Araştırma Makalesi
BibTex RIS Kaynak Göster

Grafen Oksit Kabukların Boyutlarına Göre Sınıflandırılması: Deneysel Çalışma

Yıl 2018, Cilt: 6 Sayı: 1, 28 - 37, 01.03.2018
https://doi.org/10.15317/Scitech.2018.113

Öz

Pratik uygulamalarda grafen kullanmak için grafen kabukların eşsiz ve münferit özelliklerinin makroskopik, düzenli malzemelere dönüştürülmesi çok önemlidir. Makro boyuttaki grafen yapıların fiziksel ve kimyasal özellikleri, bu yapıları oluşturan yapıtaşları olan grafen kabukların boyutları ile yakından ilgilidir. Bununla birlikte, kimyasal yöntemler kullanılarak üretilen grafen oksit (GO) kabuklarının boyutları istenilen aralıklarda kontrol edilememektedir. Bu çalışmanın amacı, farklı ortalama boyutlara sahip grafen kabuklar kullanılarak üretilen grafen esaslı fiberlerin morfolojik değerlendirmesini araştırmaktır. Grafen oksit kabukların boyut sıralanması için basit ve efektif bir santrifüj yöntemi uygulanmıştır. Makroskopik grafen oksit fiberleri, grafen oksit/su süspansiyonlarının sürekli olarak eğrilmesi ile üretilmiş bunu takiben indirgenmiş grafen oksit elyafı elde etmek için kimyasal ve termal indirgeme işlemleri yapılmıştır. Süspansiyon konsantrasyonu, enjeksiyon hızı ve orifis çapı gibi tüm ıslak eğirme parametreleri sabit tutularak, yanlızca grafen kabuk boyutunun fiberlerin yapısal morfolojisine etkisi araştırılmıştır. Mikroskopik incelemeler kabuk boyutunun, grafen oksit fiberlerin morfolojisi üzerinde çok büyük bir etkisi olduğunu ortaya koymuştur. Artan ortalama kabuk boyutu, grafen oksit fiberlerin kesitinin dikdörtgen geometrisine benzemesine ve fiber içerisindeki boşlukların artmasına neden olmuştur.

