial Basins”, Physics and Chemistry of the Earth, Vol. 31, Issue 15-16, pp. 919-927.
  • Panda S. N. Panda, S. N., Dey, G. K., Kumar, S., 2005, “Flood Frequency Analysis in the Mahanadi River Basin (Eastern India)” - Developing an Interactive Software FLOOD”, ICID 21st European Regional Conference, Frankfurt (Oder) and Slubice – Germany and Poland, 15-19 May, 2005.
  • Rahman, A. S., Rahman, A., Zaman, M. A., Haddad, K., Ahsan, A., Imteaz, M. 2013, “A Study on Selection of Probability Distributions for at-site Flood Frequency Analysis in Australia”, Natural Hazards, Vol. 69 (3).
  • Rao, A. R., Hamed, K. H., 2000, Flood Frequency Analysis, CRC Pres, Boca Raton, USA.
  • Reimann, C., Filzmoser, P., Garrett, R. G., Dutter R., 2008, Statistical Data Analysis Explained: Applied Environmental Statistics with R, John Wiley & Sons, Ltd. ISBN: 978-0-470-98581-6
  • Saf, B., 2009, “Regional Flood Frequency Analysis Using L-Moments for the West Mediterranean Region of Turkey”, Water Resources Management, Vol. 23, pp. 531-551.
  • Salinas, J. L., Castellarin, A., Kohnova, S., Kjeldsen, T. R. 2014, “Regional Parent Flood Frequency Distributions in Europe – Part 1: Is the GEV Model Suitable as a Pan-European Parent?” Hydrology and Earth System Sciences, Vol. 18, pp. 4381-4389.
  • Stedinger, J. R., Vogel, R.M., Fofoula-Georgiou, E., 1993, Frequency Analysis of Extreme Events, In: D. R. Maidment, Handbook of Hydrology, Chapter 18, McGraw-Hill, New York .
  • Stephenson, D., 2005, Data Analysis Methods in Weather and Climate Research, Course in University of Reading.
  • Strupczewski, W. G, Singh, V. P, Weglarczyk, S., 2002, “Asymptotic Bias of Estimation Methods Caused by the Assumption of False Probability Distribution”, Journal of Hydrology, Vol. 258, Issues 1–4, 28 pp. 122–148.
  • Van Gelder, P.H.A.J.M, 2004, “Statistical Estimation Methods in Hydrological Engineering, In: Analysis and Stochastic Modelling of Extreme Runoff in Euroasian Rivers under Conditions of Climate Change”, Proceedings International Scientific Seminar, Irkutsk, pp. 11-57, 16-23 June 2003 Publishing House of the Institute of Geography Editors: L.M. Korytny and W.M. Luxemburg, ISBN 5-94797-040-6.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ömer Levend Aşıkoğlu Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 5 Sayı: 4

Kaynak Göster

APA Aşıkoğlu, Ö. L. (2017). FREKANS ANALİZİNDE ALTERNATİF BİR PARAMETRE TAHMİN METODU. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, 5(4), 445-459. https://doi.org/10.15317/Scitech.2017.104
AMA Aşıkoğlu ÖL. FREKANS ANALİZİNDE ALTERNATİF BİR PARAMETRE TAHMİN METODU. sujest. Aralık 2017;5(4):445-459. doi:10.15317/Scitech.2017.104
Chicago Aşıkoğlu, Ömer Levend. “FREKANS ANALİZİNDE ALTERNATİF BİR PARAMETRE TAHMİN METODU”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 5, sy. 4 (Aralık 2017): 445-59. https://doi.org/10.15317/Scitech.2017.104.
EndNote Aşıkoğlu ÖL (01 Aralık 2017) FREKANS ANALİZİNDE ALTERNATİF BİR PARAMETRE TAHMİN METODU. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 5 4 445–459.
IEEE Ö. L. Aşıkoğlu, “FREKANS ANALİZİNDE ALTERNATİF BİR PARAMETRE TAHMİN METODU”, sujest, c. 5, sy. 4, ss. 445–459, 2017, doi: 10.15317/Scitech.2017.104.
ISNAD Aşıkoğlu, Ömer Levend. “FREKANS ANALİZİNDE ALTERNATİF BİR PARAMETRE TAHMİN METODU”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 5/4 (Aralık 2017), 445-459. https://doi.org/10.15317/Scitech.2017.104.
JAMA Aşıkoğlu ÖL. FREKANS ANALİZİNDE ALTERNATİF BİR PARAMETRE TAHMİN METODU. sujest. 2017;5:445–459.
MLA Aşıkoğlu, Ömer Levend. “FREKANS ANALİZİNDE ALTERNATİF BİR PARAMETRE TAHMİN METODU”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, c. 5, sy. 4, 2017, ss. 445-59, doi:10.15317/Scitech.2017.104.
Vancouver Aşıkoğlu ÖL. FREKANS ANALİZİNDE ALTERNATİF BİR PARAMETRE TAHMİN METODU. sujest. 2017;5(4):445-59.

MAKALELERINIZI 

http://sujest.selcuk.edu.tr

uzerinden gonderiniz