Kaynakça

  • Aboutalebi, S.H., Gudarzi, M.M., Zheng, Q.B., Kim, J.K., 2011, "Spontaneous Formation of Liquid Crystals in Ultralarge Graphene Oxide Dispersions", Advanced Functional Materials, Vol. 21, pp. 2978-2988.
  • Allen, M.J., Tung, V.C., Kaner, R.B., 2010, "Honeycomb Carbon: A Review of Graphene", Chemical Reviews, Vol. 110, pp. 132-145.
  • Arnold, M.S., Suntivich, J., Stupp, S.I., Hersam, M.C., 2008, "Hydrodynamic Characterization of Surfactant Encapsulated Carbon Nanotubes Using an Analytical Ultracentrifuge", Acs Nano, Vol. 2, pp. 2291-2300.
  • Batista, C.A.S., Zheng, M., Khripin, C.Y., Tu, X.M., Fagan, J.A., 2014, "Rod Hydrodynamics and Length Distributions of Single-Wall Carbon Nanotubes Using Analytical Ultracentrifugation", Langmuir, Vol. 30, pp. 4895-4904.
  • Bonaccorso, F., Zerbetto, M., Ferrari, A.C., Amendola, V., 2013, "Sorting Nanoparticles by Centrifugal Fields in Clean Media", Journal of Physical Chemistry C, Vol. 117, pp. 13217-13229.
  • Chae, H.G., Kumar, S., 2008, "Materials science - Making Strong Fibers", Science, Vol. 319, pp. 908-909.
  • Chen, H., Muller, M.B., Gilmore, K.J., Wallace, G.G., Li, D., 2008, "Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper", Advanced Materials, Vol. 20, pp. 3557-+.
  • Cheng, H.H., Dong, Z.L., Hu, C.G., Zhao, Y., Hu, Y., Qu, L.T., Chena, N., Dai, L.M., 2013, "Textile Electrodes Woven by Carbon Nanotube-Graphene Hybrid Fibers for Flexible Electrochemical Capacitors", Nanoscale, Vol. 5, pp. 3428-3434.
  • Cong, H.P., Ren, X.C., Wang, P., Yu, S.H., 2012, "Wet-Spinning Assembly of Continuous, Neat, and Macroscopic Graphene Fibers", Scientific Reports, Vol. 2, pp.
  • Dong, Z.L., Jiang, C.C., Cheng, H.H., Zhao, Y., Shi, G.Q., Jiang, L., Qu, L.T., 2012, "Facile Fabrication of Light, Flexible and Multifunctional Graphene Fibers", Advanced Materials, Vol. 24, pp. 1856-1861.
  • Esmaeili, A., Entezari, M.H., 2014, "Facile and Fast Synthesis of Graphene Oxide Nanosheets via Bath Ultrasonic Irradiation", Journal of Colloid and Interface Science, Vol. 432, pp. 19-25.
  • Han, J.T., Jang, J.I., Kim, S.H., Jeong, S.Y., Jeong, H.J., Lee, G.W., 2013, "Size Sorting of Chemically Modified Graphene Nanoplatelets", Carbon Letters, Vol. 14, pp. 89-93.
  • Khan, U., O'Neill, A., Porwal, H., May, P., Nawaz, K., Coleman, J.N., 2012, "Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation", Carbon, Vol. 50, pp. 470-475.
  • Li, X.M., Zhao, T.S., Chen, Q., Li, P.X., Wang, K.L., Zhong, M.L., Wei, J.Q., Wu, D.H., Wei, B.Q., Zhu, H.W., 2013, "Flexible All Solid-State Supercapacitors Based on Chemical Vapor Deposition Derived Graphene Fibers", Physical Chemistry Chemical Physics, Vol. 15, pp. 17752-17757.
  • Özçakır, E., Ballı, B., Eskizeybek, V., 2016, "Fabrication of Macroscale Graphene Fibers via Wet Spinning", Proceedings of ISER International Conference, Vol. Barcelona, Spain, 16 May 2016, pp.
  • Özçakır, E., Eskizeybek, V., 2016, "A Facile and Effective Method for Size Sorting of Large Flake Graphene Oxide ", Proceedings of the World Congress on Recent Advances in Nanotechnology (RAN’16), Vol. Prague, Czech Republic – April 1 – 2, 2016, pp.
  • Pan, S.Y., Aksay, I.A., 2011, "Factors Controlling the Size of Graphene Oxide Sheets Produced via the Graphite Oxide Route", Acs Nano, Vol. 5, pp. 4073-4083.
  • Tirado, M.M., Martinez, C.L., Delatorre, J.G., 1984, "Comparison of Theories for the Translational and Rotational Diffusion-Coefficients of Rod-Like Macromolecules - Application to Short DNA Fragments", Journal of Chemical Physics, Vol. 81, pp. 2047-2052.
  • Tong, X., Wang, H., Wang, G., Wan, L.J., Ren, Z.Y., Bai, J.T., Bai, J.B., 2011, "Controllable Synthesis of Graphene Sheets with Different Numbers of Layers and Effect of the Number of Graphene Layers on the Specific Capacity of Anode Material in Lithium-ion Batteries", Journal of Solid State Chemistry, Vol. 184, pp. 982-989.
  • Walter, J., Nacken, T.J., Damm, C., Thajudeen, T., Eigler, S., Peukert, W., 2015, "Determination of the Lateral Dimension of Graphene Oxide Nanosheets Using Analytical Ultracentrifugation", Small, Vol. 11, pp. 814-825.
  • Xiang, C.S., Young, C.C., Wang, X., Yan, Z., Hwang, C.C., Cerioti, G., Lin, J., Kono, J., Pasquali, M., Tour, J.M., 2013, "Large Flake Graphene Oxide Fibers with Unconventional 100% Knot Efficiency and Highly Aligned Small Flake Graphene Oxide Fibers", Advanced Materials, Vol. 25, pp. 4592-4597.
  • Xu, Z., Gao, C., 2011, "Graphene Chiral Liquid Crystals and Macroscopic Assembled Fibres", Nature Communications, Vol. 2, pp.
  • Xu, Z., Gao, C., 2014, "Graphene in Macroscopic Order: Liquid Crystals and Wet-Spun Fibers", Accounts of Chemical Research, Vol. 47, pp. 1267-1276.
  • Xu, Z., Liu, Z., Sun, H.Y., Gao, C., 2013, "Highly Electrically Conductive Ag-Doped Graphene Fibers as Stretchable Conductors", Advanced Materials, Vol. 25, pp. 3249-3253.
  • Zhuo, Q.Q., Ma, Y.Y., Gao, J., Zhang, P.P., Xia, Y.J., Tian, Y.M., Sun, X.X., Zhong, J., Sun, X.H., 2013, "Facile Synthesis of Graphene/Metal Nanoparticle Composites via Self-Catalysis Reduction at Room Temperature", Inorganic Chemistry, Vol. 52, pp. 3141-3147.

INFLUENCE OF FLAKE SIZE ON THE MORPHOLOGY OF WET SPUN GRAPHENE OXIDE FIBERS

Yıl 2018, Cilt: 6 Sayı: 1, 28 - 37, 01.03.2018
https://doi.org/10.15317/Scitech.2018.113

Öz

For using graphene in practical applications, it is crucial to transform the unique and individual properties of graphene flakes into ordered macroscopic materials. The physical and chemical properties of macroscale graphene structures are closely related to the size of graphene flakes as building blocks. However, the chemical methods adopted to synthesize graphene oxide (GO) flakes offer no tight control on the dimensionality of the ensuring flakes sizes. The goal of this study is to investigate morphological evaluation of graphene based fibers fabricated using building blocks with different average size.. A facile and effective centrifugation method was carried out for size sorting of graphene oxide flakes. Macroscopic graphene oxide fibers were continuously spun from graphene oxide/water suspensions followed by chemical and thermal reductions to obtain reduced graphene oxide fibers. All wet spinning parameters such as suspension concentration, injection rate and nozzle diameter were fixed to investigate the effect of average building block size on the structural morphology of the fibers. Microscopic investigations revealed that the flake size have an enormous impact on the morphology of graphene oxide fibers. The increased average flake size results in the fibers with rectangular-like cross-section and increased amount of voids within the graphene oxide fiber.

Kaynakça

  • Aboutalebi, S.H., Gudarzi, M.M., Zheng, Q.B., Kim, J.K., 2011, "Spontaneous Formation of Liquid Crystals in Ultralarge Graphene Oxide Dispersions", Advanced Functional Materials, Vol. 21, pp. 2978-2988.
  • Allen, M.J., Tung, V.C., Kaner, R.B., 2010, "Honeycomb Carbon: A Review of Graphene", Chemical Reviews, Vol. 110, pp. 132-145.
  • Arnold, M.S., Suntivich, J., Stupp, S.I., Hersam, M.C., 2008, "Hydrodynamic Characterization of Surfactant Encapsulated Carbon Nanotubes Using an Analytical Ultracentrifuge", Acs Nano, Vol. 2, pp. 2291-2300.
  • Batista, C.A.S., Zheng, M., Khripin, C.Y., Tu, X.M., Fagan, J.A., 2014, "Rod Hydrodynamics and Length Distributions of Single-Wall Carbon Nanotubes Using Analytical Ultracentrifugation", Langmuir, Vol. 30, pp. 4895-4904.
  • Bonaccorso, F., Zerbetto, M., Ferrari, A.C., Amendola, V., 2013, "Sorting Nanoparticles by Centrifugal Fields in Clean Media", Journal of Physical Chemistry C, Vol. 117, pp. 13217-13229.
  • Chae, H.G., Kumar, S., 2008, "Materials science - Making Strong Fibers", Science, Vol. 319, pp. 908-909.
  • Chen, H., Muller, M.B., Gilmore, K.J., Wallace, G.G., Li, D., 2008, "Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper", Advanced Materials, Vol. 20, pp. 3557-+.
  • Cheng, H.H., Dong, Z.L., Hu, C.G., Zhao, Y., Hu, Y., Qu, L.T., Chena, N., Dai, L.M., 2013, "Textile Electrodes Woven by Carbon Nanotube-Graphene Hybrid Fibers for Flexible Electrochemical Capacitors", Nanoscale, Vol. 5, pp. 3428-3434.
  • Cong, H.P., Ren, X.C., Wang, P., Yu, S.H., 2012, "Wet-Spinning Assembly of Continuous, Neat, and Macroscopic Graphene Fibers", Scientific Reports, Vol. 2, pp.
  • Dong, Z.L., Jiang, C.C., Cheng, H.H., Zhao, Y., Shi, G.Q., Jiang, L., Qu, L.T., 2012, "Facile Fabrication of Light, Flexible and Multifunctional Graphene Fibers", Advanced Materials, Vol. 24, pp. 1856-1861.
  • Esmaeili, A., Entezari, M.H., 2014, "Facile and Fast Synthesis of Graphene Oxide Nanosheets via Bath Ultrasonic Irradiation", Journal of Colloid and Interface Science, Vol. 432, pp. 19-25.
  • Han, J.T., Jang, J.I., Kim, S.H., Jeong, S.Y., Jeong, H.J., Lee, G.W., 2013, "Size Sorting of Chemically Modified Graphene Nanoplatelets", Carbon Letters, Vol. 14, pp. 89-93.
  • Khan, U., O'Neill, A., Porwal, H., May, P., Nawaz, K., Coleman, J.N., 2012, "Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation", Carbon, Vol. 50, pp. 470-475.
  • Li, X.M., Zhao, T.S., Chen, Q., Li, P.X., Wang, K.L., Zhong, M.L., Wei, J.Q., Wu, D.H., Wei, B.Q., Zhu, H.W., 2013, "Flexible All Solid-State Supercapacitors Based on Chemical Vapor Deposition Derived Graphene Fibers", Physical Chemistry Chemical Physics, Vol. 15, pp. 17752-17757.
  • Özçakır, E., Ballı, B., Eskizeybek, V., 2016, "Fabrication of Macroscale Graphene Fibers via Wet Spinning", Proceedings of ISER International Conference, Vol. Barcelona, Spain, 16 May 2016, pp.
  • Özçakır, E., Eskizeybek, V., 2016, "A Facile and Effective Method for Size Sorting of Large Flake Graphene Oxide ", Proceedings of the World Congress on Recent Advances in Nanotechnology (RAN’16), Vol. Prague, Czech Republic – April 1 – 2, 2016, pp.
  • Pan, S.Y., Aksay, I.A., 2011, "Factors Controlling the Size of Graphene Oxide Sheets Produced via the Graphite Oxide Route", Acs Nano, Vol. 5, pp. 4073-4083.
  • Tirado, M.M., Martinez, C.L., Delatorre, J.G., 1984, "Comparison of Theories for the Translational and Rotational Diffusion-Coefficients of Rod-Like Macromolecules - Application to Short DNA Fragments", Journal of Chemical Physics, Vol. 81, pp. 2047-2052.
  • Tong, X., Wang, H., Wang, G., Wan, L.J., Ren, Z.Y., Bai, J.T., Bai, J.B., 2011, "Controllable Synthesis of Graphene Sheets with Different Numbers of Layers and Effect of the Number of Graphene Layers on the Specific Capacity of Anode Material in Lithium-ion Batteries", Journal of Solid State Chemistry, Vol. 184, pp. 982-989.
  • Walter, J., Nacken, T.J., Damm, C., Thajudeen, T., Eigler, S., Peukert, W., 2015, "Determination of the Lateral Dimension of Graphene Oxide Nanosheets Using Analytical Ultracentrifugation", Small, Vol. 11, pp. 814-825.
  • Xiang, C.S., Young, C.C., Wang, X., Yan, Z., Hwang, C.C., Cerioti, G., Lin, J., Kono, J., Pasquali, M., Tour, J.M., 2013, "Large Flake Graphene Oxide Fibers with Unconventional 100% Knot Efficiency and Highly Aligned Small Flake Graphene Oxide Fibers", Advanced Materials, Vol. 25, pp. 4592-4597.
  • Xu, Z., Gao, C., 2011, "Graphene Chiral Liquid Crystals and Macroscopic Assembled Fibres", Nature Communications, Vol. 2, pp.
  • Xu, Z., Gao, C., 2014, "Graphene in Macroscopic Order: Liquid Crystals and Wet-Spun Fibers", Accounts of Chemical Research, Vol. 47, pp. 1267-1276.
  • Xu, Z., Liu, Z., Sun, H.Y., Gao, C., 2013, "Highly Electrically Conductive Ag-Doped Graphene Fibers as Stretchable Conductors", Advanced Materials, Vol. 25, pp. 3249-3253.
  • Zhuo, Q.Q., Ma, Y.Y., Gao, J., Zhang, P.P., Xia, Y.J., Tian, Y.M., Sun, X.X., Zhong, J., Sun, X.H., 2013, "Facile Synthesis of Graphene/Metal Nanoparticle Composites via Self-Catalysis Reduction at Room Temperature", Inorganic Chemistry, Vol. 52, pp. 3141-3147.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Volkan Eskizeybek

Yayımlanma Tarihi 1 Mart 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 6 Sayı: 1

Kaynak Göster

APA Eskizeybek, V. (2018). INFLUENCE OF FLAKE SIZE ON THE MORPHOLOGY OF WET SPUN GRAPHENE OXIDE FIBERS. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, 6(1), 28-37. https://doi.org/10.15317/Scitech.2018.113
AMA Eskizeybek V. INFLUENCE OF FLAKE SIZE ON THE MORPHOLOGY OF WET SPUN GRAPHENE OXIDE FIBERS. sujest. Mart 2018;6(1):28-37. doi:10.15317/Scitech.2018.113
Chicago Eskizeybek, Volkan. “INFLUENCE OF FLAKE SIZE ON THE MORPHOLOGY OF WET SPUN GRAPHENE OXIDE FIBERS”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 6, sy. 1 (Mart 2018): 28-37. https://doi.org/10.15317/Scitech.2018.113.
EndNote Eskizeybek V (01 Mart 2018) INFLUENCE OF FLAKE SIZE ON THE MORPHOLOGY OF WET SPUN GRAPHENE OXIDE FIBERS. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 6 1 28–37.
IEEE V. Eskizeybek, “INFLUENCE OF FLAKE SIZE ON THE MORPHOLOGY OF WET SPUN GRAPHENE OXIDE FIBERS”, sujest, c. 6, sy. 1, ss. 28–37, 2018, doi: 10.15317/Scitech.2018.113.
ISNAD Eskizeybek, Volkan. “INFLUENCE OF FLAKE SIZE ON THE MORPHOLOGY OF WET SPUN GRAPHENE OXIDE FIBERS”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 6/1 (Mart 2018), 28-37. https://doi.org/10.15317/Scitech.2018.113.
JAMA Eskizeybek V. INFLUENCE OF FLAKE SIZE ON THE MORPHOLOGY OF WET SPUN GRAPHENE OXIDE FIBERS. sujest. 2018;6:28–37.
MLA Eskizeybek, Volkan. “INFLUENCE OF FLAKE SIZE ON THE MORPHOLOGY OF WET SPUN GRAPHENE OXIDE FIBERS”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, c. 6, sy. 1, 2018, ss. 28-37, doi:10.15317/Scitech.2018.113.
Vancouver Eskizeybek V. INFLUENCE OF FLAKE SIZE ON THE MORPHOLOGY OF WET SPUN GRAPHENE OXIDE FIBERS. sujest. 2018;6(1):28-37.

MAKALELERINIZI 

http://sujest.selcuk.edu.tr

uzerinden gonderiniz